doc-src/TutorialI/IsarOverview/Isar/Induction.thy
author nipkow
Mon, 23 Dec 2002 12:01:47 +0100
changeset 13765 e3c444e805c4
parent 13620 61a23a43b783
child 13766 fb78ee03c391
permissions -rw-r--r--
*** empty log message ***
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
     1
(*<*)theory Induction = Main:(*>*)
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
     2
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
     3
section{*Case distinction and induction \label{sec:Induct}*}
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
     4
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
     5
text{* Computer science applications abound with inductively defined
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
     6
structures, which is why we treat them in more detail. HOL already
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
     7
comes with a datatype of lists with the two constructors @{text Nil}
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
     8
and @{text Cons}. @{text Nil} is written @{term"[]"} and @{text"Cons x
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
     9
xs"} is written @{term"x # xs"}.  *}
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    10
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    11
subsection{*Case distinction*}
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    12
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    13
text{* We have already met the @{text cases} method for performing
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    14
binary case splits. Here is another example: *}
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    15
lemma "P \<or> \<not> P"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    16
proof cases
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    17
  assume "P" thus ?thesis ..
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    18
next
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    19
  assume "\<not> P" thus ?thesis ..
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    20
qed
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    21
text{*\noindent Note that the two cases must come in this order.
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    22
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    23
This form is appropriate if @{term P} is textually small.  However, if
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    24
@{term P} is large, we do not want to repeat it. This can be avoided by
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    25
the following idiom *}
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    26
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    27
lemma "P \<or> \<not> P"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    28
proof (cases "P")
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    29
  case True thus ?thesis ..
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    30
next
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    31
  case False thus ?thesis ..
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    32
qed
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    33
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    34
text{*\noindent which is simply a shorthand for the previous
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    35
proof. More precisely, the phrase `\isakeyword{case}~@{text True}'
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    36
abbreviates `\isakeyword{assume}~@{text"True: P"}'
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    37
and analogously for @{text"False"} and @{prop"\<not>P"}.
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    38
In contrast to the previous proof we can prove the cases
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    39
in arbitrary order.
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    40
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    41
The same game can be played with other datatypes, for example lists:
13765
e3c444e805c4 *** empty log message ***
nipkow
parents: 13620
diff changeset
    42
\tweakskip
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    43
*}
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    44
(*<*)declare length_tl[simp del](*>*)
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    45
lemma "length(tl xs) = length xs - 1"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    46
proof (cases xs)
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    47
  case Nil thus ?thesis by simp
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    48
next
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    49
  case Cons thus ?thesis by simp
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    50
qed
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    51
text{*\noindent Here `\isakeyword{case}~@{text Nil}' abbreviates
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    52
`\isakeyword{assume}~@{text"Nil:"}~@{prop"xs = []"}' and
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    53
`\isakeyword{case}~@{text Cons}'
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    54
abbreviates `\isakeyword{fix}~@{text"? ??"}
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    55
\isakeyword{assume}~@{text"Cons:"}~@{text"xs = ? # ??"}'
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    56
where @{text"?"} and @{text"??"}
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    57
stand for variable names that have been chosen by the system.
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    58
Therefore we cannot refer to them.
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    59
Luckily, this proof is simple enough we do not need to refer to them.
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    60
However, sometimes one may have to. Hence Isar offers a simple scheme for
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    61
naming those variables: replace the anonymous @{text Cons} by
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    62
@{text"(Cons y ys)"}, which abbreviates `\isakeyword{fix}~@{text"y ys"}
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    63
\isakeyword{assume}~@{text"Cons:"}~@{text"xs = y # ys"}'. Here
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    64
is a (somewhat contrived) example: *}
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    65
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    66
lemma "length(tl xs) = length xs - 1"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    67
proof (cases xs)
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    68
  case Nil thus ?thesis by simp
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    69
next
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    70
  case (Cons y ys)
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    71
  hence "length(tl xs) = length ys  \<and>  length xs = length ys + 1"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    72
    by simp
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    73
  thus ?thesis by simp
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    74
qed
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    75
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    76
text{* Note that in each \isakeyword{case} the assumption can be
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    77
referred to inside the proof by the name of the constructor. In
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    78
Section~\ref{sec:full-Ind} below we will come across an example
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
    79
of this. *}
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    80
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    81
subsection{*Structural induction*}
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    82
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    83
text{* We start with a simple inductive proof where both cases are proved automatically: *}
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    84
lemma "2 * (\<Sum>i<n+1. i) = n*(n+1)"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    85
by (induct n, simp_all)
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    86
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    87
text{*\noindent If we want to expose more of the structure of the
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    88
proof, we can use pattern matching to avoid having to repeat the goal
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    89
statement: *}
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    90
lemma "2 * (\<Sum>i<n+1. i) = n*(n+1)" (is "?P n")
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    91
proof (induct n)
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    92
  show "?P 0" by simp
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    93
next
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    94
  fix n assume "?P n"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    95
  thus "?P(Suc n)" by simp
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    96
qed
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    97
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    98
text{* \noindent We could refine this further to show more of the equational
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
    99
proof. Instead we explore the same avenue as for case distinctions:
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   100
introducing context via the \isakeyword{case} command: *}
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   101
lemma "2 * (\<Sum>i<n+1. i) = n*(n+1)"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   102
proof (induct n)
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   103
  case 0 show ?case by simp
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   104
next
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   105
  case Suc thus ?case by simp
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   106
qed
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   107
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   108
text{* \noindent The implicitly defined @{text ?case} refers to the
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   109
corresponding case to be proved, i.e.\ @{text"?P 0"} in the first case and
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   110
@{text"?P(Suc n)"} in the second case. Context \isakeyword{case}~@{text 0} is
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   111
empty whereas \isakeyword{case}~@{text Suc} assumes @{text"?P n"}. Again we
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   112
have the same problem as with case distinctions: we cannot refer to an anonymous @{term n}
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   113
in the induction step because it has not been introduced via \isakeyword{fix}
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   114
(in contrast to the previous proof). The solution is the same as above:
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   115
replace @{term Suc} by @{text"(Suc i)"}: *}
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   116
lemma fixes n::nat shows "n < n*n + 1"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   117
proof (induct n)
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   118
  case 0 show ?case by simp
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   119
next
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   120
  case (Suc i) thus "Suc i < Suc i * Suc i + 1" by simp
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   121
qed
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   122
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   123
text{* \noindent Of course we could again have written
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   124
\isakeyword{thus}~@{text ?case} instead of giving the term explicitly
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   125
but we wanted to use @{term i} somewhere. *}
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   126
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   127
subsection{*Induction formulae involving @{text"\<And>"} or @{text"\<Longrightarrow>"}\label{sec:full-Ind}*}
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   128
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   129
text{* Let us now consider the situation where the goal to be proved contains
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   130
@{text"\<And>"} or @{text"\<Longrightarrow>"}, say @{prop"\<And>x. P x \<Longrightarrow> Q x"} --- motivation and a
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   131
real example follow shortly.  This means that in each case of the induction,
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   132
@{text ?case} would be of the form @{prop"\<And>x. P' x \<Longrightarrow> Q' x"}.  Thus the
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   133
first proof steps will be the canonical ones, fixing @{text x} and assuming
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   134
@{prop"P' x"}. To avoid this tedium, induction performs these steps
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   135
automatically: for example in case @{text"(Suc n)"}, @{text ?case} is only
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   136
@{prop"Q' x"} whereas the assumptions (named @{term Suc}!) contain both the
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   137
usual induction hypothesis \emph{and} @{prop"P' x"}.
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   138
It should be clear how this generalizes to more complex formulae.
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   139
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   140
As a concrete example we will now prove complete induction via
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   141
structural induction. *}
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   142
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   143
lemma assumes A: "(\<And>n. (\<And>m. m < n \<Longrightarrow> P m) \<Longrightarrow> P n)"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   144
  shows "P(n::nat)"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   145
proof (rule A)
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   146
  show "\<And>m. m < n \<Longrightarrow> P m"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   147
  proof (induct n)
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   148
    case 0 thus ?case by simp
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   149
  next
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   150
    case (Suc n)   -- {*\isakeyword{fix} @{term m} \isakeyword{assume} @{text Suc}: @{text[source]"?m < n \<Longrightarrow> P ?m"} @{prop[source]"m < Suc n"}*}
13620
61a23a43b783 *** empty log message ***
nipkow
parents: 13619
diff changeset
   151
    show ?case    -- {*@{term ?case}*}
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   152
    proof cases
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   153
      assume eq: "m = n"
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   154
      from Suc and A have "P n" by blast
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   155
      with eq show "P m" by simp
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   156
    next
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   157
      assume "m \<noteq> n"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   158
      with Suc have "m < n" by arith
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   159
      thus "P m" by(rule Suc)
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   160
    qed
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   161
  qed
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   162
qed
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   163
text{* \noindent Given the explanations above and the comments in the
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   164
proof text (only necessary for novices), the proof should be quite
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   165
readable.
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   166
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   167
The statement of the lemma is interesting because it deviates from the style in
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   168
the Tutorial~\cite{LNCS2283}, which suggests to introduce @{text"\<forall>"} or
13620
61a23a43b783 *** empty log message ***
nipkow
parents: 13619
diff changeset
   169
@{text"\<longrightarrow>"} into a theorem to strengthen it for induction. In Isar
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   170
proofs we can use @{text"\<And>"} and @{text"\<Longrightarrow>"} instead. This simplifies the
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   171
proof and means we do not have to convert between the two kinds of
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   172
connectives.
13765
e3c444e805c4 *** empty log message ***
nipkow
parents: 13620
diff changeset
   173
e3c444e805c4 *** empty log message ***
nipkow
parents: 13620
diff changeset
   174
Note that in a nested induction over the same data type, the inner
e3c444e805c4 *** empty log message ***
nipkow
parents: 13620
diff changeset
   175
case labels hide the outer ones of the same name. If you want to refer
e3c444e805c4 *** empty log message ***
nipkow
parents: 13620
diff changeset
   176
to the outer ones inside, you need to name them on the outside:
e3c444e805c4 *** empty log message ***
nipkow
parents: 13620
diff changeset
   177
\isakeyword{note}~@{text"outer_IH = Suc"}.  *}
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   178
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   179
subsection{*Rule induction*}
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   180
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   181
text{* HOL also supports inductively defined sets. See \cite{LNCS2283}
13620
61a23a43b783 *** empty log message ***
nipkow
parents: 13619
diff changeset
   182
for details. As an example we define our own version of the reflexive
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   183
transitive closure of a relation --- HOL provides a predefined one as well.*}
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   184
consts rtc :: "('a \<times> 'a)set \<Rightarrow> ('a \<times> 'a)set"   ("_*" [1000] 999)
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   185
inductive "r*"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   186
intros
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   187
refl:  "(x,x) \<in> r*"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   188
step:  "\<lbrakk> (x,y) \<in> r; (y,z) \<in> r* \<rbrakk> \<Longrightarrow> (x,z) \<in> r*"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   189
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   190
text{* \noindent
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   191
First the constant is declared as a function on binary
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   192
relations (with concrete syntax @{term"r*"} instead of @{text"rtc
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   193
r"}), then the defining clauses are given. We will now prove that
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   194
@{term"r*"} is indeed transitive: *}
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   195
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   196
lemma assumes A: "(x,y) \<in> r*" shows "(y,z) \<in> r* \<Longrightarrow> (x,z) \<in> r*"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   197
using A
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   198
proof induct
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   199
  case refl thus ?case .
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   200
next
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   201
  case step thus ?case by(blast intro: rtc.step)
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   202
qed
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   203
text{*\noindent Rule induction is triggered by a fact $(x_1,\dots,x_n)
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   204
\in R$ piped into the proof, here \isakeyword{using}~@{text A}. The
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   205
proof itself follows the inductive definition very
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   206
closely: there is one case for each rule, and it has the same name as
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   207
the rule, analogous to structural induction.
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   208
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   209
However, this proof is rather terse. Here is a more readable version:
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   210
*}
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   211
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   212
lemma assumes A: "(x,y) \<in> r*" and B: "(y,z) \<in> r*"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   213
  shows "(x,z) \<in> r*"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   214
proof -
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   215
  from A B show ?thesis
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   216
  proof induct
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   217
    fix x assume "(x,z) \<in> r*"  -- {*@{text B}[@{text y} := @{text x}]*}
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   218
    thus "(x,z) \<in> r*" .
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   219
  next
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   220
    fix x' x y
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   221
    assume 1: "(x',x) \<in> r" and
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   222
           IH: "(y,z) \<in> r* \<Longrightarrow> (x,z) \<in> r*" and
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   223
           B:  "(y,z) \<in> r*"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   224
    from 1 IH[OF B] show "(x',z) \<in> r*" by(rule rtc.step)
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   225
  qed
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   226
qed
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   227
text{*\noindent We start the proof with \isakeyword{from}~@{text"A
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   228
B"}. Only @{text A} is ``consumed'' by the induction step.
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   229
Since @{text B} is left over we don't just prove @{text
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   230
?thesis} but @{text"B \<Longrightarrow> ?thesis"}, just as in the previous proof. The
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   231
base case is trivial. In the assumptions for the induction step we can
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   232
see very clearly how things fit together and permit ourselves the
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   233
obvious forward step @{text"IH[OF B]"}.
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   234
13620
61a23a43b783 *** empty log message ***
nipkow
parents: 13619
diff changeset
   235
The notation `\isakeyword{case}~\isa{(}\emph{constructor} \emph{vars}\isa{)}'
61a23a43b783 *** empty log message ***
nipkow
parents: 13619
diff changeset
   236
is also supported for inductive definitions. The \emph{constructor} is (the
61a23a43b783 *** empty log message ***
nipkow
parents: 13619
diff changeset
   237
name of) the rule and the \emph{vars} fix the free variables in the
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   238
rule; the order of the \emph{vars} must correspond to the
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   239
\emph{alphabetical order} of the variables as they appear in the rule.
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   240
For example, we could start the above detailed proof of the induction
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   241
with \isakeyword{case}~\isa{(step x' x y)}. However, we can then only
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   242
refer to the assumptions named \isa{step} collectively and not
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   243
individually, as the above proof requires.  *}
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   244
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   245
subsection{*More induction*}
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   246
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   247
text{* We close the section by demonstrating how arbitrary induction
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   248
rules are applied. As a simple example we have chosen recursion
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   249
induction, i.e.\ induction based on a recursive function
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   250
definition. However, most of what we show works for induction in
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   251
general.
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   252
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   253
The example is an unusual definition of rotation: *}
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   254
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   255
consts rot :: "'a list \<Rightarrow> 'a list"
13765
e3c444e805c4 *** empty log message ***
nipkow
parents: 13620
diff changeset
   256
recdef rot "measure length"  --"for the internal termination proof"
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   257
"rot [] = []"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   258
"rot [x] = [x]"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   259
"rot (x#y#zs) = y # rot(x#zs)"
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   260
text{*\noindent This yields, among other things, the induction rule
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   261
@{thm[source]rot.induct}: @{thm[display]rot.induct[no_vars]}
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   262
In the following proof we rely on a default naming scheme for cases: they are
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   263
called 1, 2, etc, unless they have been named explicitly. The latter happens
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   264
only with datatypes and inductively defined sets, but not with recursive
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   265
functions. *}
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   266
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   267
lemma "xs \<noteq> [] \<Longrightarrow> rot xs = tl xs @ [hd xs]"
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   268
proof (induct xs rule: rot.induct)
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   269
  case 1 thus ?case by simp
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   270
next
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   271
  case 2 show ?case by simp
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   272
next
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   273
  case (3 a b cs)
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   274
  have "rot (a # b # cs) = b # rot(a # cs)" by simp
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   275
  also have "\<dots> = b # tl(a # cs) @ [hd(a # cs)]" by(simp add:3)
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   276
  also have "\<dots> = tl (a # b # cs) @ [hd (a # b # cs)]" by simp
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   277
  finally show ?case .
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   278
qed
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   279
13765
e3c444e805c4 *** empty log message ***
nipkow
parents: 13620
diff changeset
   280
text{*\noindent
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   281
The third case is only shown in gory detail (see \cite{BauerW-TPHOLs01}
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   282
for how to reason with chains of equations) to demonstrate that the
13620
61a23a43b783 *** empty log message ***
nipkow
parents: 13619
diff changeset
   283
`\isakeyword{case}~\isa{(}\emph{constructor} \emph{vars}\isa{)}' notation also
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   284
works for arbitrary induction theorems with numbered cases. The order
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   285
of the \emph{vars} corresponds to the order of the
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   286
@{text"\<And>"}-quantified variables in each case of the induction
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   287
theorem. For induction theorems produced by \isakeyword{recdef} it is
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   288
the order in which the variables appear on the left-hand side of the
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   289
equation.
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   290
13765
e3c444e805c4 *** empty log message ***
nipkow
parents: 13620
diff changeset
   291
The proof is so simple that it can be condensed to
e3c444e805c4 *** empty log message ***
nipkow
parents: 13620
diff changeset
   292
\Tweakskip*}
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   293
(*<*)lemma "xs \<noteq> [] \<Longrightarrow> rot xs = tl xs @ [hd xs]"(*>*)
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   294
by (induct xs rule: rot.induct, simp_all)
13619
584291949c23 *** empty log message ***
nipkow
parents: 13613
diff changeset
   295
13765
e3c444e805c4 *** empty log message ***
nipkow
parents: 13620
diff changeset
   296
text{*\small
e3c444e805c4 *** empty log message ***
nipkow
parents: 13620
diff changeset
   297
\paragraph{Acknowledgment}
e3c444e805c4 *** empty log message ***
nipkow
parents: 13620
diff changeset
   298
I am deeply indebted to Markus Wenzel for conceiving Isar. Clemens Ballarin,
e3c444e805c4 *** empty log message ***
nipkow
parents: 13620
diff changeset
   299
Gertrud Bauer, Stefan Berghofer, Gerwin Klein, Norbert Schirmer,
e3c444e805c4 *** empty log message ***
nipkow
parents: 13620
diff changeset
   300
Markus Wenzel and three referees commented on and improved this document.
e3c444e805c4 *** empty log message ***
nipkow
parents: 13620
diff changeset
   301
*}
13613
531f1f524848 *** empty log message ***
nipkow
parents:
diff changeset
   302
(*<*)end(*>*)