author | blanchet |
Mon, 26 Oct 2009 09:14:29 +0100 | |
changeset 33201 | e3d741e9d2fe |
parent 31338 | d41a8ba25b67 |
child 37765 | 26bdfb7b680b |
permissions | -rw-r--r-- |
27468 | 1 |
(* Title : HLim.thy |
2 |
ID : $Id$ |
|
3 |
Author : Jacques D. Fleuriot |
|
4 |
Copyright : 1998 University of Cambridge |
|
5 |
Conversion to Isar and new proofs by Lawrence C Paulson, 2004 |
|
6 |
*) |
|
7 |
||
8 |
header{* Limits and Continuity (Nonstandard) *} |
|
9 |
||
10 |
theory HLim |
|
11 |
imports Star Lim |
|
12 |
begin |
|
13 |
||
14 |
text{*Nonstandard Definitions*} |
|
15 |
||
16 |
definition |
|
17 |
NSLIM :: "['a::real_normed_vector => 'b::real_normed_vector, 'a, 'b] => bool" |
|
18 |
("((_)/ -- (_)/ --NS> (_))" [60, 0, 60] 60) where |
|
28562 | 19 |
[code del]: "f -- a --NS> L = |
27468 | 20 |
(\<forall>x. (x \<noteq> star_of a & x @= star_of a --> ( *f* f) x @= star_of L))" |
21 |
||
22 |
definition |
|
23 |
isNSCont :: "['a::real_normed_vector => 'b::real_normed_vector, 'a] => bool" where |
|
24 |
--{*NS definition dispenses with limit notions*} |
|
28562 | 25 |
[code del]: "isNSCont f a = (\<forall>y. y @= star_of a --> |
27468 | 26 |
( *f* f) y @= star_of (f a))" |
27 |
||
28 |
definition |
|
29 |
isNSUCont :: "['a::real_normed_vector => 'b::real_normed_vector] => bool" where |
|
28562 | 30 |
[code del]: "isNSUCont f = (\<forall>x y. x @= y --> ( *f* f) x @= ( *f* f) y)" |
27468 | 31 |
|
32 |
||
33 |
subsection {* Limits of Functions *} |
|
34 |
||
35 |
lemma NSLIM_I: |
|
36 |
"(\<And>x. \<lbrakk>x \<noteq> star_of a; x \<approx> star_of a\<rbrakk> \<Longrightarrow> starfun f x \<approx> star_of L) |
|
37 |
\<Longrightarrow> f -- a --NS> L" |
|
38 |
by (simp add: NSLIM_def) |
|
39 |
||
40 |
lemma NSLIM_D: |
|
41 |
"\<lbrakk>f -- a --NS> L; x \<noteq> star_of a; x \<approx> star_of a\<rbrakk> |
|
42 |
\<Longrightarrow> starfun f x \<approx> star_of L" |
|
43 |
by (simp add: NSLIM_def) |
|
44 |
||
45 |
text{*Proving properties of limits using nonstandard definition. |
|
46 |
The properties hold for standard limits as well!*} |
|
47 |
||
48 |
lemma NSLIM_mult: |
|
49 |
fixes l m :: "'a::real_normed_algebra" |
|
50 |
shows "[| f -- x --NS> l; g -- x --NS> m |] |
|
51 |
==> (%x. f(x) * g(x)) -- x --NS> (l * m)" |
|
52 |
by (auto simp add: NSLIM_def intro!: approx_mult_HFinite) |
|
53 |
||
54 |
lemma starfun_scaleR [simp]: |
|
55 |
"starfun (\<lambda>x. f x *\<^sub>R g x) = (\<lambda>x. scaleHR (starfun f x) (starfun g x))" |
|
56 |
by transfer (rule refl) |
|
57 |
||
58 |
lemma NSLIM_scaleR: |
|
59 |
"[| f -- x --NS> l; g -- x --NS> m |] |
|
60 |
==> (%x. f(x) *\<^sub>R g(x)) -- x --NS> (l *\<^sub>R m)" |
|
61 |
by (auto simp add: NSLIM_def intro!: approx_scaleR_HFinite) |
|
62 |
||
63 |
lemma NSLIM_add: |
|
64 |
"[| f -- x --NS> l; g -- x --NS> m |] |
|
65 |
==> (%x. f(x) + g(x)) -- x --NS> (l + m)" |
|
66 |
by (auto simp add: NSLIM_def intro!: approx_add) |
|
67 |
||
68 |
lemma NSLIM_const [simp]: "(%x. k) -- x --NS> k" |
|
69 |
by (simp add: NSLIM_def) |
|
70 |
||
71 |
lemma NSLIM_minus: "f -- a --NS> L ==> (%x. -f(x)) -- a --NS> -L" |
|
72 |
by (simp add: NSLIM_def) |
|
73 |
||
74 |
lemma NSLIM_diff: |
|
75 |
"\<lbrakk>f -- x --NS> l; g -- x --NS> m\<rbrakk> \<Longrightarrow> (\<lambda>x. f x - g x) -- x --NS> (l - m)" |
|
76 |
by (simp only: diff_def NSLIM_add NSLIM_minus) |
|
77 |
||
78 |
lemma NSLIM_add_minus: "[| f -- x --NS> l; g -- x --NS> m |] ==> (%x. f(x) + -g(x)) -- x --NS> (l + -m)" |
|
79 |
by (simp only: NSLIM_add NSLIM_minus) |
|
80 |
||
81 |
lemma NSLIM_inverse: |
|
82 |
fixes L :: "'a::real_normed_div_algebra" |
|
83 |
shows "[| f -- a --NS> L; L \<noteq> 0 |] |
|
84 |
==> (%x. inverse(f(x))) -- a --NS> (inverse L)" |
|
85 |
apply (simp add: NSLIM_def, clarify) |
|
86 |
apply (drule spec) |
|
87 |
apply (auto simp add: star_of_approx_inverse) |
|
88 |
done |
|
89 |
||
90 |
lemma NSLIM_zero: |
|
91 |
assumes f: "f -- a --NS> l" shows "(%x. f(x) - l) -- a --NS> 0" |
|
92 |
proof - |
|
93 |
have "(\<lambda>x. f x - l) -- a --NS> l - l" |
|
94 |
by (rule NSLIM_diff [OF f NSLIM_const]) |
|
95 |
thus ?thesis by simp |
|
96 |
qed |
|
97 |
||
98 |
lemma NSLIM_zero_cancel: "(%x. f(x) - l) -- x --NS> 0 ==> f -- x --NS> l" |
|
99 |
apply (drule_tac g = "%x. l" and m = l in NSLIM_add) |
|
100 |
apply (auto simp add: diff_minus add_assoc) |
|
101 |
done |
|
102 |
||
103 |
lemma NSLIM_const_not_eq: |
|
104 |
fixes a :: "'a::real_normed_algebra_1" |
|
105 |
shows "k \<noteq> L \<Longrightarrow> \<not> (\<lambda>x. k) -- a --NS> L" |
|
106 |
apply (simp add: NSLIM_def) |
|
107 |
apply (rule_tac x="star_of a + of_hypreal epsilon" in exI) |
|
108 |
apply (simp add: hypreal_epsilon_not_zero approx_def) |
|
109 |
done |
|
110 |
||
111 |
lemma NSLIM_not_zero: |
|
112 |
fixes a :: "'a::real_normed_algebra_1" |
|
113 |
shows "k \<noteq> 0 \<Longrightarrow> \<not> (\<lambda>x. k) -- a --NS> 0" |
|
114 |
by (rule NSLIM_const_not_eq) |
|
115 |
||
116 |
lemma NSLIM_const_eq: |
|
117 |
fixes a :: "'a::real_normed_algebra_1" |
|
118 |
shows "(\<lambda>x. k) -- a --NS> L \<Longrightarrow> k = L" |
|
119 |
apply (rule ccontr) |
|
120 |
apply (blast dest: NSLIM_const_not_eq) |
|
121 |
done |
|
122 |
||
123 |
lemma NSLIM_unique: |
|
124 |
fixes a :: "'a::real_normed_algebra_1" |
|
125 |
shows "\<lbrakk>f -- a --NS> L; f -- a --NS> M\<rbrakk> \<Longrightarrow> L = M" |
|
126 |
apply (drule (1) NSLIM_diff) |
|
127 |
apply (auto dest!: NSLIM_const_eq) |
|
128 |
done |
|
129 |
||
130 |
lemma NSLIM_mult_zero: |
|
131 |
fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra" |
|
132 |
shows "[| f -- x --NS> 0; g -- x --NS> 0 |] ==> (%x. f(x)*g(x)) -- x --NS> 0" |
|
133 |
by (drule NSLIM_mult, auto) |
|
134 |
||
135 |
lemma NSLIM_self: "(%x. x) -- a --NS> a" |
|
136 |
by (simp add: NSLIM_def) |
|
137 |
||
138 |
subsubsection {* Equivalence of @{term LIM} and @{term NSLIM} *} |
|
139 |
||
140 |
lemma LIM_NSLIM: |
|
141 |
assumes f: "f -- a --> L" shows "f -- a --NS> L" |
|
142 |
proof (rule NSLIM_I) |
|
143 |
fix x |
|
144 |
assume neq: "x \<noteq> star_of a" |
|
145 |
assume approx: "x \<approx> star_of a" |
|
146 |
have "starfun f x - star_of L \<in> Infinitesimal" |
|
147 |
proof (rule InfinitesimalI2) |
|
148 |
fix r::real assume r: "0 < r" |
|
149 |
from LIM_D [OF f r] |
|
150 |
obtain s where s: "0 < s" and |
|
151 |
less_r: "\<And>x. \<lbrakk>x \<noteq> a; norm (x - a) < s\<rbrakk> \<Longrightarrow> norm (f x - L) < r" |
|
152 |
by fast |
|
153 |
from less_r have less_r': |
|
154 |
"\<And>x. \<lbrakk>x \<noteq> star_of a; hnorm (x - star_of a) < star_of s\<rbrakk> |
|
155 |
\<Longrightarrow> hnorm (starfun f x - star_of L) < star_of r" |
|
156 |
by transfer |
|
157 |
from approx have "x - star_of a \<in> Infinitesimal" |
|
158 |
by (unfold approx_def) |
|
159 |
hence "hnorm (x - star_of a) < star_of s" |
|
160 |
using s by (rule InfinitesimalD2) |
|
161 |
with neq show "hnorm (starfun f x - star_of L) < star_of r" |
|
162 |
by (rule less_r') |
|
163 |
qed |
|
164 |
thus "starfun f x \<approx> star_of L" |
|
165 |
by (unfold approx_def) |
|
166 |
qed |
|
167 |
||
168 |
lemma NSLIM_LIM: |
|
169 |
assumes f: "f -- a --NS> L" shows "f -- a --> L" |
|
170 |
proof (rule LIM_I) |
|
171 |
fix r::real assume r: "0 < r" |
|
172 |
have "\<exists>s>0. \<forall>x. x \<noteq> star_of a \<and> hnorm (x - star_of a) < s |
|
173 |
\<longrightarrow> hnorm (starfun f x - star_of L) < star_of r" |
|
174 |
proof (rule exI, safe) |
|
175 |
show "0 < epsilon" by (rule hypreal_epsilon_gt_zero) |
|
176 |
next |
|
177 |
fix x assume neq: "x \<noteq> star_of a" |
|
178 |
assume "hnorm (x - star_of a) < epsilon" |
|
179 |
with Infinitesimal_epsilon |
|
180 |
have "x - star_of a \<in> Infinitesimal" |
|
181 |
by (rule hnorm_less_Infinitesimal) |
|
182 |
hence "x \<approx> star_of a" |
|
183 |
by (unfold approx_def) |
|
184 |
with f neq have "starfun f x \<approx> star_of L" |
|
185 |
by (rule NSLIM_D) |
|
186 |
hence "starfun f x - star_of L \<in> Infinitesimal" |
|
187 |
by (unfold approx_def) |
|
188 |
thus "hnorm (starfun f x - star_of L) < star_of r" |
|
189 |
using r by (rule InfinitesimalD2) |
|
190 |
qed |
|
191 |
thus "\<exists>s>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < s \<longrightarrow> norm (f x - L) < r" |
|
192 |
by transfer |
|
193 |
qed |
|
194 |
||
195 |
theorem LIM_NSLIM_iff: "(f -- x --> L) = (f -- x --NS> L)" |
|
196 |
by (blast intro: LIM_NSLIM NSLIM_LIM) |
|
197 |
||
198 |
||
199 |
subsection {* Continuity *} |
|
200 |
||
201 |
lemma isNSContD: |
|
202 |
"\<lbrakk>isNSCont f a; y \<approx> star_of a\<rbrakk> \<Longrightarrow> ( *f* f) y \<approx> star_of (f a)" |
|
203 |
by (simp add: isNSCont_def) |
|
204 |
||
205 |
lemma isNSCont_NSLIM: "isNSCont f a ==> f -- a --NS> (f a) " |
|
206 |
by (simp add: isNSCont_def NSLIM_def) |
|
207 |
||
208 |
lemma NSLIM_isNSCont: "f -- a --NS> (f a) ==> isNSCont f a" |
|
209 |
apply (simp add: isNSCont_def NSLIM_def, auto) |
|
210 |
apply (case_tac "y = star_of a", auto) |
|
211 |
done |
|
212 |
||
213 |
text{*NS continuity can be defined using NS Limit in |
|
214 |
similar fashion to standard def of continuity*} |
|
215 |
lemma isNSCont_NSLIM_iff: "(isNSCont f a) = (f -- a --NS> (f a))" |
|
216 |
by (blast intro: isNSCont_NSLIM NSLIM_isNSCont) |
|
217 |
||
218 |
text{*Hence, NS continuity can be given |
|
219 |
in terms of standard limit*} |
|
220 |
lemma isNSCont_LIM_iff: "(isNSCont f a) = (f -- a --> (f a))" |
|
221 |
by (simp add: LIM_NSLIM_iff isNSCont_NSLIM_iff) |
|
222 |
||
223 |
text{*Moreover, it's trivial now that NS continuity |
|
224 |
is equivalent to standard continuity*} |
|
225 |
lemma isNSCont_isCont_iff: "(isNSCont f a) = (isCont f a)" |
|
226 |
apply (simp add: isCont_def) |
|
227 |
apply (rule isNSCont_LIM_iff) |
|
228 |
done |
|
229 |
||
230 |
text{*Standard continuity ==> NS continuity*} |
|
231 |
lemma isCont_isNSCont: "isCont f a ==> isNSCont f a" |
|
232 |
by (erule isNSCont_isCont_iff [THEN iffD2]) |
|
233 |
||
234 |
text{*NS continuity ==> Standard continuity*} |
|
235 |
lemma isNSCont_isCont: "isNSCont f a ==> isCont f a" |
|
236 |
by (erule isNSCont_isCont_iff [THEN iffD1]) |
|
237 |
||
238 |
text{*Alternative definition of continuity*} |
|
239 |
||
240 |
(* Prove equivalence between NS limits - *) |
|
241 |
(* seems easier than using standard def *) |
|
242 |
lemma NSLIM_h_iff: "(f -- a --NS> L) = ((%h. f(a + h)) -- 0 --NS> L)" |
|
243 |
apply (simp add: NSLIM_def, auto) |
|
244 |
apply (drule_tac x = "star_of a + x" in spec) |
|
245 |
apply (drule_tac [2] x = "- star_of a + x" in spec, safe, simp) |
|
246 |
apply (erule mem_infmal_iff [THEN iffD2, THEN Infinitesimal_add_approx_self [THEN approx_sym]]) |
|
247 |
apply (erule_tac [3] approx_minus_iff2 [THEN iffD1]) |
|
248 |
prefer 2 apply (simp add: add_commute diff_def [symmetric]) |
|
249 |
apply (rule_tac x = x in star_cases) |
|
250 |
apply (rule_tac [2] x = x in star_cases) |
|
251 |
apply (auto simp add: starfun star_of_def star_n_minus star_n_add add_assoc approx_refl star_n_zero_num) |
|
252 |
done |
|
253 |
||
254 |
lemma NSLIM_isCont_iff: "(f -- a --NS> f a) = ((%h. f(a + h)) -- 0 --NS> f a)" |
|
255 |
by (rule NSLIM_h_iff) |
|
256 |
||
257 |
lemma isNSCont_minus: "isNSCont f a ==> isNSCont (%x. - f x) a" |
|
258 |
by (simp add: isNSCont_def) |
|
259 |
||
260 |
lemma isNSCont_inverse: |
|
261 |
fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_div_algebra" |
|
262 |
shows "[| isNSCont f x; f x \<noteq> 0 |] ==> isNSCont (%x. inverse (f x)) x" |
|
263 |
by (auto intro: isCont_inverse simp add: isNSCont_isCont_iff) |
|
264 |
||
265 |
lemma isNSCont_const [simp]: "isNSCont (%x. k) a" |
|
266 |
by (simp add: isNSCont_def) |
|
267 |
||
268 |
lemma isNSCont_abs [simp]: "isNSCont abs (a::real)" |
|
269 |
apply (simp add: isNSCont_def) |
|
270 |
apply (auto intro: approx_hrabs simp add: starfun_rabs_hrabs) |
|
271 |
done |
|
272 |
||
273 |
||
274 |
subsection {* Uniform Continuity *} |
|
275 |
||
276 |
lemma isNSUContD: "[| isNSUCont f; x \<approx> y|] ==> ( *f* f) x \<approx> ( *f* f) y" |
|
277 |
by (simp add: isNSUCont_def) |
|
278 |
||
279 |
lemma isUCont_isNSUCont: |
|
280 |
fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" |
|
281 |
assumes f: "isUCont f" shows "isNSUCont f" |
|
282 |
proof (unfold isNSUCont_def, safe) |
|
283 |
fix x y :: "'a star" |
|
284 |
assume approx: "x \<approx> y" |
|
285 |
have "starfun f x - starfun f y \<in> Infinitesimal" |
|
286 |
proof (rule InfinitesimalI2) |
|
287 |
fix r::real assume r: "0 < r" |
|
288 |
with f obtain s where s: "0 < s" and |
|
289 |
less_r: "\<And>x y. norm (x - y) < s \<Longrightarrow> norm (f x - f y) < r" |
|
31338
d41a8ba25b67
generalize constants from Lim.thy to class metric_space
huffman
parents:
28562
diff
changeset
|
290 |
by (auto simp add: isUCont_def dist_norm) |
27468 | 291 |
from less_r have less_r': |
292 |
"\<And>x y. hnorm (x - y) < star_of s |
|
293 |
\<Longrightarrow> hnorm (starfun f x - starfun f y) < star_of r" |
|
294 |
by transfer |
|
295 |
from approx have "x - y \<in> Infinitesimal" |
|
296 |
by (unfold approx_def) |
|
297 |
hence "hnorm (x - y) < star_of s" |
|
298 |
using s by (rule InfinitesimalD2) |
|
299 |
thus "hnorm (starfun f x - starfun f y) < star_of r" |
|
300 |
by (rule less_r') |
|
301 |
qed |
|
302 |
thus "starfun f x \<approx> starfun f y" |
|
303 |
by (unfold approx_def) |
|
304 |
qed |
|
305 |
||
306 |
lemma isNSUCont_isUCont: |
|
307 |
fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" |
|
308 |
assumes f: "isNSUCont f" shows "isUCont f" |
|
31338
d41a8ba25b67
generalize constants from Lim.thy to class metric_space
huffman
parents:
28562
diff
changeset
|
309 |
proof (unfold isUCont_def dist_norm, safe) |
27468 | 310 |
fix r::real assume r: "0 < r" |
311 |
have "\<exists>s>0. \<forall>x y. hnorm (x - y) < s |
|
312 |
\<longrightarrow> hnorm (starfun f x - starfun f y) < star_of r" |
|
313 |
proof (rule exI, safe) |
|
314 |
show "0 < epsilon" by (rule hypreal_epsilon_gt_zero) |
|
315 |
next |
|
316 |
fix x y :: "'a star" |
|
317 |
assume "hnorm (x - y) < epsilon" |
|
318 |
with Infinitesimal_epsilon |
|
319 |
have "x - y \<in> Infinitesimal" |
|
320 |
by (rule hnorm_less_Infinitesimal) |
|
321 |
hence "x \<approx> y" |
|
322 |
by (unfold approx_def) |
|
323 |
with f have "starfun f x \<approx> starfun f y" |
|
324 |
by (simp add: isNSUCont_def) |
|
325 |
hence "starfun f x - starfun f y \<in> Infinitesimal" |
|
326 |
by (unfold approx_def) |
|
327 |
thus "hnorm (starfun f x - starfun f y) < star_of r" |
|
328 |
using r by (rule InfinitesimalD2) |
|
329 |
qed |
|
330 |
thus "\<exists>s>0. \<forall>x y. norm (x - y) < s \<longrightarrow> norm (f x - f y) < r" |
|
331 |
by transfer |
|
332 |
qed |
|
333 |
||
334 |
end |