author | paulson |
Mon, 20 Jan 1997 10:20:58 +0100 | |
changeset 2529 | e40ca839758d |
parent 2495 | 82ec47e0a8d3 |
child 2926 | 15c21c1ad71d |
permissions | -rw-r--r-- |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1 |
%% $Id$ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2 |
\chapter{Higher-Order Logic} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
3 |
\index{higher-order logic|(} |
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
4 |
\index{HOL system@{\sc hol} system} |
1162 | 5 |
|
6 |
The theory~\thydx{HOL} implements higher-order logic. It is based on |
|
7 |
Gordon's~{\sc hol} system~\cite{mgordon-hol}, which itself is based on |
|
8 |
Church's original paper~\cite{church40}. Andrews's book~\cite{andrews86} is a |
|
9 |
full description of higher-order logic. Experience with the {\sc hol} system |
|
10 |
has demonstrated that higher-order logic is useful for hardware verification; |
|
11 |
beyond this, it is widely applicable in many areas of mathematics. It is |
|
12 |
weaker than {\ZF} set theory but for most applications this does not matter. |
|
13 |
If you prefer {\ML} to Lisp, you will probably prefer \HOL\ to~{\ZF}. |
|
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
14 |
|
1162 | 15 |
The syntax of Isabelle's \HOL\ has recently been changed to look more like the |
16 |
traditional syntax of higher-order logic. Function application is now |
|
17 |
curried. To apply the function~$f$ to the arguments~$a$ and~$b$ in \HOL, you |
|
18 |
must write $f\,a\,b$. Note that $f(a,b)$ means ``$f$ applied to the pair |
|
19 |
$(a,b)$'' in \HOL. We write ordered pairs as $(a,b)$, not $\langle |
|
20 |
a,b\rangle$ as in {\ZF} and earlier versions of \HOL. Early releases of |
|
21 |
Isabelle included still another version of~\HOL, with explicit type inference |
|
22 |
rules~\cite{paulson-COLOG}. This version no longer exists, but \thydx{ZF} |
|
23 |
supports a similar style of reasoning. |
|
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
24 |
|
1162 | 25 |
\HOL\ has a distinct feel, compared with {\ZF} and {\CTT}. It |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
26 |
identifies object-level types with meta-level types, taking advantage of |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
27 |
Isabelle's built-in type checker. It identifies object-level functions |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
28 |
with meta-level functions, so it uses Isabelle's operations for abstraction |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
29 |
and application. There is no `apply' operator: function applications are |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
30 |
written as simply~$f~a$ rather than $f{\tt`}a$. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
31 |
|
1162 | 32 |
These identifications allow Isabelle to support \HOL\ particularly nicely, |
33 |
but they also mean that \HOL\ requires more sophistication from the user |
|
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
34 |
--- in particular, an understanding of Isabelle's type system. Beginners |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
35 |
should work with {\tt show_types} set to {\tt true}. Gain experience by |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
36 |
working in first-order logic before attempting to use higher-order logic. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
37 |
This chapter assumes familiarity with~{\FOL{}}. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
38 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
39 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
40 |
\begin{figure} |
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
41 |
\begin{constants} |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
42 |
\it name &\it meta-type & \it description \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
43 |
\cdx{Trueprop}& $bool\To prop$ & coercion to $prop$\\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
44 |
\cdx{not} & $bool\To bool$ & negation ($\neg$) \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
45 |
\cdx{True} & $bool$ & tautology ($\top$) \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
46 |
\cdx{False} & $bool$ & absurdity ($\bot$) \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
47 |
\cdx{If} & $[bool,\alpha,\alpha]\To\alpha::term$ & conditional \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
48 |
\cdx{Inv} & $(\alpha\To\beta)\To(\beta\To\alpha)$ & function inversion\\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
49 |
\cdx{Let} & $[\alpha,\alpha\To\beta]\To\beta$ & let binder |
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
50 |
\end{constants} |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
51 |
\subcaption{Constants} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
52 |
|
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
53 |
\begin{constants} |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
54 |
\index{"@@{\tt\at} symbol} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
55 |
\index{*"! symbol}\index{*"? symbol} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
56 |
\index{*"?"! symbol}\index{*"E"X"! symbol} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
57 |
\it symbol &\it name &\it meta-type & \it description \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
58 |
\tt\at & \cdx{Eps} & $(\alpha\To bool)\To\alpha::term$ & |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
59 |
Hilbert description ($\epsilon$) \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
60 |
{\tt!~} or \sdx{ALL} & \cdx{All} & $(\alpha::term\To bool)\To bool$ & |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
61 |
universal quantifier ($\forall$) \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
62 |
{\tt?~} or \sdx{EX} & \cdx{Ex} & $(\alpha::term\To bool)\To bool$ & |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
63 |
existential quantifier ($\exists$) \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
64 |
{\tt?!} or {\tt EX!} & \cdx{Ex1} & $(\alpha::term\To bool)\To bool$ & |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
65 |
unique existence ($\exists!$) |
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
66 |
\end{constants} |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
67 |
\subcaption{Binders} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
68 |
|
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
69 |
\begin{constants} |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
70 |
\index{*"= symbol} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
71 |
\index{&@{\tt\&} symbol} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
72 |
\index{*"| symbol} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
73 |
\index{*"-"-"> symbol} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
74 |
\it symbol & \it meta-type & \it priority & \it description \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
75 |
\sdx{o} & $[\beta\To\gamma,\alpha\To\beta]\To (\alpha\To\gamma)$ & |
1234 | 76 |
Left 55 & composition ($\circ$) \\ |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
77 |
\tt = & $[\alpha::term,\alpha]\To bool$ & Left 50 & equality ($=$) \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
78 |
\tt < & $[\alpha::ord,\alpha]\To bool$ & Left 50 & less than ($<$) \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
79 |
\tt <= & $[\alpha::ord,\alpha]\To bool$ & Left 50 & |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
80 |
less than or equals ($\leq$)\\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
81 |
\tt \& & $[bool,bool]\To bool$ & Right 35 & conjunction ($\conj$) \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
82 |
\tt | & $[bool,bool]\To bool$ & Right 30 & disjunction ($\disj$) \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
83 |
\tt --> & $[bool,bool]\To bool$ & Right 25 & implication ($\imp$) |
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
84 |
\end{constants} |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
85 |
\subcaption{Infixes} |
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
86 |
\caption{Syntax of {\tt HOL}} \label{hol-constants} |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
87 |
\end{figure} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
88 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
89 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
90 |
\begin{figure} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
91 |
\index{*let symbol} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
92 |
\index{*in symbol} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
93 |
\dquotes |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
94 |
\[\begin{array}{rclcl} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
95 |
term & = & \hbox{expression of class~$term$} \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
96 |
& | & "\at~" id~id^* " . " formula \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
97 |
& | & |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
98 |
\multicolumn{3}{l}{"let"~id~"="~term";"\dots";"~id~"="~term~"in"~term} \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
99 |
& | & |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
100 |
\multicolumn{3}{l}{"if"~formula~"then"~term~"else"~term} \\[2ex] |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
101 |
formula & = & \hbox{expression of type~$bool$} \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
102 |
& | & term " = " term \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
103 |
& | & term " \ttilde= " term \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
104 |
& | & term " < " term \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
105 |
& | & term " <= " term \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
106 |
& | & "\ttilde\ " formula \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
107 |
& | & formula " \& " formula \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
108 |
& | & formula " | " formula \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
109 |
& | & formula " --> " formula \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
110 |
& | & "!~~~" id~id^* " . " formula |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
111 |
& | & "ALL~" id~id^* " . " formula \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
112 |
& | & "?~~~" id~id^* " . " formula |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
113 |
& | & "EX~~" id~id^* " . " formula \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
114 |
& | & "?!~~" id~id^* " . " formula |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
115 |
& | & "EX!~" id~id^* " . " formula |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
116 |
\end{array} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
117 |
\] |
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
118 |
\caption{Full grammar for \HOL} \label{hol-grammar} |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
119 |
\end{figure} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
120 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
121 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
122 |
\section{Syntax} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
123 |
The type class of higher-order terms is called~\cldx{term}. Type variables |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
124 |
range over this class by default. The equality symbol and quantifiers are |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
125 |
polymorphic over class {\tt term}. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
126 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
127 |
Class \cldx{ord} consists of all ordered types; the relations $<$ and |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
128 |
$\leq$ are polymorphic over this class, as are the functions |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
129 |
\cdx{mono}, \cdx{min} and \cdx{max}. Three other |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
130 |
type classes --- \cldx{plus}, \cldx{minus} and \cldx{times} --- permit |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
131 |
overloading of the operators {\tt+}, {\tt-} and {\tt*}. In particular, |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
132 |
{\tt-} is overloaded for set difference and subtraction. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
133 |
\index{*"+ symbol} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
134 |
\index{*"- symbol} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
135 |
\index{*"* symbol} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
136 |
|
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
137 |
Figure~\ref{hol-constants} lists the constants (including infixes and |
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
138 |
binders), while Fig.\ts\ref{hol-grammar} presents the grammar of |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
139 |
higher-order logic. Note that $a$\verb|~=|$b$ is translated to |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
140 |
$\neg(a=b)$. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
141 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
142 |
\begin{warn} |
1162 | 143 |
\HOL\ has no if-and-only-if connective; logical equivalence is expressed |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
144 |
using equality. But equality has a high priority, as befitting a |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
145 |
relation, while if-and-only-if typically has the lowest priority. Thus, |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
146 |
$\neg\neg P=P$ abbreviates $\neg\neg (P=P)$ and not $(\neg\neg P)=P$. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
147 |
When using $=$ to mean logical equivalence, enclose both operands in |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
148 |
parentheses. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
149 |
\end{warn} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
150 |
|
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
151 |
\subsection{Types}\label{hol-types} |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
152 |
The type of formulae, \tydx{bool}, belongs to class \cldx{term}; thus, |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
153 |
formulae are terms. The built-in type~\tydx{fun}, which constructs function |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
154 |
types, is overloaded with arity {\tt(term,term)term}. Thus, $\sigma\To\tau$ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
155 |
belongs to class~{\tt term} if $\sigma$ and~$\tau$ do, allowing quantification |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
156 |
over functions. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
157 |
|
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
158 |
HOL offers various methods for introducing new types. For details |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
159 |
see~\S\ref{sec:HOL:Types} and~\S\ref{sec:HOL:datatype}. |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
160 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
161 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
162 |
\subsection{Binders} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
163 |
Hilbert's {\bf description} operator~$\epsilon x.P[x]$ stands for some~$a$ |
1162 | 164 |
satisfying~$P[a]$, if such exists. Since all terms in \HOL\ denote |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
165 |
something, a description is always meaningful, but we do not know its value |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
166 |
unless $P[x]$ defines it uniquely. We may write descriptions as |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
167 |
\cdx{Eps}($P$) or use the syntax |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
168 |
\hbox{\tt \at $x$.$P[x]$}. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
169 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
170 |
Existential quantification is defined by |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
171 |
\[ \exists x.P~x \;\equiv\; P(\epsilon x.P~x). \] |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
172 |
The unique existence quantifier, $\exists!x.P[x]$, is defined in terms |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
173 |
of~$\exists$ and~$\forall$. An Isabelle binder, it admits nested |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
174 |
quantifications. For instance, $\exists!x y.P~x~y$ abbreviates |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
175 |
$\exists!x. \exists!y.P~x~y$; note that this does not mean that there |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
176 |
exists a unique pair $(x,y)$ satisfying~$P~x~y$. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
177 |
|
1162 | 178 |
\index{*"! symbol}\index{*"? symbol}\index{HOL system@{\sc hol} system} |
179 |
Quantifiers have two notations. As in Gordon's {\sc hol} system, \HOL\ |
|
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
180 |
uses~{\tt!}\ and~{\tt?}\ to stand for $\forall$ and $\exists$. The |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
181 |
existential quantifier must be followed by a space; thus {\tt?x} is an |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
182 |
unknown, while \verb'? x.f x=y' is a quantification. Isabelle's usual |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
183 |
notation for quantifiers, \sdx{ALL} and \sdx{EX}, is also |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
184 |
available. Both notations are accepted for input. The {\ML} reference |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
185 |
\ttindexbold{HOL_quantifiers} governs the output notation. If set to {\tt |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
186 |
true}, then~{\tt!}\ and~{\tt?}\ are displayed; this is the default. If set |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
187 |
to {\tt false}, then~{\tt ALL} and~{\tt EX} are displayed. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
188 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
189 |
All these binders have priority 10. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
190 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
191 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
192 |
\subsection{The \sdx{let} and \sdx{case} constructions} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
193 |
Local abbreviations can be introduced by a {\tt let} construct whose |
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
194 |
syntax appears in Fig.\ts\ref{hol-grammar}. Internally it is translated into |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
195 |
the constant~\cdx{Let}. It can be expanded by rewriting with its |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
196 |
definition, \tdx{Let_def}. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
197 |
|
1162 | 198 |
\HOL\ also defines the basic syntax |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
199 |
\[\dquotes"case"~e~"of"~c@1~"=>"~e@1~"|" \dots "|"~c@n~"=>"~e@n\] |
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
200 |
as a uniform means of expressing {\tt case} constructs. Therefore {\tt case} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
201 |
and \sdx{of} are reserved words. Initially, this is mere syntax and has no |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
202 |
logical meaning. By declaring translations, you can cause instances of the |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
203 |
{\tt case} construct to denote applications of particular case operators. |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
204 |
This is what happens automatically for each {\tt datatype} declaration. For |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
205 |
example \verb$datatype nat = Z | S nat$ declares a translation between |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
206 |
\verb$case x of Z => a | S n => b$ and \verb$nat_case a (%n.b) x$, where |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
207 |
\verb$nat_case$ is some appropriate function. |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
208 |
|
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
209 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
210 |
\begin{figure} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
211 |
\begin{ttbox}\makeatother |
1489 | 212 |
\tdx{refl} t = t |
213 |
\tdx{subst} [| s=t; P s |] ==> P t |
|
214 |
\tdx{ext} (!!x. f x = g x) ==> (\%x.f x) = (\%x.g x) |
|
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
215 |
\tdx{impI} (P ==> Q) ==> P-->Q |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
216 |
\tdx{mp} [| P-->Q; P |] ==> Q |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
217 |
\tdx{iff} (P-->Q) --> (Q-->P) --> (P=Q) |
1489 | 218 |
\tdx{selectI} P(x) ==> P(@x.P x) |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
219 |
\tdx{True_or_False} (P=True) | (P=False) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
220 |
\end{ttbox} |
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
221 |
\caption{The {\tt HOL} rules} \label{hol-rules} |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
222 |
\end{figure} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
223 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
224 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
225 |
\begin{figure}\hfuzz=4pt%suppress "Overfull \hbox" message |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
226 |
\begin{ttbox}\makeatother |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
227 |
\tdx{True_def} True == ((\%x::bool.x)=(\%x.x)) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
228 |
\tdx{All_def} All == (\%P. P = (\%x.True)) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
229 |
\tdx{Ex_def} Ex == (\%P. P(@x.P x)) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
230 |
\tdx{False_def} False == (!P.P) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
231 |
\tdx{not_def} not == (\%P. P-->False) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
232 |
\tdx{and_def} op & == (\%P Q. !R. (P-->Q-->R) --> R) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
233 |
\tdx{or_def} op | == (\%P Q. !R. (P-->R) --> (Q-->R) --> R) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
234 |
\tdx{Ex1_def} Ex1 == (\%P. ? x. P x & (! y. P y --> y=x)) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
235 |
|
1489 | 236 |
\tdx{Inv_def} Inv == (\%f y. @x. f x = y) |
237 |
\tdx{o_def} op o == (\%f g x. f(g x)) |
|
238 |
\tdx{if_def} If P x y == (\%P x y.@z.(P=True --> z=x) & (P=False --> z=y)) |
|
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
239 |
\tdx{Let_def} Let s f == f s |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
240 |
\end{ttbox} |
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
241 |
\caption{The {\tt HOL} definitions} \label{hol-defs} |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
242 |
\end{figure} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
243 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
244 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
245 |
\section{Rules of inference} |
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
246 |
Figure~\ref{hol-rules} shows the inference rules of~\HOL{}, with |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
247 |
their~{\ML} names. Some of the rules deserve additional comments: |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
248 |
\begin{ttdescription} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
249 |
\item[\tdx{ext}] expresses extensionality of functions. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
250 |
\item[\tdx{iff}] asserts that logically equivalent formulae are |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
251 |
equal. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
252 |
\item[\tdx{selectI}] gives the defining property of the Hilbert |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
253 |
$\epsilon$-operator. It is a form of the Axiom of Choice. The derived rule |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
254 |
\tdx{select_equality} (see below) is often easier to use. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
255 |
\item[\tdx{True_or_False}] makes the logic classical.\footnote{In |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
256 |
fact, the $\epsilon$-operator already makes the logic classical, as |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
257 |
shown by Diaconescu; see Paulson~\cite{paulson-COLOG} for details.} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
258 |
\end{ttdescription} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
259 |
|
1162 | 260 |
\HOL{} follows standard practice in higher-order logic: only a few |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
261 |
connectives are taken as primitive, with the remainder defined obscurely |
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
262 |
(Fig.\ts\ref{hol-defs}). Gordon's {\sc hol} system expresses the |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
263 |
corresponding definitions \cite[page~270]{mgordon-hol} using |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
264 |
object-equality~({\tt=}), which is possible because equality in |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
265 |
higher-order logic may equate formulae and even functions over formulae. |
1162 | 266 |
But theory~\HOL{}, like all other Isabelle theories, uses |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
267 |
meta-equality~({\tt==}) for definitions. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
268 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
269 |
Some of the rules mention type variables; for example, {\tt refl} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
270 |
mentions the type variable~{\tt'a}. This allows you to instantiate |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
271 |
type variables explicitly by calling {\tt res_inst_tac}. By default, |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
272 |
explicit type variables have class \cldx{term}. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
273 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
274 |
Include type constraints whenever you state a polymorphic goal. Type |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
275 |
inference may otherwise make the goal more polymorphic than you intended, |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
276 |
with confusing results. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
277 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
278 |
\begin{warn} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
279 |
If resolution fails for no obvious reason, try setting |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
280 |
\ttindex{show_types} to {\tt true}, causing Isabelle to display types of |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
281 |
terms. Possibly set \ttindex{show_sorts} to {\tt true} as well, causing |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
282 |
Isabelle to display sorts. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
283 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
284 |
\index{unification!incompleteness of} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
285 |
Where function types are involved, Isabelle's unification code does not |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
286 |
guarantee to find instantiations for type variables automatically. Be |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
287 |
prepared to use \ttindex{res_inst_tac} instead of {\tt resolve_tac}, |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
288 |
possibly instantiating type variables. Setting |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
289 |
\ttindex{Unify.trace_types} to {\tt true} causes Isabelle to report |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
290 |
omitted search paths during unification.\index{tracing!of unification} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
291 |
\end{warn} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
292 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
293 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
294 |
\begin{figure} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
295 |
\begin{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
296 |
\tdx{sym} s=t ==> t=s |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
297 |
\tdx{trans} [| r=s; s=t |] ==> r=t |
1489 | 298 |
\tdx{ssubst} [| t=s; P s |] ==> P t |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
299 |
\tdx{box_equals} [| a=b; a=c; b=d |] ==> c=d |
1489 | 300 |
\tdx{arg_cong} x = y ==> f x = f y |
301 |
\tdx{fun_cong} f = g ==> f x = g x |
|
302 |
\tdx{cong} [| f = g; x = y |] ==> f x = g y |
|
303 |
\tdx{not_sym} t ~= s ==> s ~= t |
|
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
304 |
\subcaption{Equality} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
305 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
306 |
\tdx{TrueI} True |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
307 |
\tdx{FalseE} False ==> P |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
308 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
309 |
\tdx{conjI} [| P; Q |] ==> P&Q |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
310 |
\tdx{conjunct1} [| P&Q |] ==> P |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
311 |
\tdx{conjunct2} [| P&Q |] ==> Q |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
312 |
\tdx{conjE} [| P&Q; [| P; Q |] ==> R |] ==> R |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
313 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
314 |
\tdx{disjI1} P ==> P|Q |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
315 |
\tdx{disjI2} Q ==> P|Q |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
316 |
\tdx{disjE} [| P | Q; P ==> R; Q ==> R |] ==> R |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
317 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
318 |
\tdx{notI} (P ==> False) ==> ~ P |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
319 |
\tdx{notE} [| ~ P; P |] ==> R |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
320 |
\tdx{impE} [| P-->Q; P; Q ==> R |] ==> R |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
321 |
\subcaption{Propositional logic} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
322 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
323 |
\tdx{iffI} [| P ==> Q; Q ==> P |] ==> P=Q |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
324 |
\tdx{iffD1} [| P=Q; P |] ==> Q |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
325 |
\tdx{iffD2} [| P=Q; Q |] ==> P |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
326 |
\tdx{iffE} [| P=Q; [| P --> Q; Q --> P |] ==> R |] ==> R |
1489 | 327 |
% |
328 |
%\tdx{eqTrueI} P ==> P=True |
|
329 |
%\tdx{eqTrueE} P=True ==> P |
|
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
330 |
\subcaption{Logical equivalence} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
331 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
332 |
\end{ttbox} |
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
333 |
\caption{Derived rules for \HOL} \label{hol-lemmas1} |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
334 |
\end{figure} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
335 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
336 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
337 |
\begin{figure} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
338 |
\begin{ttbox}\makeatother |
1489 | 339 |
\tdx{allI} (!!x. P x) ==> !x. P x |
340 |
\tdx{spec} !x.P x ==> P x |
|
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
341 |
\tdx{allE} [| !x.P x; P x ==> R |] ==> R |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
342 |
\tdx{all_dupE} [| !x.P x; [| P x; !x.P x |] ==> R |] ==> R |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
343 |
|
1489 | 344 |
\tdx{exI} P x ==> ? x. P x |
345 |
\tdx{exE} [| ? x. P x; !!x. P x ==> Q |] ==> Q |
|
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
346 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
347 |
\tdx{ex1I} [| P a; !!x. P x ==> x=a |] ==> ?! x. P x |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
348 |
\tdx{ex1E} [| ?! x.P x; !!x. [| P x; ! y. P y --> y=x |] ==> R |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
349 |
|] ==> R |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
350 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
351 |
\tdx{select_equality} [| P a; !!x. P x ==> x=a |] ==> (@x.P x) = a |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
352 |
\subcaption{Quantifiers and descriptions} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
353 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
354 |
\tdx{ccontr} (~P ==> False) ==> P |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
355 |
\tdx{classical} (~P ==> P) ==> P |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
356 |
\tdx{excluded_middle} ~P | P |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
357 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
358 |
\tdx{disjCI} (~Q ==> P) ==> P|Q |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
359 |
\tdx{exCI} (! x. ~ P x ==> P a) ==> ? x.P x |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
360 |
\tdx{impCE} [| P-->Q; ~ P ==> R; Q ==> R |] ==> R |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
361 |
\tdx{iffCE} [| P=Q; [| P;Q |] ==> R; [| ~P; ~Q |] ==> R |] ==> R |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
362 |
\tdx{notnotD} ~~P ==> P |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
363 |
\tdx{swap} ~P ==> (~Q ==> P) ==> Q |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
364 |
\subcaption{Classical logic} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
365 |
|
1489 | 366 |
%\tdx{if_True} (if True then x else y) = x |
367 |
%\tdx{if_False} (if False then x else y) = y |
|
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
368 |
\tdx{if_P} P ==> (if P then x else y) = x |
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
369 |
\tdx{if_not_P} ~ P ==> (if P then x else y) = y |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
370 |
\tdx{expand_if} P(if Q then x else y) = ((Q --> P x) & (~Q --> P y)) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
371 |
\subcaption{Conditionals} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
372 |
\end{ttbox} |
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
373 |
\caption{More derived rules} \label{hol-lemmas2} |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
374 |
\end{figure} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
375 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
376 |
|
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
377 |
Some derived rules are shown in Figures~\ref{hol-lemmas1} |
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
378 |
and~\ref{hol-lemmas2}, with their {\ML} names. These include natural rules |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
379 |
for the logical connectives, as well as sequent-style elimination rules for |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
380 |
conjunctions, implications, and universal quantifiers. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
381 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
382 |
Note the equality rules: \tdx{ssubst} performs substitution in |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
383 |
backward proofs, while \tdx{box_equals} supports reasoning by |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
384 |
simplifying both sides of an equation. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
385 |
|
1489 | 386 |
The following simple tactics are occasionally useful: |
387 |
\begin{ttdescription} |
|
388 |
\item[\ttindexbold{strip_tac} $i$] applies {\tt allI} and {\tt impI} |
|
389 |
repeatedly to remove all outermost universal quantifiers and implications |
|
390 |
from subgoal $i$. |
|
391 |
\item[\ttindexbold{case_tac} {\tt"}$P${\tt"} $i$] performs case distinction |
|
392 |
on $P$ for subgoal $i$: the latter is replaced by two identical subgoals |
|
393 |
with the added assumptions $P$ and $\neg P$, respectively. |
|
394 |
\end{ttdescription} |
|
395 |
||
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
396 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
397 |
\begin{figure} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
398 |
\begin{center} |
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
399 |
\begin{tabular}{rrr} |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
400 |
\it name &\it meta-type & \it description \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
401 |
\index{{}@\verb'{}' symbol} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
402 |
\verb|{}| & $\alpha\,set$ & the empty set \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
403 |
\cdx{insert} & $[\alpha,\alpha\,set]\To \alpha\,set$ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
404 |
& insertion of element \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
405 |
\cdx{Collect} & $(\alpha\To bool)\To\alpha\,set$ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
406 |
& comprehension \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
407 |
\cdx{Compl} & $(\alpha\,set)\To\alpha\,set$ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
408 |
& complement \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
409 |
\cdx{INTER} & $[\alpha\,set,\alpha\To\beta\,set]\To\beta\,set$ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
410 |
& intersection over a set\\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
411 |
\cdx{UNION} & $[\alpha\,set,\alpha\To\beta\,set]\To\beta\,set$ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
412 |
& union over a set\\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
413 |
\cdx{Inter} & $(\alpha\,set)set\To\alpha\,set$ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
414 |
&set of sets intersection \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
415 |
\cdx{Union} & $(\alpha\,set)set\To\alpha\,set$ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
416 |
&set of sets union \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
417 |
\cdx{Pow} & $\alpha\,set \To (\alpha\,set)set$ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
418 |
& powerset \\[1ex] |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
419 |
\cdx{range} & $(\alpha\To\beta )\To\beta\,set$ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
420 |
& range of a function \\[1ex] |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
421 |
\cdx{Ball}~~\cdx{Bex} & $[\alpha\,set,\alpha\To bool]\To bool$ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
422 |
& bounded quantifiers \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
423 |
\cdx{mono} & $(\alpha\,set\To\beta\,set)\To bool$ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
424 |
& monotonicity \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
425 |
\cdx{inj}~~\cdx{surj}& $(\alpha\To\beta )\To bool$ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
426 |
& injective/surjective \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
427 |
\cdx{inj_onto} & $[\alpha\To\beta ,\alpha\,set]\To bool$ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
428 |
& injective over subset |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
429 |
\end{tabular} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
430 |
\end{center} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
431 |
\subcaption{Constants} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
432 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
433 |
\begin{center} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
434 |
\begin{tabular}{llrrr} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
435 |
\it symbol &\it name &\it meta-type & \it priority & \it description \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
436 |
\sdx{INT} & \cdx{INTER1} & $(\alpha\To\beta\,set)\To\beta\,set$ & 10 & |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
437 |
intersection over a type\\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
438 |
\sdx{UN} & \cdx{UNION1} & $(\alpha\To\beta\,set)\To\beta\,set$ & 10 & |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
439 |
union over a type |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
440 |
\end{tabular} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
441 |
\end{center} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
442 |
\subcaption{Binders} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
443 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
444 |
\begin{center} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
445 |
\index{*"`"` symbol} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
446 |
\index{*": symbol} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
447 |
\index{*"<"= symbol} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
448 |
\begin{tabular}{rrrr} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
449 |
\it symbol & \it meta-type & \it priority & \it description \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
450 |
\tt `` & $[\alpha\To\beta ,\alpha\,set]\To (\beta\,set)$ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
451 |
& Left 90 & image \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
452 |
\sdx{Int} & $[\alpha\,set,\alpha\,set]\To\alpha\,set$ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
453 |
& Left 70 & intersection ($\inter$) \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
454 |
\sdx{Un} & $[\alpha\,set,\alpha\,set]\To\alpha\,set$ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
455 |
& Left 65 & union ($\union$) \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
456 |
\tt: & $[\alpha ,\alpha\,set]\To bool$ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
457 |
& Left 50 & membership ($\in$) \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
458 |
\tt <= & $[\alpha\,set,\alpha\,set]\To bool$ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
459 |
& Left 50 & subset ($\subseteq$) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
460 |
\end{tabular} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
461 |
\end{center} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
462 |
\subcaption{Infixes} |
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
463 |
\caption{Syntax of the theory {\tt Set}} \label{hol-set-syntax} |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
464 |
\end{figure} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
465 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
466 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
467 |
\begin{figure} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
468 |
\begin{center} \tt\frenchspacing |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
469 |
\index{*"! symbol} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
470 |
\begin{tabular}{rrr} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
471 |
\it external & \it internal & \it description \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
472 |
$a$ \ttilde: $b$ & \ttilde($a$ : $b$) & \rm non-membership\\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
473 |
\{$a@1$, $\ldots$\} & insert $a@1$ $\ldots$ \{\} & \rm finite set \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
474 |
\{$x$.$P[x]$\} & Collect($\lambda x.P[x]$) & |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
475 |
\rm comprehension \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
476 |
\sdx{INT} $x$:$A$.$B[x]$ & INTER $A$ $\lambda x.B[x]$ & |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
477 |
\rm intersection \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
478 |
\sdx{UN}{\tt\ } $x$:$A$.$B[x]$ & UNION $A$ $\lambda x.B[x]$ & |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
479 |
\rm union \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
480 |
\tt ! $x$:$A$.$P[x]$ or \sdx{ALL} $x$:$A$.$P[x]$ & |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
481 |
Ball $A$ $\lambda x.P[x]$ & |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
482 |
\rm bounded $\forall$ \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
483 |
\sdx{?} $x$:$A$.$P[x]$ or \sdx{EX}{\tt\ } $x$:$A$.$P[x]$ & |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
484 |
Bex $A$ $\lambda x.P[x]$ & \rm bounded $\exists$ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
485 |
\end{tabular} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
486 |
\end{center} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
487 |
\subcaption{Translations} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
488 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
489 |
\dquotes |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
490 |
\[\begin{array}{rclcl} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
491 |
term & = & \hbox{other terms\ldots} \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
492 |
& | & "\{\}" \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
493 |
& | & "\{ " term\; ("," term)^* " \}" \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
494 |
& | & "\{ " id " . " formula " \}" \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
495 |
& | & term " `` " term \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
496 |
& | & term " Int " term \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
497 |
& | & term " Un " term \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
498 |
& | & "INT~~" id ":" term " . " term \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
499 |
& | & "UN~~~" id ":" term " . " term \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
500 |
& | & "INT~~" id~id^* " . " term \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
501 |
& | & "UN~~~" id~id^* " . " term \\[2ex] |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
502 |
formula & = & \hbox{other formulae\ldots} \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
503 |
& | & term " : " term \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
504 |
& | & term " \ttilde: " term \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
505 |
& | & term " <= " term \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
506 |
& | & "!~" id ":" term " . " formula |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
507 |
& | & "ALL " id ":" term " . " formula \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
508 |
& | & "?~" id ":" term " . " formula |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
509 |
& | & "EX~~" id ":" term " . " formula |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
510 |
\end{array} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
511 |
\] |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
512 |
\subcaption{Full Grammar} |
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
513 |
\caption{Syntax of the theory {\tt Set} (continued)} \label{hol-set-syntax2} |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
514 |
\end{figure} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
515 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
516 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
517 |
\section{A formulation of set theory} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
518 |
Historically, higher-order logic gives a foundation for Russell and |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
519 |
Whitehead's theory of classes. Let us use modern terminology and call them |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
520 |
{\bf sets}, but note that these sets are distinct from those of {\ZF} set |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
521 |
theory, and behave more like {\ZF} classes. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
522 |
\begin{itemize} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
523 |
\item |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
524 |
Sets are given by predicates over some type~$\sigma$. Types serve to |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
525 |
define universes for sets, but type checking is still significant. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
526 |
\item |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
527 |
There is a universal set (for each type). Thus, sets have complements, and |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
528 |
may be defined by absolute comprehension. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
529 |
\item |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
530 |
Although sets may contain other sets as elements, the containing set must |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
531 |
have a more complex type. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
532 |
\end{itemize} |
1162 | 533 |
Finite unions and intersections have the same behaviour in \HOL\ as they |
534 |
do in~{\ZF}. In \HOL\ the intersection of the empty set is well-defined, |
|
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
535 |
denoting the universal set for the given type. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
536 |
|
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
537 |
% FIXME: define set via typedef |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
538 |
\subsection{Syntax of set theory}\index{*set type} |
1162 | 539 |
\HOL's set theory is called \thydx{Set}. The type $\alpha\,set$ is |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
540 |
essentially the same as $\alpha\To bool$. The new type is defined for |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
541 |
clarity and to avoid complications involving function types in unification. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
542 |
Since Isabelle does not support type definitions (as mentioned in |
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
543 |
\S\ref{hol-types}), the isomorphisms between the two types are declared |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
544 |
explicitly. Here they are natural: {\tt Collect} maps $\alpha\To bool$ to |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
545 |
$\alpha\,set$, while \hbox{\tt op :} maps in the other direction (ignoring |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
546 |
argument order). |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
547 |
|
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
548 |
Figure~\ref{hol-set-syntax} lists the constants, infixes, and syntax |
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
549 |
translations. Figure~\ref{hol-set-syntax2} presents the grammar of the new |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
550 |
constructs. Infix operators include union and intersection ($A\union B$ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
551 |
and $A\inter B$), the subset and membership relations, and the image |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
552 |
operator~{\tt``}\@. Note that $a$\verb|~:|$b$ is translated to |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
553 |
$\neg(a\in b)$. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
554 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
555 |
The {\tt\{\ldots\}} notation abbreviates finite sets constructed in the |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
556 |
obvious manner using~{\tt insert} and~$\{\}$: |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
557 |
\begin{eqnarray*} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
558 |
\{a@1, \ldots, a@n\} & \equiv & |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
559 |
{\tt insert}~a@1~({\tt insert}\ldots({\tt insert}~a@n~\{\})\ldots) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
560 |
\end{eqnarray*} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
561 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
562 |
The set \hbox{\tt\{$x$.$P[x]$\}} consists of all $x$ (of suitable type) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
563 |
that satisfy~$P[x]$, where $P[x]$ is a formula that may contain free |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
564 |
occurrences of~$x$. This syntax expands to \cdx{Collect}$(\lambda |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
565 |
x.P[x])$. It defines sets by absolute comprehension, which is impossible |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
566 |
in~{\ZF}; the type of~$x$ implicitly restricts the comprehension. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
567 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
568 |
The set theory defines two {\bf bounded quantifiers}: |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
569 |
\begin{eqnarray*} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
570 |
\forall x\in A.P[x] &\hbox{abbreviates}& \forall x. x\in A\imp P[x] \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
571 |
\exists x\in A.P[x] &\hbox{abbreviates}& \exists x. x\in A\conj P[x] |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
572 |
\end{eqnarray*} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
573 |
The constants~\cdx{Ball} and~\cdx{Bex} are defined |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
574 |
accordingly. Instead of {\tt Ball $A$ $P$} and {\tt Bex $A$ $P$} we may |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
575 |
write\index{*"! symbol}\index{*"? symbol} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
576 |
\index{*ALL symbol}\index{*EX symbol} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
577 |
% |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
578 |
\hbox{\tt !~$x$:$A$.$P[x]$} and \hbox{\tt ?~$x$:$A$.$P[x]$}. Isabelle's |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
579 |
usual quantifier symbols, \sdx{ALL} and \sdx{EX}, are also accepted |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
580 |
for input. As with the primitive quantifiers, the {\ML} reference |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
581 |
\ttindex{HOL_quantifiers} specifies which notation to use for output. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
582 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
583 |
Unions and intersections over sets, namely $\bigcup@{x\in A}B[x]$ and |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
584 |
$\bigcap@{x\in A}B[x]$, are written |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
585 |
\sdx{UN}~\hbox{\tt$x$:$A$.$B[x]$} and |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
586 |
\sdx{INT}~\hbox{\tt$x$:$A$.$B[x]$}. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
587 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
588 |
Unions and intersections over types, namely $\bigcup@x B[x]$ and $\bigcap@x |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
589 |
B[x]$, are written \sdx{UN}~\hbox{\tt$x$.$B[x]$} and |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
590 |
\sdx{INT}~\hbox{\tt$x$.$B[x]$}. They are equivalent to the previous |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
591 |
union and intersection operators when $A$ is the universal set. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
592 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
593 |
The operators $\bigcup A$ and $\bigcap A$ act upon sets of sets. They are |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
594 |
not binders, but are equal to $\bigcup@{x\in A}x$ and $\bigcap@{x\in A}x$, |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
595 |
respectively. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
596 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
597 |
|
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
598 |
% FIXME: remove the two laws connecting mem and Collect |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
599 |
\begin{figure} \underscoreon |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
600 |
\begin{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
601 |
\tdx{mem_Collect_eq} (a : \{x.P x\}) = P a |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
602 |
\tdx{Collect_mem_eq} \{x.x:A\} = A |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
603 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
604 |
\tdx{empty_def} \{\} == \{x.False\} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
605 |
\tdx{insert_def} insert a B == \{x.x=a\} Un B |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
606 |
\tdx{Ball_def} Ball A P == ! x. x:A --> P x |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
607 |
\tdx{Bex_def} Bex A P == ? x. x:A & P x |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
608 |
\tdx{subset_def} A <= B == ! x:A. x:B |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
609 |
\tdx{Un_def} A Un B == \{x.x:A | x:B\} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
610 |
\tdx{Int_def} A Int B == \{x.x:A & x:B\} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
611 |
\tdx{set_diff_def} A - B == \{x.x:A & x~:B\} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
612 |
\tdx{Compl_def} Compl A == \{x. ~ x:A\} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
613 |
\tdx{INTER_def} INTER A B == \{y. ! x:A. y: B x\} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
614 |
\tdx{UNION_def} UNION A B == \{y. ? x:A. y: B x\} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
615 |
\tdx{INTER1_def} INTER1 B == INTER \{x.True\} B |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
616 |
\tdx{UNION1_def} UNION1 B == UNION \{x.True\} B |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
617 |
\tdx{Inter_def} Inter S == (INT x:S. x) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
618 |
\tdx{Union_def} Union S == (UN x:S. x) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
619 |
\tdx{Pow_def} Pow A == \{B. B <= A\} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
620 |
\tdx{image_def} f``A == \{y. ? x:A. y=f x\} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
621 |
\tdx{range_def} range f == \{y. ? x. y=f x\} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
622 |
\tdx{mono_def} mono f == !A B. A <= B --> f A <= f B |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
623 |
\tdx{inj_def} inj f == ! x y. f x=f y --> x=y |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
624 |
\tdx{surj_def} surj f == ! y. ? x. y=f x |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
625 |
\tdx{inj_onto_def} inj_onto f A == !x:A. !y:A. f x=f y --> x=y |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
626 |
\end{ttbox} |
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
627 |
\caption{Rules of the theory {\tt Set}} \label{hol-set-rules} |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
628 |
\end{figure} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
629 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
630 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
631 |
\begin{figure} \underscoreon |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
632 |
\begin{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
633 |
\tdx{CollectI} [| P a |] ==> a : \{x.P x\} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
634 |
\tdx{CollectD} [| a : \{x.P x\} |] ==> P a |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
635 |
\tdx{CollectE} [| a : \{x.P x\}; P a ==> W |] ==> W |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
636 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
637 |
\tdx{ballI} [| !!x. x:A ==> P x |] ==> ! x:A. P x |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
638 |
\tdx{bspec} [| ! x:A. P x; x:A |] ==> P x |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
639 |
\tdx{ballE} [| ! x:A. P x; P x ==> Q; ~ x:A ==> Q |] ==> Q |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
640 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
641 |
\tdx{bexI} [| P x; x:A |] ==> ? x:A. P x |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
642 |
\tdx{bexCI} [| ! x:A. ~ P x ==> P a; a:A |] ==> ? x:A.P x |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
643 |
\tdx{bexE} [| ? x:A. P x; !!x. [| x:A; P x |] ==> Q |] ==> Q |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
644 |
\subcaption{Comprehension and Bounded quantifiers} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
645 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
646 |
\tdx{subsetI} (!!x.x:A ==> x:B) ==> A <= B |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
647 |
\tdx{subsetD} [| A <= B; c:A |] ==> c:B |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
648 |
\tdx{subsetCE} [| A <= B; ~ (c:A) ==> P; c:B ==> P |] ==> P |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
649 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
650 |
\tdx{subset_refl} A <= A |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
651 |
\tdx{subset_trans} [| A<=B; B<=C |] ==> A<=C |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
652 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
653 |
\tdx{equalityI} [| A <= B; B <= A |] ==> A = B |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
654 |
\tdx{equalityD1} A = B ==> A<=B |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
655 |
\tdx{equalityD2} A = B ==> B<=A |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
656 |
\tdx{equalityE} [| A = B; [| A<=B; B<=A |] ==> P |] ==> P |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
657 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
658 |
\tdx{equalityCE} [| A = B; [| c:A; c:B |] ==> P; |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
659 |
[| ~ c:A; ~ c:B |] ==> P |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
660 |
|] ==> P |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
661 |
\subcaption{The subset and equality relations} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
662 |
\end{ttbox} |
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
663 |
\caption{Derived rules for set theory} \label{hol-set1} |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
664 |
\end{figure} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
665 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
666 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
667 |
\begin{figure} \underscoreon |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
668 |
\begin{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
669 |
\tdx{emptyE} a : \{\} ==> P |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
670 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
671 |
\tdx{insertI1} a : insert a B |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
672 |
\tdx{insertI2} a : B ==> a : insert b B |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
673 |
\tdx{insertE} [| a : insert b A; a=b ==> P; a:A ==> P |] ==> P |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
674 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
675 |
\tdx{ComplI} [| c:A ==> False |] ==> c : Compl A |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
676 |
\tdx{ComplD} [| c : Compl A |] ==> ~ c:A |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
677 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
678 |
\tdx{UnI1} c:A ==> c : A Un B |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
679 |
\tdx{UnI2} c:B ==> c : A Un B |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
680 |
\tdx{UnCI} (~c:B ==> c:A) ==> c : A Un B |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
681 |
\tdx{UnE} [| c : A Un B; c:A ==> P; c:B ==> P |] ==> P |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
682 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
683 |
\tdx{IntI} [| c:A; c:B |] ==> c : A Int B |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
684 |
\tdx{IntD1} c : A Int B ==> c:A |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
685 |
\tdx{IntD2} c : A Int B ==> c:B |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
686 |
\tdx{IntE} [| c : A Int B; [| c:A; c:B |] ==> P |] ==> P |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
687 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
688 |
\tdx{UN_I} [| a:A; b: B a |] ==> b: (UN x:A. B x) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
689 |
\tdx{UN_E} [| b: (UN x:A. B x); !!x.[| x:A; b:B x |] ==> R |] ==> R |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
690 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
691 |
\tdx{INT_I} (!!x. x:A ==> b: B x) ==> b : (INT x:A. B x) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
692 |
\tdx{INT_D} [| b: (INT x:A. B x); a:A |] ==> b: B a |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
693 |
\tdx{INT_E} [| b: (INT x:A. B x); b: B a ==> R; ~ a:A ==> R |] ==> R |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
694 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
695 |
\tdx{UnionI} [| X:C; A:X |] ==> A : Union C |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
696 |
\tdx{UnionE} [| A : Union C; !!X.[| A:X; X:C |] ==> R |] ==> R |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
697 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
698 |
\tdx{InterI} [| !!X. X:C ==> A:X |] ==> A : Inter C |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
699 |
\tdx{InterD} [| A : Inter C; X:C |] ==> A:X |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
700 |
\tdx{InterE} [| A : Inter C; A:X ==> R; ~ X:C ==> R |] ==> R |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
701 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
702 |
\tdx{PowI} A<=B ==> A: Pow B |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
703 |
\tdx{PowD} A: Pow B ==> A<=B |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
704 |
\end{ttbox} |
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
705 |
\caption{Further derived rules for set theory} \label{hol-set2} |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
706 |
\end{figure} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
707 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
708 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
709 |
\subsection{Axioms and rules of set theory} |
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
710 |
Figure~\ref{hol-set-rules} presents the rules of theory \thydx{Set}. The |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
711 |
axioms \tdx{mem_Collect_eq} and \tdx{Collect_mem_eq} assert |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
712 |
that the functions {\tt Collect} and \hbox{\tt op :} are isomorphisms. Of |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
713 |
course, \hbox{\tt op :} also serves as the membership relation. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
714 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
715 |
All the other axioms are definitions. They include the empty set, bounded |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
716 |
quantifiers, unions, intersections, complements and the subset relation. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
717 |
They also include straightforward properties of functions: image~({\tt``}) and |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
718 |
{\tt range}, and predicates concerning monotonicity, injectiveness and |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
719 |
surjectiveness. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
720 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
721 |
The predicate \cdx{inj_onto} is used for simulating type definitions. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
722 |
The statement ${\tt inj_onto}~f~A$ asserts that $f$ is injective on the |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
723 |
set~$A$, which specifies a subset of its domain type. In a type |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
724 |
definition, $f$ is the abstraction function and $A$ is the set of valid |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
725 |
representations; we should not expect $f$ to be injective outside of~$A$. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
726 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
727 |
\begin{figure} \underscoreon |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
728 |
\begin{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
729 |
\tdx{Inv_f_f} inj f ==> Inv f (f x) = x |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
730 |
\tdx{f_Inv_f} y : range f ==> f(Inv f y) = y |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
731 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
732 |
%\tdx{Inv_injective} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
733 |
% [| Inv f x=Inv f y; x: range f; y: range f |] ==> x=y |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
734 |
% |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
735 |
\tdx{imageI} [| x:A |] ==> f x : f``A |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
736 |
\tdx{imageE} [| b : f``A; !!x.[| b=f x; x:A |] ==> P |] ==> P |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
737 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
738 |
\tdx{rangeI} f x : range f |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
739 |
\tdx{rangeE} [| b : range f; !!x.[| b=f x |] ==> P |] ==> P |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
740 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
741 |
\tdx{monoI} [| !!A B. A <= B ==> f A <= f B |] ==> mono f |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
742 |
\tdx{monoD} [| mono f; A <= B |] ==> f A <= f B |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
743 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
744 |
\tdx{injI} [| !! x y. f x = f y ==> x=y |] ==> inj f |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
745 |
\tdx{inj_inverseI} (!!x. g(f x) = x) ==> inj f |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
746 |
\tdx{injD} [| inj f; f x = f y |] ==> x=y |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
747 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
748 |
\tdx{inj_ontoI} (!!x y. [| f x=f y; x:A; y:A |] ==> x=y) ==> inj_onto f A |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
749 |
\tdx{inj_ontoD} [| inj_onto f A; f x=f y; x:A; y:A |] ==> x=y |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
750 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
751 |
\tdx{inj_onto_inverseI} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
752 |
(!!x. x:A ==> g(f x) = x) ==> inj_onto f A |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
753 |
\tdx{inj_onto_contraD} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
754 |
[| inj_onto f A; x~=y; x:A; y:A |] ==> ~ f x=f y |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
755 |
\end{ttbox} |
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
756 |
\caption{Derived rules involving functions} \label{hol-fun} |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
757 |
\end{figure} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
758 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
759 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
760 |
\begin{figure} \underscoreon |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
761 |
\begin{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
762 |
\tdx{Union_upper} B:A ==> B <= Union A |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
763 |
\tdx{Union_least} [| !!X. X:A ==> X<=C |] ==> Union A <= C |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
764 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
765 |
\tdx{Inter_lower} B:A ==> Inter A <= B |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
766 |
\tdx{Inter_greatest} [| !!X. X:A ==> C<=X |] ==> C <= Inter A |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
767 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
768 |
\tdx{Un_upper1} A <= A Un B |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
769 |
\tdx{Un_upper2} B <= A Un B |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
770 |
\tdx{Un_least} [| A<=C; B<=C |] ==> A Un B <= C |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
771 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
772 |
\tdx{Int_lower1} A Int B <= A |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
773 |
\tdx{Int_lower2} A Int B <= B |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
774 |
\tdx{Int_greatest} [| C<=A; C<=B |] ==> C <= A Int B |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
775 |
\end{ttbox} |
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
776 |
\caption{Derived rules involving subsets} \label{hol-subset} |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
777 |
\end{figure} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
778 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
779 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
780 |
\begin{figure} \underscoreon \hfuzz=4pt%suppress "Overfull \hbox" message |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
781 |
\begin{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
782 |
\tdx{Int_absorb} A Int A = A |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
783 |
\tdx{Int_commute} A Int B = B Int A |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
784 |
\tdx{Int_assoc} (A Int B) Int C = A Int (B Int C) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
785 |
\tdx{Int_Un_distrib} (A Un B) Int C = (A Int C) Un (B Int C) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
786 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
787 |
\tdx{Un_absorb} A Un A = A |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
788 |
\tdx{Un_commute} A Un B = B Un A |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
789 |
\tdx{Un_assoc} (A Un B) Un C = A Un (B Un C) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
790 |
\tdx{Un_Int_distrib} (A Int B) Un C = (A Un C) Int (B Un C) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
791 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
792 |
\tdx{Compl_disjoint} A Int (Compl A) = \{x.False\} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
793 |
\tdx{Compl_partition} A Un (Compl A) = \{x.True\} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
794 |
\tdx{double_complement} Compl(Compl A) = A |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
795 |
\tdx{Compl_Un} Compl(A Un B) = (Compl A) Int (Compl B) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
796 |
\tdx{Compl_Int} Compl(A Int B) = (Compl A) Un (Compl B) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
797 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
798 |
\tdx{Union_Un_distrib} Union(A Un B) = (Union A) Un (Union B) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
799 |
\tdx{Int_Union} A Int (Union B) = (UN C:B. A Int C) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
800 |
\tdx{Un_Union_image} (UN x:C.(A x) Un (B x)) = Union(A``C) Un Union(B``C) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
801 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
802 |
\tdx{Inter_Un_distrib} Inter(A Un B) = (Inter A) Int (Inter B) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
803 |
\tdx{Un_Inter} A Un (Inter B) = (INT C:B. A Un C) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
804 |
\tdx{Int_Inter_image} (INT x:C.(A x) Int (B x)) = Inter(A``C) Int Inter(B``C) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
805 |
\end{ttbox} |
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
806 |
\caption{Set equalities} \label{hol-equalities} |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
807 |
\end{figure} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
808 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
809 |
|
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
810 |
Figures~\ref{hol-set1} and~\ref{hol-set2} present derived rules. Most are |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
811 |
obvious and resemble rules of Isabelle's {\ZF} set theory. Certain rules, |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
812 |
such as \tdx{subsetCE}, \tdx{bexCI} and \tdx{UnCI}, |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
813 |
are designed for classical reasoning; the rules \tdx{subsetD}, |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
814 |
\tdx{bexI}, \tdx{Un1} and~\tdx{Un2} are not |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
815 |
strictly necessary but yield more natural proofs. Similarly, |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
816 |
\tdx{equalityCE} supports classical reasoning about extensionality, |
1162 | 817 |
after the fashion of \tdx{iffCE}. See the file {\tt HOL/Set.ML} for |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
818 |
proofs pertaining to set theory. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
819 |
|
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
820 |
Figure~\ref{hol-fun} presents derived inference rules involving functions. |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
821 |
They also include rules for \cdx{Inv}, which is defined in theory~{\tt |
1162 | 822 |
HOL}; note that ${\tt Inv}~f$ applies the Axiom of Choice to yield an |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
823 |
inverse of~$f$. They also include natural deduction rules for the image |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
824 |
and range operators, and for the predicates {\tt inj} and {\tt inj_onto}. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
825 |
Reasoning about function composition (the operator~\sdx{o}) and the |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
826 |
predicate~\cdx{surj} is done simply by expanding the definitions. See |
1162 | 827 |
the file {\tt HOL/fun.ML} for a complete listing of the derived rules. |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
828 |
|
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
829 |
Figure~\ref{hol-subset} presents lattice properties of the subset relation. |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
830 |
Unions form least upper bounds; non-empty intersections form greatest lower |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
831 |
bounds. Reasoning directly about subsets often yields clearer proofs than |
1162 | 832 |
reasoning about the membership relation. See the file {\tt HOL/subset.ML}. |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
833 |
|
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
834 |
Figure~\ref{hol-equalities} presents many common set equalities. They |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
835 |
include commutative, associative and distributive laws involving unions, |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
836 |
intersections and complements. The proofs are mostly trivial, using the |
1162 | 837 |
classical reasoner; see file {\tt HOL/equalities.ML}. |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
838 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
839 |
|
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
840 |
\section{Generic packages} |
2495 | 841 |
\HOL\ instantiates most of Isabelle's generic packages. |
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
842 |
|
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
843 |
\subsection{Substitution and simplification} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
844 |
|
1162 | 845 |
Because it includes a general substitution rule, \HOL\ instantiates the |
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
846 |
tactic {\tt hyp_subst_tac}, which substitutes for an equality throughout a |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
847 |
subgoal and its hypotheses. |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
848 |
|
2495 | 849 |
It instantiates the simplifier. Tactics such as {\tt Asm_simp_tac} and {\tt |
850 |
Full_simp_tac} use the default simpset ({\tt!simpset}), which works for most |
|
851 |
purposes. A minimal simplification set for higher-order logic |
|
852 |
is~\ttindexbold{HOL_ss}. Equality~($=$), which also expresses logical |
|
853 |
equivalence, may be used for rewriting. See the file {\tt HOL/simpdata.ML} |
|
854 |
for a complete listing of the simplification rules. |
|
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
855 |
|
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
856 |
See \iflabelundefined{chap:classical}{the {\em Reference Manual\/}}% |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
857 |
{Chaps.\ts\ref{substitution} and~\ref{simp-chap}} for details of substitution |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
858 |
and simplification. |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
859 |
|
1234 | 860 |
\begin{warn}\index{simplification!of conjunctions} |
861 |
The simplifier is not set up to reduce, for example, \verb$a = b & ...a...$ |
|
862 |
to \verb$a = b & ...b...$: it does not use the left part of a conjunction |
|
863 |
while simplifying the right part. This can be changed by including |
|
864 |
\ttindex{conj_cong} in a simpset: \verb$addcongs [conj_cong]$. It can slow |
|
865 |
down rewriting and is therefore not included by default. |
|
866 |
\end{warn} |
|
867 |
||
1489 | 868 |
In case a rewrite rule cannot be dealt with by the simplifier (either because |
869 |
of nontermination or because its left-hand side is too flexible), HOL |
|
870 |
provides {\tt stac}: |
|
871 |
\begin{ttdescription} |
|
872 |
\item[\ttindexbold{stac} $thm$ $i,$] where $thm$ is of the form $lhs = rhs$, |
|
873 |
replaces in subgoal $i$ instances of $lhs$ by corresponding instances of |
|
874 |
$rhs$. In case of multiple instances of $lhs$ in subgoal $i$, backtracking |
|
875 |
may be necessary to select the desired ones. |
|
876 |
\end{ttdescription} |
|
877 |
||
878 |
||
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
879 |
\subsection{Classical reasoning} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
880 |
|
1162 | 881 |
\HOL\ derives classical introduction rules for $\disj$ and~$\exists$, as |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
882 |
well as classical elimination rules for~$\imp$ and~$\bimp$, and the swap |
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
883 |
rule; recall Fig.\ts\ref{hol-lemmas2} above. |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
884 |
|
2495 | 885 |
The classical reasoner is installed. Tactics such as {\tt Fast_tac} and {\tt |
886 |
Best_tac} use the default claset ({\tt!claset}), which works for most |
|
887 |
purposes. Named clasets include \ttindexbold{prop_cs}, which includes the |
|
888 |
propositional rules, \ttindexbold{HOL_cs}, which also includes quantifier |
|
889 |
rules, and \ttindexbold{set_cs}, which also includes rules for subsets, |
|
890 |
comprehensions, unions and intersections, etc. See the file |
|
891 |
{\tt HOL/cladata.ML} for lists of the classical rules, and |
|
892 |
\iflabelundefined{chap:classical}{the {\em Reference Manual\/}}% |
|
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
893 |
{Chap.\ts\ref{chap:classical}} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
894 |
for more discussion of classical proof methods. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
895 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
896 |
|
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
897 |
\section{Types}\label{sec:HOL:Types} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
898 |
This section describes HOL's basic predefined types (\verb$*$, \verb$+$, {\tt |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
899 |
nat} and {\tt list}) and ways for introducing new types. The most important |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
900 |
type construction, the {\tt datatype}, is treated separately in |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
901 |
\S\ref{sec:HOL:datatype}. |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
902 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
903 |
\subsection{Product and sum types}\index{*"* type}\index{*"+ type} |
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
904 |
|
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
905 |
\begin{figure} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
906 |
\begin{constants} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
907 |
\it symbol & \it meta-type & & \it description \\ |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
908 |
\cdx{Pair} & $[\alpha,\beta]\To \alpha\times\beta$ |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
909 |
& & ordered pairs $(a,b)$ \\ |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
910 |
\cdx{fst} & $\alpha\times\beta \To \alpha$ & & first projection\\ |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
911 |
\cdx{snd} & $\alpha\times\beta \To \beta$ & & second projection\\ |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
912 |
\cdx{split} & $[[\alpha,\beta]\To\gamma, \alpha\times\beta] \To \gamma$ |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
913 |
& & generalized projection\\ |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
914 |
\cdx{Sigma} & |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
915 |
$[\alpha\,set, \alpha\To\beta\,set]\To(\alpha\times\beta)set$ & |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
916 |
& general sum of sets |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
917 |
\end{constants} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
918 |
\begin{ttbox}\makeatletter |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
919 |
%\tdx{fst_def} fst p == @a. ? b. p = (a,b) |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
920 |
%\tdx{snd_def} snd p == @b. ? a. p = (a,b) |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
921 |
%\tdx{split_def} split c p == c (fst p) (snd p) |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
922 |
\tdx{Sigma_def} Sigma A B == UN x:A. UN y:B x. \{(x,y)\} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
923 |
|
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
924 |
\tdx{Pair_inject} [| (a, b) = (a',b'); [| a=a'; b=b' |] ==> R |] ==> R |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
925 |
\tdx{PairE} [| !!x y. p = (x,y) ==> Q |] ==> Q |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
926 |
\tdx{Pair_eq} ((a,b) = (a',b')) = (a=a' & b=b') |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
927 |
|
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
928 |
\tdx{fst_conv} fst (a,b) = a |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
929 |
\tdx{snd_conv} snd (a,b) = b |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
930 |
\tdx{surjective_pairing} p = (fst p,snd p) |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
931 |
|
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
932 |
\tdx{split} split c (a,b) = c a b |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
933 |
\tdx{expand_split} R(split c p) = (! x y. p = (x,y) --> R(c x y)) |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
934 |
|
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
935 |
\tdx{SigmaI} [| a:A; b:B a |] ==> (a,b) : Sigma A B |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
936 |
\tdx{SigmaE} [| c: Sigma A B; |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
937 |
!!x y.[| x:A; y:B x; c=(x,y) |] ==> P |] ==> P |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
938 |
\end{ttbox} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
939 |
\caption{Type $\alpha\times\beta$}\label{hol-prod} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
940 |
\end{figure} |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
941 |
|
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
942 |
Theory \thydx{Prod} (Fig.\ts\ref{hol-prod}) defines the product type |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
943 |
$\alpha\times\beta$, with the ordered pair syntax {\tt($a$,$b$)}. Tuples are |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
944 |
simulated by pairs nested to the right: |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
945 |
\begin{center} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
946 |
\begin{tabular}{|c|c|} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
947 |
\hline |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
948 |
external & internal \\ |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
949 |
\hline |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
950 |
$\tau@1 * \dots * \tau@n$ & $\tau@1 * (\dots (\tau@{n-1} * \tau@n)\dots)$ \\ |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
951 |
\hline |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
952 |
$(t@1,\dots,t@n)$ & $(t@1,(\dots,(t@{n-1},t@n)\dots)$ \\ |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
953 |
\hline |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
954 |
\end{tabular} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
955 |
\end{center} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
956 |
In addition, it is possible to use tuples |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
957 |
as patterns in abstractions: |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
958 |
\begin{center} |
1448
77379ae9ff0d
Stylistic changes to discussion of pattern-matching
paulson
parents:
1429
diff
changeset
|
959 |
{\tt\%($x$,$y$).$t$} \quad stands for\quad {\tt split(\%$x$ $y$.$t$)} |
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
960 |
\end{center} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
961 |
Nested patterns are possible and are translated stepwise: |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
962 |
{\tt\%($x$,$y$,$z$).$t$} $\leadsto$ {\tt\%($x$,($y$,$z$)).$t$} $\leadsto$ |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
963 |
{\tt split(\%$x$.\%($y$,$z$).$t$)} $\leadsto$ {\tt split(\%$x$.split(\%$y$ |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
964 |
$z$.$t$))}. The reverse translation is performed upon printing. |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
965 |
\begin{warn} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
966 |
The translation between patterns and {\tt split} is performed automatically |
1448
77379ae9ff0d
Stylistic changes to discussion of pattern-matching
paulson
parents:
1429
diff
changeset
|
967 |
by the parser and printer. Thus the internal and external form of a term |
77379ae9ff0d
Stylistic changes to discussion of pattern-matching
paulson
parents:
1429
diff
changeset
|
968 |
may differ, whichs affects proofs. For example the term {\tt |
77379ae9ff0d
Stylistic changes to discussion of pattern-matching
paulson
parents:
1429
diff
changeset
|
969 |
(\%(x,y).(y,x))(a,b)} requires the theorem {\tt split} to rewrite to |
77379ae9ff0d
Stylistic changes to discussion of pattern-matching
paulson
parents:
1429
diff
changeset
|
970 |
{\tt(b,a)}. |
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
971 |
\end{warn} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
972 |
In addition to explicit $\lambda$-abstractions, patterns can be used in any |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
973 |
variable binding construct which is internally described by a |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
974 |
$\lambda$-abstraction. Some important examples are |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
975 |
\begin{description} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
976 |
\item[Let:] {\tt let {\it pattern} = $t$ in $u$} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
977 |
\item[Quantifiers:] {\tt !~{\it pattern}:$A$.~$P$} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
978 |
\item[Choice:] {\underscoreon \tt @~{\it pattern}~.~$P$} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
979 |
\item[Set operations:] {\tt UN~{\it pattern}:$A$.~$B$} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
980 |
\item[Sets:] {\tt \{~{\it pattern}~.~$P$~\}} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
981 |
\end{description} |
1471 | 982 |
|
983 |
There is a simple tactic which supports reasoning about patterns: |
|
984 |
\begin{ttdescription} |
|
985 |
\item[\ttindexbold{split_all_tac} $i$] replaces in subgoal $i$ all |
|
986 |
{\tt!!}-quantified variables of product type by individual variables for |
|
987 |
each component. A simple example: |
|
988 |
\begin{ttbox} |
|
989 |
{\out 1. !!p. (\%(x,y,z). (x, y, z)) p = p} |
|
990 |
by(split_all_tac 1); |
|
991 |
{\out 1. !!x xa ya. (\%(x,y,z). (x, y, z)) (x, xa, ya) = (x, xa, ya)} |
|
992 |
\end{ttbox} |
|
993 |
\end{ttdescription} |
|
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
994 |
|
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
995 |
Theory {\tt Prod} also introduces the degenerate product type {\tt unit} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
996 |
which contains only a single element named {\tt()} with the property |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
997 |
\begin{ttbox} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
998 |
\tdx{unit_eq} u = () |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
999 |
\end{ttbox} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1000 |
\bigskip |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1001 |
|
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1002 |
Theory \thydx{Sum} (Fig.~\ref{hol-sum}) defines the sum type $\alpha+\beta$ |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1003 |
which associates to the right and has a lower priority than $*$: $\tau@1 + |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1004 |
\tau@2 + \tau@3*\tau@4$ means $\tau@1 + (\tau@2 + (\tau@3*\tau@4))$. |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1005 |
|
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1006 |
The definition of products and sums in terms of existing types is not shown. |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1007 |
The constructions are fairly standard and can be found in the respective {\tt |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1008 |
thy}-files. |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1009 |
|
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1010 |
\begin{figure} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1011 |
\begin{constants} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1012 |
\it symbol & \it meta-type & & \it description \\ |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1013 |
\cdx{Inl} & $\alpha \To \alpha+\beta$ & & first injection\\ |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1014 |
\cdx{Inr} & $\beta \To \alpha+\beta$ & & second injection\\ |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1015 |
\cdx{sum_case} & $[\alpha\To\gamma, \beta\To\gamma, \alpha+\beta] \To\gamma$ |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1016 |
& & conditional |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1017 |
\end{constants} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1018 |
\begin{ttbox}\makeatletter |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1019 |
%\tdx{sum_case_def} sum_case == (\%f g p. @z. (!x. p=Inl x --> z=f x) & |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1020 |
% (!y. p=Inr y --> z=g y)) |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1021 |
% |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1022 |
\tdx{Inl_not_Inr} ~ Inl a=Inr b |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1023 |
|
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1024 |
\tdx{inj_Inl} inj Inl |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1025 |
\tdx{inj_Inr} inj Inr |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1026 |
|
1489 | 1027 |
\tdx{sumE} [| !!x. P(Inl x); !!y. P(Inr y) |] ==> P s |
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1028 |
|
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1029 |
\tdx{sum_case_Inl} sum_case f g (Inl x) = f x |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1030 |
\tdx{sum_case_Inr} sum_case f g (Inr x) = g x |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1031 |
|
1489 | 1032 |
\tdx{surjective_sum} sum_case (\%x. f(Inl x)) (\%y. f(Inr y)) s = f s |
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1033 |
\tdx{expand_sum_case} R(sum_case f g s) = ((! x. s = Inl(x) --> R(f(x))) & |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1034 |
(! y. s = Inr(y) --> R(g(y)))) |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1035 |
\end{ttbox} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1036 |
\caption{Type $\alpha+\beta$}\label{hol-sum} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1037 |
\end{figure} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1038 |
|
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1039 |
\begin{figure} |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1040 |
\index{*"< symbol} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1041 |
\index{*"* symbol} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1042 |
\index{*div symbol} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1043 |
\index{*mod symbol} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1044 |
\index{*"+ symbol} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1045 |
\index{*"- symbol} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1046 |
\begin{constants} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1047 |
\it symbol & \it meta-type & \it priority & \it description \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1048 |
\cdx{0} & $nat$ & & zero \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1049 |
\cdx{Suc} & $nat \To nat$ & & successor function\\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1050 |
\cdx{nat_case} & $[\alpha, nat\To\alpha, nat] \To\alpha$ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1051 |
& & conditional\\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1052 |
\cdx{nat_rec} & $[nat, \alpha, [nat, \alpha]\To\alpha] \To \alpha$ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1053 |
& & primitive recursor\\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1054 |
\tt * & $[nat,nat]\To nat$ & Left 70 & multiplication \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1055 |
\tt div & $[nat,nat]\To nat$ & Left 70 & division\\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1056 |
\tt mod & $[nat,nat]\To nat$ & Left 70 & modulus\\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1057 |
\tt + & $[nat,nat]\To nat$ & Left 65 & addition\\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1058 |
\tt - & $[nat,nat]\To nat$ & Left 65 & subtraction |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1059 |
\end{constants} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1060 |
\subcaption{Constants and infixes} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1061 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1062 |
\begin{ttbox}\makeatother |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1063 |
\tdx{nat_induct} [| P 0; !!k. [| P k |] ==> P(Suc k) |] ==> P n |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1064 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1065 |
\tdx{Suc_not_Zero} Suc m ~= 0 |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1066 |
\tdx{inj_Suc} inj Suc |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1067 |
\tdx{n_not_Suc_n} n~=Suc n |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1068 |
\subcaption{Basic properties} |
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1069 |
\end{ttbox} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1070 |
\caption{Defining {\tt nat}, the type of natural numbers} \label{hol-nat1} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1071 |
\end{figure} |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1072 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1073 |
|
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1074 |
\begin{figure} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1075 |
\begin{ttbox}\makeatother |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1076 |
\tdx{nat_case_0} nat_case a f 0 = a |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1077 |
\tdx{nat_case_Suc} nat_case a f (Suc k) = f k |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1078 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1079 |
\tdx{nat_rec_0} nat_rec 0 c h = c |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1080 |
\tdx{nat_rec_Suc} nat_rec (Suc n) c h = h n (nat_rec n c h) |
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1081 |
|
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1082 |
\tdx{add_0} 0+n = n |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1083 |
\tdx{add_Suc} (Suc m)+n = Suc(m+n) |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1084 |
\tdx{diff_0} m-0 = m |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1085 |
\tdx{diff_0_eq_0} 0-n = n |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1086 |
\tdx{diff_Suc_Suc} Suc(m)-Suc(n) = m-n |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1087 |
\tdx{mult_def} 0*n = 0 |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1088 |
\tdx{mult_Suc} Suc(m)*n = n + m*n |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1089 |
|
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1090 |
\tdx{mod_less} m<n ==> m mod n = m |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1091 |
\tdx{mod_geq} [| 0<n; ~m<n |] ==> m mod n = (m-n) mod n |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1092 |
\tdx{div_less} m<n ==> m div n = 0 |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1093 |
\tdx{div_geq} [| 0<n; ~m<n |] ==> m div n = Suc((m-n) div n) |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1094 |
\subcaption{Recursion equations} |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1095 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1096 |
\tdx{less_trans} [| i<j; j<k |] ==> i<k |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1097 |
\tdx{lessI} n < Suc n |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1098 |
\tdx{zero_less_Suc} 0 < Suc n |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1099 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1100 |
\tdx{less_not_sym} n<m --> ~ m<n |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1101 |
\tdx{less_not_refl} ~ n<n |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1102 |
\tdx{not_less0} ~ n<0 |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1103 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1104 |
\tdx{Suc_less_eq} (Suc m < Suc n) = (m<n) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1105 |
\tdx{less_induct} [| !!n. [| ! m. m<n --> P m |] ==> P n |] ==> P n |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1106 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1107 |
\tdx{less_linear} m<n | m=n | n<m |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1108 |
\subcaption{The less-than relation} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1109 |
\end{ttbox} |
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
1110 |
\caption{Derived rules for {\tt nat}} \label{hol-nat2} |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1111 |
\end{figure} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1112 |
|
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1113 |
\subsection{The type of natural numbers, {\tt nat}} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1114 |
%FIXME: introduce separate type proto_nat |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1115 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1116 |
The theory \thydx{Nat} defines the natural numbers in a roundabout but |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1117 |
traditional way. The axiom of infinity postulates an type~\tydx{ind} of |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1118 |
individuals, which is non-empty and closed under an injective operation. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1119 |
The natural numbers are inductively generated by choosing an arbitrary |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1120 |
individual for~0 and using the injective operation to take successors. As |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1121 |
usual, the isomorphisms between~\tydx{nat} and its representation are made |
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1122 |
explicitly. For details see the file {\tt Nat.thy}. |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1123 |
|
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1124 |
%The definition makes use of a least fixed point operator \cdx{lfp}, |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1125 |
%defined using the Knaster-Tarski theorem. This is used to define the |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1126 |
%operator \cdx{trancl}, for taking the transitive closure of a relation. |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1127 |
%Primitive recursion makes use of \cdx{wfrec}, an operator for recursion |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1128 |
%along arbitrary well-founded relations. The corresponding theories are |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1129 |
%called {\tt Lfp}, {\tt Trancl} and {\tt WF}\@. Elsewhere I have described |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1130 |
%similar constructions in the context of set theory~\cite{paulson-set-II}. |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1131 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1132 |
Type~\tydx{nat} is postulated to belong to class~\cldx{ord}, which |
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1133 |
overloads $<$ and $\leq$ on the natural numbers. |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1134 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1135 |
Theory \thydx{Arith} develops arithmetic on the natural numbers. It |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1136 |
defines addition, multiplication, subtraction, division, and remainder. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1137 |
Many of their properties are proved: commutative, associative and |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1138 |
distributive laws, identity and cancellation laws, etc. The most |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1139 |
interesting result is perhaps the theorem $a \bmod b + (a/b)\times b = a$. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1140 |
Division and remainder are defined by repeated subtraction, which requires |
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
1141 |
well-founded rather than primitive recursion. See Figs.\ts\ref{hol-nat1} |
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
1142 |
and~\ref{hol-nat2}. |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1143 |
|
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1144 |
%The predecessor relation, \cdx{pred_nat}, is shown to be well-founded. |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1145 |
%Recursion along this relation resembles primitive recursion, but is |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1146 |
%stronger because we are in higher-order logic; using primitive recursion to |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1147 |
%define a higher-order function, we can easily Ackermann's function, which |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1148 |
%is not primitive recursive \cite[page~104]{thompson91}. |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1149 |
%The transitive closure of \cdx{pred_nat} is~$<$. Many functions on the |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1150 |
%natural numbers are most easily expressed using recursion along~$<$. |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1151 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1152 |
The tactic {\tt\ttindex{nat_ind_tac} "$n$" $i$} performs induction over the |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1153 |
variable~$n$ in subgoal~$i$. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1154 |
|
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1155 |
%FIXME add nth |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1156 |
\begin{figure} |
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1157 |
\index{#@{\tt[]} symbol} |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1158 |
\index{#@{\tt\#} symbol} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1159 |
\index{"@@{\tt\at} symbol} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1160 |
\begin{constants} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1161 |
\it symbol & \it meta-type & \it priority & \it description \\ |
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1162 |
\tt[] & $\alpha list$ & & empty list\\ |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1163 |
\tt \# & $[\alpha,\alpha list]\To \alpha list$ & Right 65 & |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1164 |
list constructor \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1165 |
\cdx{null} & $\alpha list \To bool$ & & emptiness test\\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1166 |
\cdx{hd} & $\alpha list \To \alpha$ & & head \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1167 |
\cdx{tl} & $\alpha list \To \alpha list$ & & tail \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1168 |
\cdx{ttl} & $\alpha list \To \alpha list$ & & total tail \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1169 |
\tt\at & $[\alpha list,\alpha list]\To \alpha list$ & Left 65 & append \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1170 |
\cdx{map} & $(\alpha\To\beta) \To (\alpha list \To \beta list)$ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1171 |
& & mapping functional\\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1172 |
\cdx{filter} & $(\alpha \To bool) \To (\alpha list \To \alpha list)$ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1173 |
& & filter functional\\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1174 |
\cdx{list_all}& $(\alpha \To bool) \To (\alpha list \To bool)$ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1175 |
& & forall functional\\ |
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1176 |
\sdx{mem} & $[\alpha,\alpha list]\To bool$ & Left 55 & membership\\ |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1177 |
\cdx{length} & $\alpha list \To nat$ & & length \\ |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1178 |
% \cdx{nth} & $nat \To \alpha list \To \alpha$ & & indexing \\ |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1179 |
\cdx{foldl} & $(\beta\To\alpha\To\beta) \To \beta \To \alpha list \To \beta$ & |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1180 |
& iteration \\ |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1181 |
\cdx{flat} & $(\alpha list) list\To \alpha list$ & & flattening \\ |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1182 |
\cdx{rev} & $\alpha list \To \alpha list$ & & reverse \\ |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1183 |
\end{constants} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1184 |
\subcaption{Constants and infixes} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1185 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1186 |
\begin{center} \tt\frenchspacing |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1187 |
\begin{tabular}{rrr} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1188 |
\it external & \it internal & \it description \\{} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1189 |
[$x@1$, $\dots$, $x@n$] & $x@1$ \# $\cdots$ \# $x@n$ \# [] & |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1190 |
\rm finite list \\{} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1191 |
[$x$:$l$. $P$] & filter ($\lambda x{.}P$) $l$ & |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1192 |
\rm list comprehension |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1193 |
\end{tabular} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1194 |
\end{center} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1195 |
\subcaption{Translations} |
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
1196 |
\caption{The theory \thydx{List}} \label{hol-list} |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1197 |
\end{figure} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1198 |
|
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1199 |
|
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1200 |
\begin{figure} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1201 |
\begin{ttbox}\makeatother |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1202 |
\tdx{null_Nil} null [] = True |
1162 | 1203 |
\tdx{null_Cons} null (x#xs) = False |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1204 |
|
1162 | 1205 |
\tdx{hd_Cons} hd (x#xs) = x |
1206 |
\tdx{tl_Cons} tl (x#xs) = xs |
|
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1207 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1208 |
\tdx{ttl_Nil} ttl [] = [] |
1162 | 1209 |
\tdx{ttl_Cons} ttl (x#xs) = xs |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1210 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1211 |
\tdx{append_Nil} [] @ ys = ys |
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1212 |
\tdx{append_Cons} (x#xs) @ ys = x # xs @ ys |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1213 |
|
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1214 |
\tdx{map_Nil} map f [] = [] |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1215 |
\tdx{map_Cons} map f (x#xs) = f x # map f xs |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1216 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1217 |
\tdx{filter_Nil} filter P [] = [] |
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
1218 |
\tdx{filter_Cons} filter P (x#xs) = (if P x then x#filter P xs else filter P xs) |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1219 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1220 |
\tdx{list_all_Nil} list_all P [] = True |
1162 | 1221 |
\tdx{list_all_Cons} list_all P (x#xs) = (P x & list_all P xs) |
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1222 |
|
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1223 |
\tdx{mem_Nil} x mem [] = False |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1224 |
\tdx{mem_Cons} x mem (y#ys) = (if y=x then True else x mem ys) |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1225 |
|
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1226 |
\tdx{length_Nil} length([]) = 0 |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1227 |
\tdx{length_Cons} length(x#xs) = Suc(length(xs)) |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1228 |
|
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1229 |
\tdx{foldl_Nil} foldl f a [] = a |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1230 |
\tdx{foldl_Cons} foldl f a (x#xs) = foldl f (f a x) xs |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1231 |
|
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1232 |
\tdx{flat_Nil} flat([]) = [] |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1233 |
\tdx{flat_Cons} flat(x#xs) = x @ flat(xs) |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1234 |
|
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1235 |
\tdx{rev_Nil} rev([]) = [] |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1236 |
\tdx{rev_Cons} rev(x#xs) = rev(xs) @ [x] |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1237 |
\end{ttbox} |
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1238 |
\caption{Rewrite rules for lists} \label{fig:HOL:list-simps} |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1239 |
\end{figure} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1240 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1241 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1242 |
\subsection{The type constructor for lists, {\tt list}} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1243 |
\index{*list type} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1244 |
|
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1245 |
Figure~\ref{hol-list} presents the theory \thydx{List}: the basic list |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1246 |
operations with their types and syntax. The type constructor {\tt list} is |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1247 |
defined as a {\tt datatype} with the constructors {\tt[]} and {\tt\#}. This |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1248 |
yields an induction tactic {\tt list.induct_tac} and a list of freeness |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1249 |
theorems {\tt list.simps}. |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1250 |
A \sdx{case} construct of the form |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1251 |
\begin{center}\tt |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1252 |
case $e$ of [] => $a$ | x\#xs => b |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1253 |
\end{center} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1254 |
is defined by translation. For details see~\S\ref{sec:HOL:datatype}. |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1255 |
|
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1256 |
{\tt List} provides a basic library of list processing functions defined by |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1257 |
primitive recursion (see~\S\ref{sec:HOL:primrec}). The recursion equations |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1258 |
are shown in Fig.\ts\ref{fig:HOL:list-simps}. |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1259 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1260 |
|
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1261 |
\subsection{Introducing new types} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1262 |
|
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1263 |
The \HOL-methodology dictates that all extension to a theory should be |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1264 |
conservative and thus preserve consistency. There are two basic type |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1265 |
extension mechanisms which meet this criterion: {\em type synonyms\/} and |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1266 |
{\em type definitions\/}. The former are inherited from {\tt Pure} and are |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1267 |
described elsewhere. |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1268 |
\begin{warn} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1269 |
Types in \HOL\ must be non-empty; otherwise the quantifier rules would be |
1429 | 1270 |
unsound, because $\exists x. x=x$ is a theorem \cite[\S7]{paulson-COLOG}. |
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1271 |
\end{warn} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1272 |
A \bfindex{type definition} identifies the new type with a subset of an |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1273 |
existing type. More precisely, the new type is defined by exhibiting an |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1274 |
existing type~$\tau$, a set~$A::(\tau)set$, and a theorem of the form $x:A$. |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1275 |
Thus~$A$ is a non-empty subset of~$\tau$, and the new type denotes this |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1276 |
subset. New functions are generated to establish an isomorphism between the |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1277 |
new type and the subset. If type~$\tau$ involves type variables $\alpha@1$, |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1278 |
\ldots, $\alpha@n$, then the type definition creates a type constructor |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1279 |
$(\alpha@1,\ldots,\alpha@n)ty$ rather than a particular type. |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1280 |
|
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1281 |
\begin{figure}[htbp] |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1282 |
\begin{rail} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1283 |
typedef : 'typedef' ( () | '(' tname ')') type '=' set witness; |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1284 |
type : typevarlist name ( () | '(' infix ')' ); |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1285 |
tname : name; |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1286 |
set : string; |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1287 |
witness : () | '(' id ')'; |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1288 |
\end{rail} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1289 |
\caption{Syntax of type definition} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1290 |
\label{fig:HOL:typedef} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1291 |
\end{figure} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1292 |
|
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1293 |
The syntax for type definitions is shown in Fig.~\ref{fig:HOL:typedef}. For |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1294 |
the definition of ``typevarlist'' and ``infix'' see |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1295 |
\iflabelundefined{chap:classical} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1296 |
{the appendix of the {\em Reference Manual\/}}% |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1297 |
{Appendix~\ref{app:TheorySyntax}}. The remaining nonterminals have the |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1298 |
following meaning: |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1299 |
\begin{description} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1300 |
\item[\it type]: the new type constructor $(\alpha@1,\dots,\alpha@n)ty$ with |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1301 |
optional infix annotation. |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1302 |
\item[\it tname]: an alphanumeric name $T$ for the type constructor $ty$, in |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1303 |
case $ty$ is a symbolic name. Default: $ty$. |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1304 |
\item[\it set]: the representing subset $A$. |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1305 |
\item[\it witness]: name of a theorem of the form $a:A$ proving |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1306 |
non-emptiness. Can be omitted in case Isabelle manages to prove |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1307 |
non-emptiness automatically. |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1308 |
\end{description} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1309 |
If all context conditions are met (no duplicate type variables in |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1310 |
'typevarlist', no extra type variables in 'set', and no free term variables |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1311 |
in 'set'), the following components are added to the theory: |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1312 |
\begin{itemize} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1313 |
\item a type $ty :: (term,\dots)term$; |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1314 |
\item constants |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1315 |
\begin{eqnarray*} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1316 |
T &::& (\tau)set \\ |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1317 |
Rep_T &::& (\alpha@1,\dots,\alpha@n)ty \To \tau \\ |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1318 |
Abs_T &::& \tau \To (\alpha@1,\dots,\alpha@n)ty |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1319 |
\end{eqnarray*} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1320 |
\item a definition and three axioms |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1321 |
\[ |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1322 |
\begin{array}{ll} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1323 |
T{\tt_def} & T \equiv A \\ |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1324 |
{\tt Rep_}T & Rep_T(x) : T \\ |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1325 |
{\tt Rep_}T{\tt_inverse} & Abs_T(Rep_T(x)) = x \\ |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1326 |
{\tt Abs_}T{\tt_inverse} & y:T \Imp Rep_T(Abs_T(y)) = y |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1327 |
\end{array} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1328 |
\] |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1329 |
stating that $(\alpha@1,\dots,\alpha@n)ty$ is isomorphic to $A$ by $Rep_T$ |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1330 |
and its inverse $Abs_T$. |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1331 |
\end{itemize} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1332 |
Here are two simple examples where emptiness is proved automatically: |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1333 |
\begin{ttbox} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1334 |
typedef unit = "\{False\}" |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1335 |
|
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1336 |
typedef (prod) |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1337 |
('a, 'b) "*" (infixr 20) |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1338 |
= "\{f . EX (a::'a) (b::'b). f = (\%x y. x = a & y = b)\}" |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1339 |
\end{ttbox} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1340 |
|
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1341 |
Type definitions permit the introduction of abstract data types in a safe |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1342 |
way, namely by providing models based on already existing types. Given some |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1343 |
abstract axiomatic description $P$ of a type, this involves two steps: |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1344 |
\begin{enumerate} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1345 |
\item Find an appropriate type $\tau$ and subset $A$ which has the desired |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1346 |
properties $P$, and make the above type definition based on this |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1347 |
representation. |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1348 |
\item Prove that $P$ holds for $ty$ by lifting $P$ from the representation. |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1349 |
\end{enumerate} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1350 |
You can now forget about the representation and work solely in terms of the |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1351 |
abstract properties $P$. |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1352 |
|
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1353 |
\begin{warn} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1354 |
If you introduce a new type (constructor) $ty$ axiomatically, i.e.\ by |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1355 |
declaring the type and its operations and by stating the desired axioms, you |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1356 |
should make sure the type has a non-empty model. You must also have a clause |
1429 | 1357 |
\par |
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1358 |
\begin{ttbox} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1359 |
arities \(ty\): (term,\(\dots\),term)term |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1360 |
\end{ttbox} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1361 |
in your theory file to tell Isabelle that elements of type $ty$ are in class |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1362 |
{\tt term}, the class of all HOL terms. |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1363 |
\end{warn} |
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1364 |
|
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1365 |
\section{Datatype declarations} |
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1366 |
\label{sec:HOL:datatype} |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1367 |
\index{*datatype|(} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1368 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1369 |
\underscoreon |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1370 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1371 |
It is often necessary to extend a theory with \ML-like datatypes. This |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1372 |
extension consists of the new type, declarations of its constructors and |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1373 |
rules that describe the new type. The theory definition section {\tt |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1374 |
datatype} represents a compact way of doing this. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1375 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1376 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1377 |
\subsection{Foundations} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1378 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1379 |
A datatype declaration has the following general structure: |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1380 |
\[ \mbox{\tt datatype}~ (\alpha_1,\dots,\alpha_n)t ~=~ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1381 |
C_1~\tau_{11}~\dots~\tau_{1k_1} ~\mid~ \dots ~\mid~ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1382 |
C_m~\tau_{m1}~\dots~\tau_{mk_m} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1383 |
\] |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1384 |
where $\alpha_i$ are type variables, $C_i$ are distinct constructor names and |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1385 |
$\tau_{ij}$ are one of the following: |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1386 |
\begin{itemize} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1387 |
\item type variables $\alpha_1,\dots,\alpha_n$, |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1388 |
\item types $(\beta_1,\dots,\beta_l)s$ where $s$ is a previously declared |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1389 |
type or type synonym and $\{\beta_1,\dots,\beta_l\} \subseteq |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1390 |
\{\alpha_1,\dots,\alpha_n\}$, |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1391 |
\item the newly defined type $(\alpha_1,\dots,\alpha_n)t$ \footnote{This |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1392 |
makes it a recursive type. To ensure that the new type is not empty at |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1393 |
least one constructor must consist of only non-recursive type |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1394 |
components.} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1395 |
\end{itemize} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1396 |
If you would like one of the $\tau_{ij}$ to be a complex type expression |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1397 |
$\tau$ you need to declare a new type synonym $syn = \tau$ first and use |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1398 |
$syn$ in place of $\tau$. Of course this does not work if $\tau$ mentions the |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1399 |
recursive type itself, thus ruling out problematic cases like \[ \mbox{\tt |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1400 |
datatype}~ t ~=~ C(t \To t) \] together with unproblematic ones like \[ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1401 |
\mbox{\tt datatype}~ t ~=~ C(t~list). \] |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1402 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1403 |
The constructors are automatically defined as functions of their respective |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1404 |
type: |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1405 |
\[ C_j : [\tau_{j1},\dots,\tau_{jk_j}] \To (\alpha_1,\dots,\alpha_n)t \] |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1406 |
These functions have certain {\em freeness} properties: |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1407 |
\begin{description} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1408 |
\item[\tt distinct] They are distinct: |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1409 |
\[ C_i~x_1~\dots~x_{k_i} \neq C_j~y_1~\dots~y_{k_j} \qquad |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1410 |
\mbox{for all}~ i \neq j. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1411 |
\] |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1412 |
\item[\tt inject] They are injective: |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1413 |
\[ (C_j~x_1~\dots~x_{k_j} = C_j~y_1~\dots~y_{k_j}) = |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1414 |
(x_1 = y_1 \land \dots \land x_{k_j} = y_{k_j}) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1415 |
\] |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1416 |
\end{description} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1417 |
Because the number of inequalities is quadratic in the number of |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1418 |
constructors, a different method is used if their number exceeds |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1419 |
a certain value, currently 4. In that case every constructor is mapped to a |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1420 |
natural number |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1421 |
\[ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1422 |
\begin{array}{lcl} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1423 |
\mbox{\it t\_ord}(C_1~x_1~\dots~x_{k_1}) & = & 0 \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1424 |
& \vdots & \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1425 |
\mbox{\it t\_ord}(C_m x_1~\dots~x_{k_m}) & = & m-1 |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1426 |
\end{array} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1427 |
\] |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1428 |
and distinctness of constructors is expressed by: |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1429 |
\[ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1430 |
\mbox{\it t\_ord}~x \neq \mbox{\it t\_ord}~y \Imp x \neq y. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1431 |
\] |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1432 |
In addition a structural induction axiom {\tt induct} is provided: |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1433 |
\[ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1434 |
\infer{P x} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1435 |
{\begin{array}{lcl} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1436 |
\Forall x_1\dots x_{k_1}. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1437 |
\List{P~x_{r_{11}}; \dots; P~x_{r_{1l_1}}} & |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1438 |
\Imp & P(C_1~x_1~\dots~x_{k_1}) \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1439 |
& \vdots & \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1440 |
\Forall x_1\dots x_{k_m}. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1441 |
\List{P~x_{r_{m1}}; \dots; P~x_{r_{ml_m}}} & |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1442 |
\Imp & P(C_m~x_1~\dots~x_{k_m}) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1443 |
\end{array}} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1444 |
\] |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1445 |
where $\{r_{j1},\dots,r_{jl_j}\} = \{i \in \{1,\dots k_j\} ~\mid~ \tau_{ji} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1446 |
= (\alpha_1,\dots,\alpha_n)t \}$, i.e.\ the property $P$ can be assumed for |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1447 |
all arguments of the recursive type. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1448 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1449 |
The type also comes with an \ML-like \sdx{case}-construct: |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1450 |
\[ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1451 |
\begin{array}{rrcl} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1452 |
\mbox{\tt case}~e~\mbox{\tt of} & C_1~x_{11}~\dots~x_{1k_1} & \To & e_1 \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1453 |
\vdots \\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1454 |
\mid & C_m~x_{m1}~\dots~x_{mk_m} & \To & e_m |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1455 |
\end{array} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1456 |
\] |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1457 |
In contrast to \ML, {\em all} constructors must be present, their order is |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1458 |
fixed, and nested patterns are not supported. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1459 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1460 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1461 |
\subsection{Defining datatypes} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1462 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1463 |
A datatype is defined in a theory definition file using the keyword {\tt |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1464 |
datatype}. The definition following {\tt datatype} must conform to the |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1465 |
syntax of {\em typedecl} specified in Fig.~\ref{datatype-grammar} and must |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1466 |
obey the rules in the previous section. As a result the theory is extended |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1467 |
with the new type, the constructors, and the theorems listed in the previous |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1468 |
section. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1469 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1470 |
\begin{figure} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1471 |
\begin{rail} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1472 |
typedecl : typevarlist id '=' (cons + '|') |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1473 |
; |
1581 | 1474 |
cons : name (typ *) ( () | mixfix ) |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1475 |
; |
1581 | 1476 |
typ : id | tid | ('(' typevarlist id ')') |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1477 |
; |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1478 |
\end{rail} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1479 |
\caption{Syntax of datatype declarations} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1480 |
\label{datatype-grammar} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1481 |
\end{figure} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1482 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1483 |
Reading the theory file produces a structure which, in addition to the usual |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1484 |
components, contains a structure named $t$ for each datatype $t$ defined in |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1485 |
the file.\footnote{Otherwise multiple datatypes in the same theory file would |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1486 |
lead to name clashes.} Each structure $t$ contains the following elements: |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1487 |
\begin{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1488 |
val distinct : thm list |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1489 |
val inject : thm list |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1490 |
val induct : thm |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1491 |
val cases : thm list |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1492 |
val simps : thm list |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1493 |
val induct_tac : string -> int -> tactic |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1494 |
\end{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1495 |
{\tt distinct}, {\tt inject} and {\tt induct} contain the theorems described |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1496 |
above. For convenience {\tt distinct} contains inequalities in both |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1497 |
directions. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1498 |
\begin{warn} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1499 |
If there are five or more constructors, the {\em t\_ord} scheme is used for |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1500 |
{\tt distinct}. In this case the theory {\tt Arith} must be contained |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1501 |
in the current theory, if necessary by including it explicitly. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1502 |
\end{warn} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1503 |
The reduction rules of the {\tt case}-construct are in {\tt cases}. All |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1504 |
theorems from {\tt distinct}, {\tt inject} and {\tt cases} are combined in |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1505 |
{\tt simps} for use with the simplifier. The tactic {\verb$induct_tac$~{\em |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1506 |
var i}\/} applies structural induction over variable {\em var} to |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1507 |
subgoal {\em i}. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1508 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1509 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1510 |
\subsection{Examples} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1511 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1512 |
\subsubsection{The datatype $\alpha~list$} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1513 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1514 |
We want to define the type $\alpha~list$.\footnote{Of course there is a list |
1162 | 1515 |
type in HOL already. This is only an example.} To do this we have to build |
1516 |
a new theory that contains the type definition. We start from {\tt HOL}. |
|
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1517 |
\begin{ttbox} |
1162 | 1518 |
MyList = HOL + |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1519 |
datatype 'a list = Nil | Cons 'a ('a list) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1520 |
end |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1521 |
\end{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1522 |
After loading the theory (\verb$use_thy "MyList"$), we can prove |
2495 | 1523 |
$Cons~x~xs\neq xs$. |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1524 |
\begin{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1525 |
goal MyList.thy "!x. Cons x xs ~= xs"; |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1526 |
{\out Level 0} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1527 |
{\out ! x. Cons x xs ~= xs} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1528 |
{\out 1. ! x. Cons x xs ~= xs} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1529 |
\end{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1530 |
This can be proved by the structural induction tactic: |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1531 |
\begin{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1532 |
by (MyList.list.induct_tac "xs" 1); |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1533 |
{\out Level 1} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1534 |
{\out ! x. Cons x xs ~= xs} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1535 |
{\out 1. ! x. Cons x Nil ~= Nil} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1536 |
{\out 2. !!a list.} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1537 |
{\out ! x. Cons x list ~= list ==>} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1538 |
{\out ! x. Cons x (Cons a list) ~= Cons a list} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1539 |
\end{ttbox} |
2495 | 1540 |
The first subgoal can be proved using the simplifier. |
1541 |
Isabelle has already added the freeness properties of lists to the |
|
1542 |
default simplification set. |
|
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1543 |
\begin{ttbox} |
2495 | 1544 |
by (Simp_tac 1); |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1545 |
{\out Level 2} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1546 |
{\out ! x. Cons x xs ~= xs} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1547 |
{\out 1. !!a list.} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1548 |
{\out ! x. Cons x list ~= list ==>} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1549 |
{\out ! x. Cons x (Cons a list) ~= Cons a list} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1550 |
\end{ttbox} |
2495 | 1551 |
Similarly, we prove the remaining goal. |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1552 |
\begin{ttbox} |
2495 | 1553 |
by (Asm_simp_tac 1); |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1554 |
{\out Level 3} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1555 |
{\out ! x. Cons x xs ~= xs} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1556 |
{\out No subgoals!} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1557 |
\end{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1558 |
Because both subgoals were proved by almost the same tactic we could have |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1559 |
done that in one step using |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1560 |
\begin{ttbox} |
2495 | 1561 |
by (ALLGOALS Asm_simp_tac); |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1562 |
\end{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1563 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1564 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1565 |
\subsubsection{The datatype $\alpha~list$ with mixfix syntax} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1566 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1567 |
In this example we define the type $\alpha~list$ again but this time we want |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1568 |
to write {\tt []} instead of {\tt Nil} and we want to use the infix operator |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1569 |
\verb|#| instead of {\tt Cons}. To do this we simply add mixfix annotations |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1570 |
after the constructor declarations as follows: |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1571 |
\begin{ttbox} |
1162 | 1572 |
MyList = HOL + |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1573 |
datatype 'a list = "[]" ("[]") |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1574 |
| "#" 'a ('a list) (infixr 70) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1575 |
end |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1576 |
\end{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1577 |
Now the theorem in the previous example can be written \verb|x#xs ~= xs|. The |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1578 |
proof is the same. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1579 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1580 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1581 |
\subsubsection{A datatype for weekdays} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1582 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1583 |
This example shows a datatype that consists of more than four constructors: |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1584 |
\begin{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1585 |
Days = Arith + |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1586 |
datatype days = Mo | Tu | We | Th | Fr | Sa | So |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1587 |
end |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1588 |
\end{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1589 |
Because there are more than four constructors, the theory must be based on |
2495 | 1590 |
{\tt Arith}. Inequality is defined via a function \verb|days_ord|. |
1591 |
The expression \verb|Mo ~= Tu| is not directly contained in {\tt distinct}, |
|
1592 |
but the simplifier can prove it thanks to rewrite rules inherited from theory |
|
1593 |
{\tt Arith}. |
|
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1594 |
\begin{ttbox} |
2495 | 1595 |
goal Days.thy "Mo ~= Tu"; |
1596 |
by (Simp_tac 1); |
|
1597 |
\end{ttbox} |
|
1598 |
You need not derive such inequalities explicitly: the simplifier will dispose |
|
1599 |
of them automatically. |
|
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1600 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1601 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1602 |
\subsection{Primitive recursive functions} |
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1603 |
\label{sec:HOL:primrec} |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1604 |
\index{primitive recursion|(} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1605 |
\index{*primrec|(} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1606 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1607 |
Datatypes come with a uniform way of defining functions, {\bf primitive |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1608 |
recursion}. Although it is possible to define primitive recursive functions |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1609 |
by asserting their reduction rules as new axioms, e.g.\ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1610 |
\begin{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1611 |
Append = MyList + |
1389 | 1612 |
consts app :: ['a list,'a list] => 'a list |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1613 |
rules |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1614 |
app_Nil "app [] ys = ys" |
1162 | 1615 |
app_Cons "app (x#xs) ys = x#app xs ys" |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1616 |
end |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1617 |
\end{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1618 |
this carries with it the danger of accidentally asserting an inconsistency, |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1619 |
as in \verb$app [] ys = us$. Therefore primitive recursive functions on |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1620 |
datatypes can be defined with a special syntax: |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1621 |
\begin{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1622 |
Append = MyList + |
1389 | 1623 |
consts app :: ['a list,'a list] => 'a list |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1624 |
primrec app MyList.list |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1625 |
app_Nil "app [] ys = ys" |
1162 | 1626 |
app_Cons "app (x#xs) ys = x#app xs ys" |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1627 |
end |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1628 |
\end{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1629 |
The system will now check that the two rules \verb$app_Nil$ and |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1630 |
\verb$app_Cons$ do indeed form a primitive recursive definition, thus |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1631 |
ensuring that consistency is maintained. For example |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1632 |
\begin{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1633 |
primrec app MyList.list |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1634 |
app_Nil "app [] ys = us" |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1635 |
\end{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1636 |
is rejected: |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1637 |
\begin{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1638 |
Extra variables on rhs |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1639 |
\end{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1640 |
\bigskip |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1641 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1642 |
The general form of a primitive recursive definition is |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1643 |
\begin{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1644 |
primrec {\it function} {\it type} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1645 |
{\it reduction rules} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1646 |
\end{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1647 |
where |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1648 |
\begin{itemize} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1649 |
\item {\it function} is the name of the function, either as an {\it id} or a |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1650 |
{\it string}. The function must already have been declared. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1651 |
\item {\it type} is the name of the datatype, either as an {\it id} or in the |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1652 |
long form {\it Thy.t}, where {\it Thy} is the name of the parent theory the |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1653 |
datatype was declared in, and $t$ the name of the datatype. The long form |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1654 |
is required if the {\tt datatype} and the {\tt primrec} sections are in |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1655 |
different theories. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1656 |
\item {\it reduction rules} specify one or more named equations of the form |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1657 |
{\it id\/}~{\it string}, where the identifier gives the name of the rule in |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1658 |
the result structure, and {\it string} is a reduction rule of the form \[ |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1659 |
f~x_1~\dots~x_m~(C~y_1~\dots~y_k)~z_1~\dots~z_n = r \] such that $C$ is a |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1660 |
constructor of the datatype, $r$ contains only the free variables on the |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1661 |
left-hand side, and all recursive calls in $r$ are of the form |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1662 |
$f~\dots~y_i~\dots$ for some $i$. There must be exactly one reduction |
1854 | 1663 |
rule for each constructor. Since these reduction rules are mainly used via |
1859 | 1664 |
the implicit simpset, their names may be omitted. |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1665 |
\end{itemize} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1666 |
A theory file may contain any number of {\tt primrec} sections which may be |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1667 |
intermixed with other declarations. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1668 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1669 |
For the consistency-sensitive user it may be reassuring to know that {\tt |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1670 |
primrec} does not assert the reduction rules as new axioms but derives them |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1671 |
as theorems from an explicit definition of the recursive function in terms of |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1672 |
a recursion operator on the datatype. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1673 |
|
2495 | 1674 |
The primitive recursive function can have infix or mixfix syntax: |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1675 |
\begin{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1676 |
Append = MyList + |
1389 | 1677 |
consts "@" :: ['a list,'a list] => 'a list (infixr 60) |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1678 |
primrec "op @" MyList.list |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1679 |
app_Nil "[] @ ys = ys" |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1680 |
app_Cons "(x#xs) @ ys = x#(xs @ ys)" |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1681 |
end |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1682 |
\end{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1683 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1684 |
The reduction rules become part of the ML structure \verb$Append$ and can |
2495 | 1685 |
be used to prove theorems about the function. The defining equations for |
1686 |
primitive recursive functions are automatically provided to the simplifier |
|
1687 |
(via the default simpset). |
|
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1688 |
\begin{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1689 |
goal Append.thy "(xs @ ys) @ zs = xs @ (ys @ zs)"; |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1690 |
by (MyList.list.induct_tac "xs" 1); |
2495 | 1691 |
by (ALLGOALS Asm_simp_tac); |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1692 |
\end{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1693 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1694 |
%Note that underdefined primitive recursive functions are allowed: |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1695 |
%\begin{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1696 |
%Tl = MyList + |
1389 | 1697 |
%consts tl :: 'a list => 'a list |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1698 |
%primrec tl MyList.list |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1699 |
% tl_Cons "tl(x#xs) = xs" |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1700 |
%end |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1701 |
%\end{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1702 |
%Nevertheless {\tt tl} is total, although we do not know what the result of |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1703 |
%\verb$tl([])$ is. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1704 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1705 |
\index{primitive recursion|)} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1706 |
\index{*primrec|)} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1707 |
\index{*datatype|)} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1708 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1709 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1710 |
\section{Inductive and coinductive definitions} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1711 |
\index{*inductive|(} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1712 |
\index{*coinductive|(} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1713 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1714 |
An {\bf inductive definition} specifies the least set closed under given |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1715 |
rules. For example, a structural operational semantics is an inductive |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1716 |
definition of an evaluation relation. Dually, a {\bf coinductive |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1717 |
definition} specifies the greatest set closed under given rules. An |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1718 |
important example is using bisimulation relations to formalize equivalence |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1719 |
of processes and infinite data structures. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1720 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1721 |
A theory file may contain any number of inductive and coinductive |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1722 |
definitions. They may be intermixed with other declarations; in |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1723 |
particular, the (co)inductive sets {\bf must} be declared separately as |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1724 |
constants, and may have mixfix syntax or be subject to syntax translations. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1725 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1726 |
Each (co)inductive definition adds definitions to the theory and also |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1727 |
proves some theorems. Each definition creates an ML structure, which is a |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1728 |
substructure of the main theory structure. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1729 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1730 |
This package is derived from the ZF one, described in a |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1731 |
separate paper,\footnote{It appeared in CADE~\cite{paulson-CADE} and a |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1732 |
longer version is distributed with Isabelle.} which you should refer to |
1162 | 1733 |
in case of difficulties. The package is simpler than ZF's, thanks to HOL's |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1734 |
automatic type-checking. The type of the (co)inductive determines the |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1735 |
domain of the fixedpoint definition, and the package does not use inference |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1736 |
rules for type-checking. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1737 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1738 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1739 |
\subsection{The result structure} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1740 |
Many of the result structure's components have been discussed in the paper; |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1741 |
others are self-explanatory. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1742 |
\begin{description} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1743 |
\item[\tt thy] is the new theory containing the recursive sets. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1744 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1745 |
\item[\tt defs] is the list of definitions of the recursive sets. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1746 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1747 |
\item[\tt mono] is a monotonicity theorem for the fixedpoint operator. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1748 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1749 |
\item[\tt unfold] is a fixedpoint equation for the recursive set (the union of |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1750 |
the recursive sets, in the case of mutual recursion). |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1751 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1752 |
\item[\tt intrs] is the list of introduction rules, now proved as theorems, for |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1753 |
the recursive sets. The rules are also available individually, using the |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1754 |
names given them in the theory file. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1755 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1756 |
\item[\tt elim] is the elimination rule. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1757 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1758 |
\item[\tt mk\_cases] is a function to create simplified instances of {\tt |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1759 |
elim}, using freeness reasoning on some underlying datatype. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1760 |
\end{description} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1761 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1762 |
For an inductive definition, the result structure contains two induction rules, |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1763 |
{\tt induct} and \verb|mutual_induct|. For a coinductive definition, it |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1764 |
contains the rule \verb|coinduct|. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1765 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1766 |
Figure~\ref{def-result-fig} summarizes the two result signatures, |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1767 |
specifying the types of all these components. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1768 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1769 |
\begin{figure} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1770 |
\begin{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1771 |
sig |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1772 |
val thy : theory |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1773 |
val defs : thm list |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1774 |
val mono : thm |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1775 |
val unfold : thm |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1776 |
val intrs : thm list |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1777 |
val elim : thm |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1778 |
val mk_cases : thm list -> string -> thm |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1779 |
{\it(Inductive definitions only)} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1780 |
val induct : thm |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1781 |
val mutual_induct: thm |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1782 |
{\it(Coinductive definitions only)} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1783 |
val coinduct : thm |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1784 |
end |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1785 |
\end{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1786 |
\hrule |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1787 |
\caption{The result of a (co)inductive definition} \label{def-result-fig} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1788 |
\end{figure} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1789 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1790 |
\subsection{The syntax of a (co)inductive definition} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1791 |
An inductive definition has the form |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1792 |
\begin{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1793 |
inductive {\it inductive sets} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1794 |
intrs {\it introduction rules} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1795 |
monos {\it monotonicity theorems} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1796 |
con_defs {\it constructor definitions} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1797 |
\end{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1798 |
A coinductive definition is identical, except that it starts with the keyword |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1799 |
{\tt coinductive}. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1800 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1801 |
The {\tt monos} and {\tt con\_defs} sections are optional. If present, |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1802 |
each is specified as a string, which must be a valid ML expression of type |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1803 |
{\tt thm list}. It is simply inserted into the {\tt .thy.ML} file; if it |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1804 |
is ill-formed, it will trigger ML error messages. You can then inspect the |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1805 |
file on your directory. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1806 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1807 |
\begin{itemize} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1808 |
\item The {\it inductive sets} are specified by one or more strings. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1809 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1810 |
\item The {\it introduction rules} specify one or more introduction rules in |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1811 |
the form {\it ident\/}~{\it string}, where the identifier gives the name of |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1812 |
the rule in the result structure. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1813 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1814 |
\item The {\it monotonicity theorems} are required for each operator |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1815 |
applied to a recursive set in the introduction rules. There {\bf must} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1816 |
be a theorem of the form $A\subseteq B\Imp M(A)\subseteq M(B)$, for each |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1817 |
premise $t\in M(R_i)$ in an introduction rule! |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1818 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1819 |
\item The {\it constructor definitions} contain definitions of constants |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1820 |
appearing in the introduction rules. In most cases it can be omitted. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1821 |
\end{itemize} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1822 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1823 |
The package has a few notable restrictions: |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1824 |
\begin{itemize} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1825 |
\item The theory must separately declare the recursive sets as |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1826 |
constants. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1827 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1828 |
\item The names of the recursive sets must be identifiers, not infix |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1829 |
operators. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1830 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1831 |
\item Side-conditions must not be conjunctions. However, an introduction rule |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1832 |
may contain any number of side-conditions. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1833 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1834 |
\item Side-conditions of the form $x=t$, where the variable~$x$ does not |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1835 |
occur in~$t$, will be substituted through the rule \verb|mutual_induct|. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1836 |
\end{itemize} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1837 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1838 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1839 |
\subsection{Example of an inductive definition} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1840 |
Two declarations, included in a theory file, define the finite powerset |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1841 |
operator. First we declare the constant~{\tt Fin}. Then we declare it |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1842 |
inductively, with two introduction rules: |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1843 |
\begin{ttbox} |
1389 | 1844 |
consts Fin :: 'a set => 'a set set |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1845 |
inductive "Fin A" |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1846 |
intrs |
1422
bc628f4ef0cb
New version of type sections and many small changes.
nipkow
parents:
1389
diff
changeset
|
1847 |
emptyI "\{\} : Fin A" |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1848 |
insertI "[| a: A; b: Fin A |] ==> insert a b : Fin A" |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1849 |
\end{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1850 |
The resulting theory structure contains a substructure, called~{\tt Fin}. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1851 |
It contains the {\tt Fin}$~A$ introduction rules as the list {\tt Fin.intrs}, |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1852 |
and also individually as {\tt Fin.emptyI} and {\tt Fin.consI}. The induction |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1853 |
rule is {\tt Fin.induct}. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1854 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1855 |
For another example, here is a theory file defining the accessible part of a |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1856 |
relation. The main thing to note is the use of~{\tt Pow} in the sole |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1857 |
introduction rule, and the corresponding mention of the rule |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1858 |
\verb|Pow_mono| in the {\tt monos} list. The paper discusses a ZF version |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1859 |
of this example in more detail. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1860 |
\begin{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1861 |
Acc = WF + |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1862 |
consts pred :: "['b, ('a * 'b)set] => 'a set" (*Set of predecessors*) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1863 |
acc :: "('a * 'a)set => 'a set" (*Accessible part*) |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1864 |
defs pred_def "pred x r == {y. (y,x):r}" |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1865 |
inductive "acc r" |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1866 |
intrs |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1867 |
pred "pred a r: Pow(acc r) ==> a: acc r" |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1868 |
monos "[Pow_mono]" |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1869 |
end |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1870 |
\end{ttbox} |
1162 | 1871 |
The HOL distribution contains many other inductive definitions, such as the |
1872 |
theory {\tt HOL/ex/PropLog.thy} and the directory {\tt HOL/IMP}. The |
|
1873 |
theory {\tt HOL/ex/LList.thy} contains coinductive definitions. |
|
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1874 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1875 |
\index{*coinductive|)} \index{*inductive|)} \underscoreoff |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1876 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1877 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1878 |
\section{The examples directories} |
1162 | 1879 |
Directory {\tt HOL/Subst} contains Martin Coen's mechanisation of a theory of |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1880 |
substitutions and unifiers. It is based on Paulson's previous |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1881 |
mechanisation in {\LCF}~\cite{paulson85} of Manna and Waldinger's |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1882 |
theory~\cite{mw81}. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1883 |
|
1490 | 1884 |
Directory {\tt HOL/IMP} contains a formalization of the denotational, |
1885 |
operational and axiomatic semantics of a simple while-language, including an |
|
1886 |
equivalence proof between denotational and operational semantics and a |
|
1887 |
soundness and part of a completeness proof of the Hoare rules w.r.t.\ the |
|
1888 |
denotational semantics. The whole development is taken from |
|
1889 |
Winskel~\cite{winskel93}. In addition, a verification-condition-generator is |
|
1890 |
proved sound and complete w.r.t. the Hoare rules. |
|
1891 |
||
1892 |
Directory {\tt HOL/Hoare} contains a user friendly surface syntax for Hoare |
|
1893 |
logic, including a tactic for generating verification-conditions. |
|
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1894 |
|
1162 | 1895 |
Directory {\tt HOL/ex} contains other examples and experimental proofs in |
1896 |
{\HOL}. Here is an overview of the more interesting files. |
|
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1897 |
\begin{itemize} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1898 |
\item File {\tt cla.ML} demonstrates the classical reasoner on over sixty |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1899 |
predicate calculus theorems, ranging from simple tautologies to |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1900 |
moderately difficult problems involving equality and quantifiers. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1901 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1902 |
\item File {\tt meson.ML} contains an experimental implementation of the {\sc |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1903 |
meson} proof procedure, inspired by Plaisted~\cite{plaisted90}. It is |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1904 |
much more powerful than Isabelle's classical reasoner. But it is less |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1905 |
useful in practice because it works only for pure logic; it does not |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1906 |
accept derived rules for the set theory primitives, for example. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1907 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1908 |
\item File {\tt mesontest.ML} contains test data for the {\sc meson} proof |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1909 |
procedure. These are mostly taken from Pelletier \cite{pelletier86}. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1910 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1911 |
\item File {\tt set.ML} proves Cantor's Theorem, which is presented in |
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
1912 |
\S\ref{sec:hol-cantor} below, and the Schr\"oder-Bernstein Theorem. |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1913 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1914 |
\item The definition of lazy lists demonstrates methods for handling |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1915 |
infinite data structures and coinduction in higher-order |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1916 |
logic~\cite{paulson-coind}. Theory \thydx{LList} defines an operator for |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1917 |
corecursion on lazy lists, which is used to define a few simple functions |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1918 |
such as map and append. Corecursion cannot easily define operations such |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1919 |
as filter, which can compute indefinitely before yielding the next |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1920 |
element (if any!) of the lazy list. A coinduction principle is defined |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1921 |
for proving equations on lazy lists. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1922 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1923 |
\item Theory {\tt PropLog} proves the soundness and completeness of |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1924 |
classical propositional logic, given a truth table semantics. The only |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1925 |
connective is $\imp$. A Hilbert-style axiom system is specified, and its |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1926 |
set of theorems defined inductively. A similar proof in \ZF{} is |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1927 |
described elsewhere~\cite{paulson-set-II}. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1928 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1929 |
\item Theory {\tt Term} develops an experimental recursive type definition; |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1930 |
the recursion goes through the type constructor~\tydx{list}. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1931 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1932 |
\item Theory {\tt Simult} constructs mutually recursive sets of trees and |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1933 |
forests, including induction and recursion rules. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1934 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1935 |
\item Theory {\tt MT} contains Jacob Frost's formalization~\cite{frost93} of |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1936 |
Milner and Tofte's coinduction example~\cite{milner-coind}. This |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1937 |
substantial proof concerns the soundness of a type system for a simple |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1938 |
functional language. The semantics of recursion is given by a cyclic |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1939 |
environment, which makes a coinductive argument appropriate. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1940 |
\end{itemize} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1941 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1942 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1943 |
\goodbreak |
1163
c080ff36d24e
changed 'chol' labels to 'hol'; added a few parentheses
clasohm
parents:
1162
diff
changeset
|
1944 |
\section{Example: Cantor's Theorem}\label{sec:hol-cantor} |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1945 |
Cantor's Theorem states that every set has more subsets than it has |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1946 |
elements. It has become a favourite example in higher-order logic since |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1947 |
it is so easily expressed: |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1948 |
\[ \forall f::[\alpha,\alpha]\To bool. \exists S::\alpha\To bool. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1949 |
\forall x::\alpha. f~x \not= S |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1950 |
\] |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1951 |
% |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1952 |
Viewing types as sets, $\alpha\To bool$ represents the powerset |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1953 |
of~$\alpha$. This version states that for every function from $\alpha$ to |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1954 |
its powerset, some subset is outside its range. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1955 |
|
1162 | 1956 |
The Isabelle proof uses \HOL's set theory, with the type $\alpha\,set$ and |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1957 |
the operator \cdx{range}. The set~$S$ is given as an unknown instead of a |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1958 |
quantified variable so that we may inspect the subset found by the proof. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1959 |
\begin{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1960 |
goal Set.thy "~ ?S : range(f :: 'a=>'a set)"; |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1961 |
{\out Level 0} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1962 |
{\out ~ ?S : range f} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1963 |
{\out 1. ~ ?S : range f} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1964 |
\end{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1965 |
The first two steps are routine. The rule \tdx{rangeE} replaces |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1966 |
$\Var{S}\in {\tt range} f$ by $\Var{S}=f~x$ for some~$x$. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1967 |
\begin{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1968 |
by (resolve_tac [notI] 1); |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1969 |
{\out Level 1} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1970 |
{\out ~ ?S : range f} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1971 |
{\out 1. ?S : range f ==> False} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1972 |
\ttbreak |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1973 |
by (eresolve_tac [rangeE] 1); |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1974 |
{\out Level 2} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1975 |
{\out ~ ?S : range f} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1976 |
{\out 1. !!x. ?S = f x ==> False} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1977 |
\end{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1978 |
Next, we apply \tdx{equalityCE}, reasoning that since $\Var{S}=f~x$, |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1979 |
we have $\Var{c}\in \Var{S}$ if and only if $\Var{c}\in f~x$ for |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1980 |
any~$\Var{c}$. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1981 |
\begin{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1982 |
by (eresolve_tac [equalityCE] 1); |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1983 |
{\out Level 3} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1984 |
{\out ~ ?S : range f} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1985 |
{\out 1. !!x. [| ?c3 x : ?S; ?c3 x : f x |] ==> False} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1986 |
{\out 2. !!x. [| ~ ?c3 x : ?S; ~ ?c3 x : f x |] ==> False} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1987 |
\end{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1988 |
Now we use a bit of creativity. Suppose that~$\Var{S}$ has the form of a |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1989 |
comprehension. Then $\Var{c}\in\{x.\Var{P}~x\}$ implies |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1990 |
$\Var{P}~\Var{c}$. Destruct-resolution using \tdx{CollectD} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1991 |
instantiates~$\Var{S}$ and creates the new assumption. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1992 |
\begin{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1993 |
by (dresolve_tac [CollectD] 1); |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1994 |
{\out Level 4} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1995 |
{\out ~ \{x. ?P7 x\} : range f} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1996 |
{\out 1. !!x. [| ?c3 x : f x; ?P7(?c3 x) |] ==> False} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1997 |
{\out 2. !!x. [| ~ ?c3 x : \{x. ?P7 x\}; ~ ?c3 x : f x |] ==> False} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1998 |
\end{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
1999 |
Forcing a contradiction between the two assumptions of subgoal~1 completes |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2000 |
the instantiation of~$S$. It is now the set $\{x. x\not\in f~x\}$, which |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2001 |
is the standard diagonal construction. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2002 |
\begin{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2003 |
by (contr_tac 1); |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2004 |
{\out Level 5} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2005 |
{\out ~ \{x. ~ x : f x\} : range f} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2006 |
{\out 1. !!x. [| ~ x : \{x. ~ x : f x\}; ~ x : f x |] ==> False} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2007 |
\end{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2008 |
The rest should be easy. To apply \tdx{CollectI} to the negated |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2009 |
assumption, we employ \ttindex{swap_res_tac}: |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2010 |
\begin{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2011 |
by (swap_res_tac [CollectI] 1); |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2012 |
{\out Level 6} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2013 |
{\out ~ \{x. ~ x : f x\} : range f} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2014 |
{\out 1. !!x. [| ~ x : f x; ~ False |] ==> ~ x : f x} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2015 |
\ttbreak |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2016 |
by (assume_tac 1); |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2017 |
{\out Level 7} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2018 |
{\out ~ \{x. ~ x : f x\} : range f} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2019 |
{\out No subgoals!} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2020 |
\end{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2021 |
How much creativity is required? As it happens, Isabelle can prove this |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2022 |
theorem automatically. The classical set \ttindex{set_cs} contains rules |
1162 | 2023 |
for most of the constructs of \HOL's set theory. We must augment it with |
1113
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2024 |
\tdx{equalityCE} to break up set equalities, and then apply best-first |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2025 |
search. Depth-first search would diverge, but best-first search |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2026 |
successfully navigates through the large search space. |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2027 |
\index{search!best-first} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2028 |
\begin{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2029 |
choplev 0; |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2030 |
{\out Level 0} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2031 |
{\out ~ ?S : range f} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2032 |
{\out 1. ~ ?S : range f} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2033 |
\ttbreak |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2034 |
by (best_tac (set_cs addSEs [equalityCE]) 1); |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2035 |
{\out Level 1} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2036 |
{\out ~ \{x. ~ x : f x\} : range f} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2037 |
{\out No subgoals!} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2038 |
\end{ttbox} |
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2039 |
|
dd7284573601
converted HOL.tex to CHOL.tex; replaced HOL.tex by CHOL.tex
clasohm
parents:
diff
changeset
|
2040 |
\index{higher-order logic|)} |