| 
43158
 | 
     1  | 
header "Verification Conditions"
  | 
| 
 | 
     2  | 
  | 
| 
 | 
     3  | 
theory VC imports Hoare begin
  | 
| 
 | 
     4  | 
  | 
| 
 | 
     5  | 
subsection "VCG via Weakest Preconditions"
  | 
| 
 | 
     6  | 
  | 
| 
 | 
     7  | 
text{* Annotated commands: commands where loops are annotated with
 | 
| 
 | 
     8  | 
invariants. *}
  | 
| 
 | 
     9  | 
  | 
| 
 | 
    10  | 
datatype acom = Askip
  | 
| 
 | 
    11  | 
              | Aassign name aexp
  | 
| 
 | 
    12  | 
              | Asemi   acom acom
  | 
| 
 | 
    13  | 
              | Aif     bexp acom acom
  | 
| 
 | 
    14  | 
              | Awhile  bexp assn acom
  | 
| 
 | 
    15  | 
  | 
| 
 | 
    16  | 
text{* Weakest precondition from annotated commands: *}
 | 
| 
 | 
    17  | 
  | 
| 
 | 
    18  | 
fun pre :: "acom \<Rightarrow> assn \<Rightarrow> assn" where
  | 
| 
 | 
    19  | 
"pre Askip Q = Q" |
  | 
| 
 | 
    20  | 
"pre (Aassign x a) Q = (\<lambda>s. Q(s(x := aval a s)))" |
  | 
| 
 | 
    21  | 
"pre (Asemi c\<^isub>1 c\<^isub>2) Q = pre c\<^isub>1 (pre c\<^isub>2 Q)" |
  | 
| 
 | 
    22  | 
"pre (Aif b c\<^isub>1 c\<^isub>2) Q =
  | 
| 
 | 
    23  | 
  (\<lambda>s. (bval b s \<longrightarrow> pre c\<^isub>1 Q s) \<and>
  | 
| 
 | 
    24  | 
       (\<not> bval b s \<longrightarrow> pre c\<^isub>2 Q s))" |
  | 
| 
 | 
    25  | 
"pre (Awhile b I c) Q = I"
  | 
| 
 | 
    26  | 
  | 
| 
 | 
    27  | 
text{* Verification condition: *}
 | 
| 
 | 
    28  | 
  | 
| 
 | 
    29  | 
fun vc :: "acom \<Rightarrow> assn \<Rightarrow> assn" where
  | 
| 
 | 
    30  | 
"vc Askip Q = (\<lambda>s. True)" |
  | 
| 
 | 
    31  | 
"vc (Aassign x a) Q = (\<lambda>s. True)" |
  | 
| 
 | 
    32  | 
"vc (Asemi c\<^isub>1 c\<^isub>2) Q = (\<lambda>s. vc c\<^isub>1 (pre c\<^isub>2 Q) s \<and> vc c\<^isub>2 Q s)" |
  | 
| 
 | 
    33  | 
"vc (Aif b c\<^isub>1 c\<^isub>2) Q = (\<lambda>s. vc c\<^isub>1 Q s \<and> vc c\<^isub>2 Q s)" |
  | 
| 
 | 
    34  | 
"vc (Awhile b I c) Q =
  | 
| 
 | 
    35  | 
  (\<lambda>s. (I s \<and> \<not> bval b s \<longrightarrow> Q s) \<and>
  | 
| 
 | 
    36  | 
       (I s \<and> bval b s \<longrightarrow> pre c I s) \<and>
  | 
| 
 | 
    37  | 
       vc c I s)"
  | 
| 
 | 
    38  | 
  | 
| 
 | 
    39  | 
text{* Strip annotations: *}
 | 
| 
 | 
    40  | 
  | 
| 
 | 
    41  | 
fun astrip :: "acom \<Rightarrow> com" where
  | 
| 
 | 
    42  | 
"astrip Askip = SKIP" |
  | 
| 
 | 
    43  | 
"astrip (Aassign x a) = (x::=a)" |
  | 
| 
 | 
    44  | 
"astrip (Asemi c\<^isub>1 c\<^isub>2) = (astrip c\<^isub>1; astrip c\<^isub>2)" |
  | 
| 
 | 
    45  | 
"astrip (Aif b c\<^isub>1 c\<^isub>2) = (IF b THEN astrip c\<^isub>1 ELSE astrip c\<^isub>2)" |
  | 
| 
 | 
    46  | 
"astrip (Awhile b I c) = (WHILE b DO astrip c)"
  | 
| 
 | 
    47  | 
  | 
| 
 | 
    48  | 
  | 
| 
 | 
    49  | 
subsection "Soundness"
  | 
| 
 | 
    50  | 
  | 
| 
 | 
    51  | 
lemma vc_sound: "\<forall>s. vc c Q s \<Longrightarrow> \<turnstile> {pre c Q} astrip c {Q}"
 | 
| 
 | 
    52  | 
proof(induct c arbitrary: Q)
  | 
| 
 | 
    53  | 
  case (Awhile b I c)
  | 
| 
 | 
    54  | 
  show ?case
  | 
| 
 | 
    55  | 
  proof(simp, rule While')
  | 
| 
 | 
    56  | 
    from `\<forall>s. vc (Awhile b I c) Q s`
  | 
| 
 | 
    57  | 
    have vc: "\<forall>s. vc c I s" and IQ: "\<forall>s. I s \<and> \<not> bval b s \<longrightarrow> Q s" and
  | 
| 
 | 
    58  | 
         pre: "\<forall>s. I s \<and> bval b s \<longrightarrow> pre c I s" by simp_all
  | 
| 
 | 
    59  | 
    have "\<turnstile> {pre c I} astrip c {I}" by(rule Awhile.hyps[OF vc])
 | 
| 
 | 
    60  | 
    with pre show "\<turnstile> {\<lambda>s. I s \<and> bval b s} astrip c {I}"
 | 
| 
 | 
    61  | 
      by(rule strengthen_pre)
  | 
| 
 | 
    62  | 
    show "\<forall>s. I s \<and> \<not>bval b s \<longrightarrow> Q s" by(rule IQ)
  | 
| 
 | 
    63  | 
  qed
  | 
| 
 | 
    64  | 
qed (auto intro: hoare.conseq)
  | 
| 
 | 
    65  | 
  | 
| 
 | 
    66  | 
corollary vc_sound':
  | 
| 
 | 
    67  | 
  "(\<forall>s. vc c Q s) \<and> (\<forall>s. P s \<longrightarrow> pre c Q s) \<Longrightarrow> \<turnstile> {P} astrip c {Q}"
 | 
| 
 | 
    68  | 
by (metis strengthen_pre vc_sound)
  | 
| 
 | 
    69  | 
  | 
| 
 | 
    70  | 
  | 
| 
 | 
    71  | 
subsection "Completeness"
  | 
| 
 | 
    72  | 
  | 
| 
 | 
    73  | 
lemma pre_mono:
  | 
| 
 | 
    74  | 
  "\<forall>s. P s \<longrightarrow> P' s \<Longrightarrow> pre c P s \<Longrightarrow> pre c P' s"
  | 
| 
 | 
    75  | 
proof (induct c arbitrary: P P' s)
  | 
| 
 | 
    76  | 
  case Asemi thus ?case by simp metis
  | 
| 
 | 
    77  | 
qed simp_all
  | 
| 
 | 
    78  | 
  | 
| 
 | 
    79  | 
lemma vc_mono:
  | 
| 
 | 
    80  | 
  "\<forall>s. P s \<longrightarrow> P' s \<Longrightarrow> vc c P s \<Longrightarrow> vc c P' s"
  | 
| 
 | 
    81  | 
proof(induct c arbitrary: P P')
  | 
| 
 | 
    82  | 
  case Asemi thus ?case by simp (metis pre_mono)
  | 
| 
 | 
    83  | 
qed simp_all
  | 
| 
 | 
    84  | 
  | 
| 
 | 
    85  | 
lemma vc_complete:
  | 
| 
 | 
    86  | 
 "\<turnstile> {P}c{Q} \<Longrightarrow> \<exists>c'. astrip c' = c \<and> (\<forall>s. vc c' Q s) \<and> (\<forall>s. P s \<longrightarrow> pre c' Q s)"
 | 
| 
 | 
    87  | 
  (is "_ \<Longrightarrow> \<exists>c'. ?G P c Q c'")
  | 
| 
 | 
    88  | 
proof (induct rule: hoare.induct)
  | 
| 
 | 
    89  | 
  case Skip
  | 
| 
 | 
    90  | 
  show ?case (is "\<exists>ac. ?C ac")
  | 
| 
 | 
    91  | 
  proof show "?C Askip" by simp qed
  | 
| 
 | 
    92  | 
next
  | 
| 
 | 
    93  | 
  case (Assign P a x)
  | 
| 
 | 
    94  | 
  show ?case (is "\<exists>ac. ?C ac")
  | 
| 
 | 
    95  | 
  proof show "?C(Aassign x a)" by simp qed
  | 
| 
 | 
    96  | 
next
  | 
| 
 | 
    97  | 
  case (Semi P c1 Q c2 R)
  | 
| 
 | 
    98  | 
  from Semi.hyps obtain ac1 where ih1: "?G P c1 Q ac1" by blast
  | 
| 
 | 
    99  | 
  from Semi.hyps obtain ac2 where ih2: "?G Q c2 R ac2" by blast
  | 
| 
 | 
   100  | 
  show ?case (is "\<exists>ac. ?C ac")
  | 
| 
 | 
   101  | 
  proof
  | 
| 
 | 
   102  | 
    show "?C(Asemi ac1 ac2)"
  | 
| 
 | 
   103  | 
      using ih1 ih2 by (fastsimp elim!: pre_mono vc_mono)
  | 
| 
 | 
   104  | 
  qed
  | 
| 
 | 
   105  | 
next
  | 
| 
 | 
   106  | 
  case (If P b c1 Q c2)
  | 
| 
 | 
   107  | 
  from If.hyps obtain ac1 where ih1: "?G (\<lambda>s. P s \<and> bval b s) c1 Q ac1"
  | 
| 
 | 
   108  | 
    by blast
  | 
| 
 | 
   109  | 
  from If.hyps obtain ac2 where ih2: "?G (\<lambda>s. P s \<and> \<not>bval b s) c2 Q ac2"
  | 
| 
 | 
   110  | 
    by blast
  | 
| 
 | 
   111  | 
  show ?case (is "\<exists>ac. ?C ac")
  | 
| 
 | 
   112  | 
  proof
  | 
| 
 | 
   113  | 
    show "?C(Aif b ac1 ac2)" using ih1 ih2 by simp
  | 
| 
 | 
   114  | 
  qed
  | 
| 
 | 
   115  | 
next
  | 
| 
 | 
   116  | 
  case (While P b c)
  | 
| 
 | 
   117  | 
  from While.hyps obtain ac where ih: "?G (\<lambda>s. P s \<and> bval b s) c P ac" by blast
  | 
| 
 | 
   118  | 
  show ?case (is "\<exists>ac. ?C ac")
  | 
| 
 | 
   119  | 
  proof show "?C(Awhile b P ac)" using ih by simp qed
  | 
| 
 | 
   120  | 
next
  | 
| 
 | 
   121  | 
  case conseq thus ?case by(fast elim!: pre_mono vc_mono)
  | 
| 
 | 
   122  | 
qed
  | 
| 
 | 
   123  | 
  | 
| 
 | 
   124  | 
  | 
| 
 | 
   125  | 
subsection "An Optimization"
  | 
| 
 | 
   126  | 
  | 
| 
 | 
   127  | 
fun vcpre :: "acom \<Rightarrow> assn \<Rightarrow> assn \<times> assn" where
  | 
| 
 | 
   128  | 
"vcpre Askip Q = (\<lambda>s. True, Q)" |
  | 
| 
 | 
   129  | 
"vcpre (Aassign x a) Q = (\<lambda>s. True, \<lambda>s. Q(s[a/x]))" |
  | 
| 
 | 
   130  | 
"vcpre (Asemi c\<^isub>1 c\<^isub>2) Q =
  | 
| 
 | 
   131  | 
  (let (vc\<^isub>2,wp\<^isub>2) = vcpre c\<^isub>2 Q;
  | 
| 
 | 
   132  | 
       (vc\<^isub>1,wp\<^isub>1) = vcpre c\<^isub>1 wp\<^isub>2
  | 
| 
 | 
   133  | 
   in (\<lambda>s. vc\<^isub>1 s \<and> vc\<^isub>2 s, wp\<^isub>1))" |
  | 
| 
 | 
   134  | 
"vcpre (Aif b c\<^isub>1 c\<^isub>2) Q =
  | 
| 
 | 
   135  | 
  (let (vc\<^isub>2,wp\<^isub>2) = vcpre c\<^isub>2 Q;
  | 
| 
 | 
   136  | 
       (vc\<^isub>1,wp\<^isub>1) = vcpre c\<^isub>1 Q
  | 
| 
 | 
   137  | 
   in (\<lambda>s. vc\<^isub>1 s \<and> vc\<^isub>2 s, \<lambda>s. (bval b s \<longrightarrow> wp\<^isub>1 s) \<and> (\<not>bval b s \<longrightarrow> wp\<^isub>2 s)))" |
  | 
| 
 | 
   138  | 
"vcpre (Awhile b I c) Q =
  | 
| 
 | 
   139  | 
  (let (vcc,wpc) = vcpre c I
  | 
| 
 | 
   140  | 
   in (\<lambda>s. (I s \<and> \<not> bval b s \<longrightarrow> Q s) \<and>
  | 
| 
 | 
   141  | 
           (I s \<and> bval b s \<longrightarrow> wpc s) \<and> vcc s, I))"
  | 
| 
 | 
   142  | 
  | 
| 
 | 
   143  | 
lemma vcpre_vc_pre: "vcpre c Q = (vc c Q, pre c Q)"
  | 
| 
 | 
   144  | 
by (induct c arbitrary: Q) (simp_all add: Let_def)
  | 
| 
 | 
   145  | 
  | 
| 
 | 
   146  | 
end
  |