| 
61640
 | 
     1  | 
(* Author: Tobias Nipkow *)
  | 
| 
 | 
     2  | 
  | 
| 
 | 
     3  | 
section {* Implementing Ordered Sets *}
 | 
| 
 | 
     4  | 
  | 
| 
 | 
     5  | 
theory Set_by_Ordered
  | 
| 
 | 
     6  | 
imports List_Ins_Del
  | 
| 
 | 
     7  | 
begin
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
locale Set =
  | 
| 
 | 
    10  | 
fixes empty :: "'s"
  | 
| 
 | 
    11  | 
fixes insert :: "'a \<Rightarrow> 's \<Rightarrow> 's"
  | 
| 
 | 
    12  | 
fixes delete :: "'a \<Rightarrow> 's \<Rightarrow> 's"
  | 
| 
 | 
    13  | 
fixes isin :: "'s \<Rightarrow> 'a \<Rightarrow> bool"
  | 
| 
 | 
    14  | 
fixes set :: "'s \<Rightarrow> 'a set"
  | 
| 
 | 
    15  | 
fixes invar :: "'s \<Rightarrow> bool"
  | 
| 
 | 
    16  | 
assumes set_empty:    "set empty = {}"
 | 
| 
 | 
    17  | 
assumes set_isin:     "invar s \<Longrightarrow> isin s x = (x \<in> set s)"
  | 
| 
 | 
    18  | 
assumes set_insert:   "invar s \<Longrightarrow> set(insert x s) = Set.insert x (set s)"
  | 
| 
 | 
    19  | 
assumes set_delete:   "invar s \<Longrightarrow> set(delete x s) = set s - {x}"
 | 
| 
 | 
    20  | 
assumes invar_empty:  "invar empty"
  | 
| 
 | 
    21  | 
assumes invar_insert: "invar s \<Longrightarrow> invar(insert x s)"
  | 
| 
 | 
    22  | 
assumes invar_delete: "invar s \<Longrightarrow> invar(delete x s)"
  | 
| 
 | 
    23  | 
  | 
| 
 | 
    24  | 
locale Set_by_Ordered =
  | 
| 
 | 
    25  | 
fixes empty :: "'t"
  | 
| 
 | 
    26  | 
fixes insert :: "'a::linorder \<Rightarrow> 't \<Rightarrow> 't"
  | 
| 
 | 
    27  | 
fixes delete :: "'a \<Rightarrow> 't \<Rightarrow> 't"
  | 
| 
 | 
    28  | 
fixes isin :: "'t \<Rightarrow> 'a \<Rightarrow> bool"
  | 
| 
 | 
    29  | 
fixes inorder :: "'t \<Rightarrow> 'a list"
  | 
| 
 | 
    30  | 
fixes inv :: "'t \<Rightarrow> bool"
  | 
| 
 | 
    31  | 
assumes empty: "inorder empty = []"
  | 
| 
 | 
    32  | 
assumes isin: "inv t \<and> sorted(inorder t) \<Longrightarrow>
  | 
| 
 | 
    33  | 
  isin t x = (x \<in> elems (inorder t))"
  | 
| 
 | 
    34  | 
assumes insert: "inv t \<and> sorted(inorder t) \<Longrightarrow>
  | 
| 
 | 
    35  | 
  inorder(insert x t) = ins_list x (inorder t)"
  | 
| 
 | 
    36  | 
assumes delete: "inv t \<and> sorted(inorder t) \<Longrightarrow>
  | 
| 
 | 
    37  | 
  inorder(delete x t) = del_list x (inorder t)"
  | 
| 
 | 
    38  | 
assumes inv_empty:  "inv empty"
  | 
| 
 | 
    39  | 
assumes inv_insert: "inv t \<and> sorted(inorder t) \<Longrightarrow> inv(insert x t)"
  | 
| 
 | 
    40  | 
assumes inv_delete: "inv t \<and> sorted(inorder t) \<Longrightarrow> inv(delete x t)"
  | 
| 
 | 
    41  | 
begin
  | 
| 
 | 
    42  | 
  | 
| 
 | 
    43  | 
sublocale Set
  | 
| 
 | 
    44  | 
  empty insert delete isin "elems o inorder" "\<lambda>t. inv t \<and> sorted(inorder t)"
  | 
| 
 | 
    45  | 
proof(standard, goal_cases)
  | 
| 
 | 
    46  | 
  case 1 show ?case by (auto simp: empty)
  | 
| 
 | 
    47  | 
next
  | 
| 
 | 
    48  | 
  case 2 thus ?case by(simp add: isin)
  | 
| 
 | 
    49  | 
next
  | 
| 
 | 
    50  | 
  case 3 thus ?case by(simp add: insert set_ins_list)
  | 
| 
 | 
    51  | 
next
  | 
| 
 | 
    52  | 
  case (4 s x) thus ?case
  | 
| 
 | 
    53  | 
    using delete[OF 4, of x] by (auto simp: distinct_if_sorted elems_del_list_eq)
  | 
| 
 | 
    54  | 
next
  | 
| 
 | 
    55  | 
  case 5 thus ?case by(simp add: empty inv_empty)
  | 
| 
 | 
    56  | 
next
  | 
| 
 | 
    57  | 
  case 6 thus ?case by(simp add: insert inv_insert sorted_ins_list)
  | 
| 
 | 
    58  | 
next
  | 
| 
 | 
    59  | 
  case 7 thus ?case by (auto simp: delete inv_delete sorted_del_list)
  | 
| 
 | 
    60  | 
qed
  | 
| 
 | 
    61  | 
  | 
| 
 | 
    62  | 
end
  | 
| 
 | 
    63  | 
  | 
| 
 | 
    64  | 
end
  |