src/HOL/Analysis/Weierstrass_Theorems.thy
author wenzelm
Thu, 24 Sep 2020 16:43:43 +0200
changeset 72286 e4a317d00489
parent 72221 98ef41a82b73
child 72379 504fe7365820
permissions -rw-r--r--
output via file instead of stdout;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
69517
dc20f278e8f3 tuned style and headers
nipkow
parents: 69508
diff changeset
     1
section \<open>Bernstein-Weierstrass and Stone-Weierstrass\<close>
61711
21d7910d6816 Theory of homotopic paths (from HOL Light), plus comments and minor refinements
paulson <lp15@cam.ac.uk>
parents: 61610
diff changeset
     2
21d7910d6816 Theory of homotopic paths (from HOL Light), plus comments and minor refinements
paulson <lp15@cam.ac.uk>
parents: 61610
diff changeset
     3
text\<open>By L C Paulson (2015)\<close>
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     4
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63040
diff changeset
     5
theory Weierstrass_Theorems
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
     6
imports Uniform_Limit Path_Connected Derivative
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     7
begin
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     8
69683
8b3458ca0762 subsection is always %important
immler
parents: 69597
diff changeset
     9
subsection \<open>Bernstein polynomials\<close>
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    10
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69737
diff changeset
    11
definition\<^marker>\<open>tag important\<close> Bernstein :: "[nat,nat,real] \<Rightarrow> real" where
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    12
  "Bernstein n k x \<equiv> of_nat (n choose k) * x ^ k * (1 - x) ^ (n - k)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    13
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
    14
lemma Bernstein_nonneg: "\<lbrakk>0 \<le> x; x \<le> 1\<rbrakk> \<Longrightarrow> 0 \<le> Bernstein n k x"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    15
  by (simp add: Bernstein_def)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    16
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
    17
lemma Bernstein_pos: "\<lbrakk>0 < x; x < 1; k \<le> n\<rbrakk> \<Longrightarrow> 0 < Bernstein n k x"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    18
  by (simp add: Bernstein_def)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    19
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
    20
lemma sum_Bernstein [simp]: "(\<Sum>k\<le>n. Bernstein n k x) = 1"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    21
  using binomial_ring [of x "1-x" n]
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    22
  by (simp add: Bernstein_def)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    23
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
    24
lemma binomial_deriv1:
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
    25
    "(\<Sum>k\<le>n. (of_nat k * of_nat (n choose k)) * a^(k-1) * b^(n-k)) = real_of_nat n * (a+b) ^ (n-1)"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    26
  apply (rule DERIV_unique [where f = "\<lambda>a. (a+b)^n" and x=a])
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    27
  apply (subst binomial_ring)
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
    28
  apply (rule derivative_eq_intros sum.cong | simp add: atMost_atLeast0)+
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    29
  done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    30
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
    31
lemma binomial_deriv2:
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
    32
    "(\<Sum>k\<le>n. (of_nat k * of_nat (k-1) * of_nat (n choose k)) * a^(k-2) * b^(n-k)) =
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    33
     of_nat n * of_nat (n-1) * (a+b::real) ^ (n-2)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    34
  apply (rule DERIV_unique [where f = "\<lambda>a. of_nat n * (a+b::real) ^ (n-1)" and x=a])
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    35
  apply (subst binomial_deriv1 [symmetric])
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
    36
  apply (rule derivative_eq_intros sum.cong | simp add: Num.numeral_2_eq_2)+
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    37
  done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    38
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
    39
lemma sum_k_Bernstein [simp]: "(\<Sum>k\<le>n. real k * Bernstein n k x) = of_nat n * x"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    40
  apply (subst binomial_deriv1 [of n x "1-x", simplified, symmetric])
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
    41
  apply (simp add: sum_distrib_right)
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68403
diff changeset
    42
  apply (auto simp: Bernstein_def algebra_simps power_eq_if intro!: sum.cong)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    43
  done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    44
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
    45
lemma sum_kk_Bernstein [simp]: "(\<Sum>k\<le>n. real k * (real k - 1) * Bernstein n k x) = real n * (real n - 1) * x\<^sup>2"
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
    46
proof -
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
    47
  have "(\<Sum>k\<le>n. real k * (real k - 1) * Bernstein n k x) =
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
    48
        (\<Sum>k\<le>n. real k * real (k - Suc 0) * real (n choose k) * x ^ (k - 2) * (1 - x) ^ (n - k) * x\<^sup>2)"
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
    49
  proof (rule sum.cong [OF refl], simp)
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
    50
    fix k
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
    51
    assume "k \<le> n"
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
    52
    then consider "k = 0" | "k = 1" | k' where "k = Suc (Suc k')"
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
    53
      by (metis One_nat_def not0_implies_Suc)
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
    54
    then show "k = 0 \<or>
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
    55
          (real k - 1) * Bernstein n k x =
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
    56
          real (k - Suc 0) *
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
    57
          (real (n choose k) * (x ^ (k - 2) * ((1 - x) ^ (n - k) * x\<^sup>2)))"
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
    58
      by cases (auto simp add: Bernstein_def power2_eq_square algebra_simps)
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
    59
  qed
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
    60
  also have "... = real_of_nat n * real_of_nat (n - Suc 0) * x\<^sup>2"
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
    61
    by (subst binomial_deriv2 [of n x "1-x", simplified, symmetric]) (simp add: sum_distrib_right)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    62
  also have "... = n * (n - 1) * x\<^sup>2"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    63
    by auto
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    64
  finally show ?thesis
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    65
    by auto
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    66
qed
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    67
69683
8b3458ca0762 subsection is always %important
immler
parents: 69597
diff changeset
    68
subsection \<open>Explicit Bernstein version of the 1D Weierstrass approximation theorem\<close>
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    69
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
    70
theorem Bernstein_Weierstrass:
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    71
  fixes f :: "real \<Rightarrow> real"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    72
  assumes contf: "continuous_on {0..1} f" and e: "0 < e"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    73
    shows "\<exists>N. \<forall>n x. N \<le> n \<and> x \<in> {0..1}
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
    74
                    \<longrightarrow> \<bar>f x - (\<Sum>k\<le>n. f(k/n) * Bernstein n k x)\<bar> < e"
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
    75
proof -
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    76
  have "bounded (f ` {0..1})"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    77
    using compact_continuous_image compact_imp_bounded contf by blast
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    78
  then obtain M where M: "\<And>x. 0 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> \<bar>f x\<bar> \<le> M"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    79
    by (force simp add: bounded_iff)
72221
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
    80
  then have "0 \<le> M" by force
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    81
  have ucontf: "uniformly_continuous_on {0..1} f"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    82
    using compact_uniformly_continuous contf by blast
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    83
  then obtain d where d: "d>0" "\<And>x x'. \<lbrakk> x \<in> {0..1}; x' \<in> {0..1}; \<bar>x' - x\<bar> < d\<rbrakk> \<Longrightarrow> \<bar>f x' - f x\<bar> < e/2"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    84
     apply (rule uniformly_continuous_onE [where e = "e/2"])
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    85
     using e by (auto simp: dist_norm)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    86
  { fix n::nat and x::real
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    87
    assume n: "Suc (nat\<lceil>4*M/(e*d\<^sup>2)\<rceil>) \<le> n" and x: "0 \<le> x" "x \<le> 1"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    88
    have "0 < n" using n by simp
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    89
    have ed0: "- (e * d\<^sup>2) < 0"
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60987
diff changeset
    90
      using e \<open>0<d\<close> by simp
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    91
    also have "... \<le> M * 4"
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60987
diff changeset
    92
      using \<open>0\<le>M\<close> by simp
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61284
diff changeset
    93
    finally have [simp]: "real_of_int (nat \<lceil>4 * M / (e * d\<^sup>2)\<rceil>) = real_of_int \<lceil>4 * M / (e * d\<^sup>2)\<rceil>"
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60987
diff changeset
    94
      using \<open>0\<le>M\<close> e \<open>0<d\<close>
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
    95
      by (simp add: field_simps)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    96
    have "4*M/(e*d\<^sup>2) + 1 \<le> real (Suc (nat\<lceil>4*M/(e*d\<^sup>2)\<rceil>))"
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
    97
      by (simp add: real_nat_ceiling_ge)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    98
    also have "... \<le> real n"
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
    99
      using n by (simp add: field_simps)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   100
    finally have nbig: "4*M/(e*d\<^sup>2) + 1 \<le> real n" .
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
   101
    have sum_bern: "(\<Sum>k\<le>n. (x - k/n)\<^sup>2 * Bernstein n k x) = x * (1 - x) / n"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   102
    proof -
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   103
      have *: "\<And>a b x::real. (a - b)\<^sup>2 * x = a * (a - 1) * x + (1 - 2 * b) * a * x + b * b * x"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   104
        by (simp add: algebra_simps power2_eq_square)
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
   105
      have "(\<Sum>k\<le>n. (k - n * x)\<^sup>2 * Bernstein n k x) = n * x * (1 - x)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
   106
        apply (simp add: * sum.distrib)
68403
223172b97d0b reorient -> split; documented split
nipkow
parents: 68224
diff changeset
   107
        apply (simp flip: sum_distrib_left add: mult.assoc)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   108
        apply (simp add: algebra_simps power2_eq_square)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   109
        done
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
   110
      then have "(\<Sum>k\<le>n. (k - n * x)\<^sup>2 * Bernstein n k x)/n^2 = x * (1 - x) / n"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   111
        by (simp add: power2_eq_square)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   112
      then show ?thesis
71633
07bec530f02e cleaned proofs
nipkow
parents: 71172
diff changeset
   113
        using n by (simp add: sum_divide_distrib field_split_simps power2_commute)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   114
    qed
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   115
    { fix k
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   116
      assume k: "k \<le> n"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   117
      then have kn: "0 \<le> k / n" "k / n \<le> 1"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70614
diff changeset
   118
        by (auto simp: field_split_simps)
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61906
diff changeset
   119
      consider (lessd) "\<bar>x - k / n\<bar> < d" | (ged) "d \<le> \<bar>x - k / n\<bar>"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   120
        by linarith
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   121
      then have "\<bar>(f x - f (k/n))\<bar> \<le> e/2 + 2 * M / d\<^sup>2 * (x - k/n)\<^sup>2"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   122
      proof cases
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   123
        case lessd
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   124
        then have "\<bar>(f x - f (k/n))\<bar> < e/2"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   125
          using d x kn by (simp add: abs_minus_commute)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   126
        also have "... \<le> (e/2 + 2 * M / d\<^sup>2 * (x - k/n)\<^sup>2)"
72221
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   127
          using \<open>M\<ge>0\<close> d by simp
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   128
        finally show ?thesis by simp
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   129
      next
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   130
        case ged
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   131
        then have dle: "d\<^sup>2 \<le> (x - k/n)\<^sup>2"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   132
          by (metis d(1) less_eq_real_def power2_abs power_mono)
72221
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   133
        have \<section>: "1 \<le> (x - real k / real n)\<^sup>2 / d\<^sup>2"
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   134
          using dle \<open>d>0\<close> by auto
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   135
        have "\<bar>(f x - f (k/n))\<bar> \<le> \<bar>f x\<bar> + \<bar>f (k/n)\<bar>"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   136
          by (rule abs_triangle_ineq4)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   137
        also have "... \<le> M+M"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   138
          by (meson M add_mono_thms_linordered_semiring(1) kn x)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   139
        also have "... \<le> 2 * M * ((x - k/n)\<^sup>2 / d\<^sup>2)"
72221
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   140
          using \<section> \<open>M\<ge>0\<close> mult_left_mono by fastforce
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   141
        also have "... \<le> e/2 + 2 * M / d\<^sup>2 * (x - k/n)\<^sup>2"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   142
          using e  by simp
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   143
        finally show ?thesis .
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   144
        qed
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   145
    } note * = this
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
   146
    have "\<bar>f x - (\<Sum>k\<le>n. f(k / n) * Bernstein n k x)\<bar> \<le> \<bar>\<Sum>k\<le>n. (f x - f(k / n)) * Bernstein n k x\<bar>"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
   147
      by (simp add: sum_subtractf sum_distrib_left [symmetric] algebra_simps)
72221
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   148
    also have "... \<le> (\<Sum>k\<le>n. \<bar>(f x - f(k / n)) * Bernstein n k x\<bar>)"
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   149
      by (rule sum_abs)
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
   150
    also have "... \<le> (\<Sum>k\<le>n. (e/2 + (2 * M / d\<^sup>2) * (x - k / n)\<^sup>2) * Bernstein n k x)"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   151
      using *
72221
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   152
      by (force simp add: abs_mult Bernstein_nonneg x mult_right_mono intro: sum_mono)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   153
    also have "... \<le> e/2 + (2 * M) / (d\<^sup>2 * n)"
72221
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   154
      unfolding sum.distrib Rings.semiring_class.distrib_right sum_distrib_left [symmetric] mult.assoc sum_bern
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   155
      using \<open>d>0\<close> x by (simp add: divide_simps \<open>M\<ge>0\<close> mult_le_one mult_left_le)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   156
    also have "... < e"
72221
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   157
      using \<open>d>0\<close> nbig e \<open>n>0\<close> 
71633
07bec530f02e cleaned proofs
nipkow
parents: 71172
diff changeset
   158
      apply (simp add: field_split_simps)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   159
      using ed0 by linarith
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
   160
    finally have "\<bar>f x - (\<Sum>k\<le>n. f (real k / real n) * Bernstein n k x)\<bar> < e" .
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   161
  }
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   162
  then show ?thesis
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   163
    by auto
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   164
qed
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   165
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   166
69683
8b3458ca0762 subsection is always %important
immler
parents: 69597
diff changeset
   167
subsection \<open>General Stone-Weierstrass theorem\<close>
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   168
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   169
text\<open>Source:
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   170
Bruno Brosowski and Frank Deutsch.
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   171
An Elementary Proof of the Stone-Weierstrass Theorem.
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   172
Proceedings of the American Mathematical Society
61711
21d7910d6816 Theory of homotopic paths (from HOL Light), plus comments and minor refinements
paulson <lp15@cam.ac.uk>
parents: 61610
diff changeset
   173
Volume 81, Number 1, January 1981.
70138
bd42cc1e10d0 formal URLs;
wenzelm
parents: 70136
diff changeset
   174
DOI: 10.2307/2043993  \<^url>\<open>https://www.jstor.org/stable/2043993\<close>\<close>
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   175
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   176
locale function_ring_on =
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   177
  fixes R :: "('a::t2_space \<Rightarrow> real) set" and S :: "'a set"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   178
  assumes compact: "compact S"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   179
  assumes continuous: "f \<in> R \<Longrightarrow> continuous_on S f"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   180
  assumes add: "f \<in> R \<Longrightarrow> g \<in> R \<Longrightarrow> (\<lambda>x. f x + g x) \<in> R"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   181
  assumes mult: "f \<in> R \<Longrightarrow> g \<in> R \<Longrightarrow> (\<lambda>x. f x * g x) \<in> R"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   182
  assumes const: "(\<lambda>_. c) \<in> R"
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   183
  assumes separable: "x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> x \<noteq> y \<Longrightarrow> \<exists>f\<in>R. f x \<noteq> f y"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   184
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   185
begin
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   186
  lemma minus: "f \<in> R \<Longrightarrow> (\<lambda>x. - f x) \<in> R"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   187
    by (frule mult [OF const [of "-1"]]) simp
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   188
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   189
  lemma diff: "f \<in> R \<Longrightarrow> g \<in> R \<Longrightarrow> (\<lambda>x. f x - g x) \<in> R"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   190
    unfolding diff_conv_add_uminus by (metis add minus)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   191
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   192
  lemma power: "f \<in> R \<Longrightarrow> (\<lambda>x. f x ^ n) \<in> R"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   193
    by (induct n) (auto simp: const mult)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   194
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   195
  lemma sum: "\<lbrakk>finite I; \<And>i. i \<in> I \<Longrightarrow> f i \<in> R\<rbrakk> \<Longrightarrow> (\<lambda>x. \<Sum>i \<in> I. f i x) \<in> R"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   196
    by (induct I rule: finite_induct; simp add: const add)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   197
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   198
  lemma prod: "\<lbrakk>finite I; \<And>i. i \<in> I \<Longrightarrow> f i \<in> R\<rbrakk> \<Longrightarrow> (\<lambda>x. \<Prod>i \<in> I. f i x) \<in> R"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   199
    by (induct I rule: finite_induct; simp add: const mult)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   200
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69737
diff changeset
   201
  definition\<^marker>\<open>tag important\<close> normf :: "('a::t2_space \<Rightarrow> real) \<Rightarrow> real"
69260
0a9688695a1b removed relics of ASCII syntax for indexed big operators
haftmann
parents: 68833
diff changeset
   202
    where "normf f \<equiv> SUP x\<in>S. \<bar>f x\<bar>"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   203
72221
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   204
  lemma normf_upper: 
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   205
    assumes "continuous_on S f" "x \<in> S" shows "\<bar>f x\<bar> \<le> normf f"
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   206
  proof -
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   207
    have "bdd_above ((\<lambda>x. \<bar>f x\<bar>) ` S)"
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   208
      by (simp add: assms(1) bounded_imp_bdd_above compact compact_continuous_image compact_imp_bounded continuous_on_rabs)
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   209
    then show ?thesis
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   210
      using assms cSUP_upper normf_def by fastforce
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   211
  qed
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   212
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   213
  lemma normf_least: "S \<noteq> {} \<Longrightarrow> (\<And>x. x \<in> S \<Longrightarrow> \<bar>f x\<bar> \<le> M) \<Longrightarrow> normf f \<le> M"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   214
    by (simp add: normf_def cSUP_least)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   215
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   216
end
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   217
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   218
lemma (in function_ring_on) one:
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   219
  assumes U: "open U" and t0: "t0 \<in> S" "t0 \<in> U" and t1: "t1 \<in> S-U"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   220
    shows "\<exists>V. open V \<and> t0 \<in> V \<and> S \<inter> V \<subseteq> U \<and>
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   221
               (\<forall>e>0. \<exists>f \<in> R. f ` S \<subseteq> {0..1} \<and> (\<forall>t \<in> S \<inter> V. f t < e) \<and> (\<forall>t \<in> S - U. f t > 1 - e))"
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   222
proof -
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   223
  have "\<exists>pt \<in> R. pt t0 = 0 \<and> pt t > 0 \<and> pt ` S \<subseteq> {0..1}" if t: "t \<in> S - U" for t
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   224
  proof -
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   225
    have "t \<noteq> t0" using t t0 by auto
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   226
    then obtain g where g: "g \<in> R" "g t \<noteq> g t0"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   227
      using separable t0  by (metis Diff_subset subset_eq t)
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62843
diff changeset
   228
    define h where [abs_def]: "h x = g x - g t0" for x
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   229
    have "h \<in> R"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   230
      unfolding h_def by (fast intro: g const diff)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   231
    then have hsq: "(\<lambda>w. (h w)\<^sup>2) \<in> R"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   232
      by (simp add: power2_eq_square mult)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   233
    have "h t \<noteq> h t0"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   234
      by (simp add: h_def g)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   235
    then have "h t \<noteq> 0"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   236
      by (simp add: h_def)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   237
    then have ht2: "0 < (h t)^2"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   238
      by simp
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   239
    also have "... \<le> normf (\<lambda>w. (h w)\<^sup>2)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   240
      using t normf_upper [where x=t] continuous [OF hsq] by force
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   241
    finally have nfp: "0 < normf (\<lambda>w. (h w)\<^sup>2)" .
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62843
diff changeset
   242
    define p where [abs_def]: "p x = (1 / normf (\<lambda>w. (h w)\<^sup>2)) * (h x)^2" for x
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   243
    have "p \<in> R"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   244
      unfolding p_def by (fast intro: hsq const mult)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   245
    moreover have "p t0 = 0"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   246
      by (simp add: p_def h_def)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   247
    moreover have "p t > 0"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   248
      using nfp ht2 by (simp add: p_def)
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   249
    moreover have "\<And>x. x \<in> S \<Longrightarrow> p x \<in> {0..1}"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   250
      using nfp normf_upper [OF continuous [OF hsq] ] by (auto simp: p_def)
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   251
    ultimately show "\<exists>pt \<in> R. pt t0 = 0 \<and> pt t > 0 \<and> pt ` S \<subseteq> {0..1}"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   252
      by auto
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   253
  qed
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   254
  then obtain pf where pf: "\<And>t. t \<in> S-U \<Longrightarrow> pf t \<in> R \<and> pf t t0 = 0 \<and> pf t t > 0"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   255
                   and pf01: "\<And>t. t \<in> S-U \<Longrightarrow> pf t ` S \<subseteq> {0..1}"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   256
    by metis
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   257
  have com_sU: "compact (S-U)"
62843
313d3b697c9a Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
paulson <lp15@cam.ac.uk>
parents: 62623
diff changeset
   258
    using compact closed_Int_compact U by (simp add: Diff_eq compact_Int_closed open_closed)
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   259
  have "\<And>t. t \<in> S-U \<Longrightarrow> \<exists>A. open A \<and> A \<inter> S = {x\<in>S. 0 < pf t x}"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   260
    apply (rule open_Collect_positive)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   261
    by (metis pf continuous)
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   262
  then obtain Uf where Uf: "\<And>t. t \<in> S-U \<Longrightarrow> open (Uf t) \<and> (Uf t) \<inter> S = {x\<in>S. 0 < pf t x}"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   263
    by metis
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   264
  then have open_Uf: "\<And>t. t \<in> S-U \<Longrightarrow> open (Uf t)"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   265
    by blast
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   266
  have tUft: "\<And>t. t \<in> S-U \<Longrightarrow> t \<in> Uf t"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   267
    using pf Uf by blast
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   268
  then have *: "S-U \<subseteq> (\<Union>x \<in> S-U. Uf x)"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   269
    by blast
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   270
  obtain subU where subU: "subU \<subseteq> S - U" "finite subU" "S - U \<subseteq> (\<Union>x \<in> subU. Uf x)"
65585
a043de9ad41e Some fixes related to compactE_image
paulson <lp15@cam.ac.uk>
parents: 65583
diff changeset
   271
    by (blast intro: that compactE_image [OF com_sU open_Uf *])
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   272
  then have [simp]: "subU \<noteq> {}"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   273
    using t1 by auto
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   274
  then have cardp: "card subU > 0" using subU
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   275
    by (simp add: card_gt_0_iff)
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62843
diff changeset
   276
  define p where [abs_def]: "p x = (1 / card subU) * (\<Sum>t \<in> subU. pf t x)" for x
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   277
  have pR: "p \<in> R"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
   278
    unfolding p_def using subU pf by (fast intro: pf const mult sum)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   279
  have pt0 [simp]: "p t0 = 0"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
   280
    using subU pf by (auto simp: p_def intro: sum.neutral)
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   281
  have pt_pos: "p t > 0" if t: "t \<in> S-U" for t
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   282
  proof -
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   283
    obtain i where i: "i \<in> subU" "t \<in> Uf i" using subU t by blast
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   284
    show ?thesis
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   285
      using subU i t
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70614
diff changeset
   286
      apply (clarsimp simp: p_def field_split_simps)
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
   287
      apply (rule sum_pos2 [OF \<open>finite subU\<close>])
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   288
      using Uf t pf01 apply auto
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   289
      apply (force elim!: subsetCE)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   290
      done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   291
  qed
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   292
  have p01: "p x \<in> {0..1}" if t: "x \<in> S" for x
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   293
  proof -
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   294
    have "0 \<le> p x"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   295
      using subU cardp t
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70614
diff changeset
   296
      apply (simp add: p_def field_split_simps sum_nonneg)
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
   297
      apply (rule sum_nonneg)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   298
      using pf01 by force
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   299
    moreover have "p x \<le> 1"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   300
      using subU cardp t
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70614
diff changeset
   301
      apply (simp add: p_def field_split_simps sum_nonneg)
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
   302
      apply (rule sum_bounded_above [where 'a=real and K=1, simplified])
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   303
      using pf01 by force
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   304
    ultimately show ?thesis
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   305
      by auto
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   306
  qed
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   307
  have "compact (p ` (S-U))"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   308
    by (meson Diff_subset com_sU compact_continuous_image continuous continuous_on_subset pR)
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   309
  then have "open (- (p ` (S-U)))"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   310
    by (simp add: compact_imp_closed open_Compl)
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   311
  moreover have "0 \<in> - (p ` (S-U))"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   312
    by (metis (no_types) ComplI image_iff not_less_iff_gr_or_eq pt_pos)
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   313
  ultimately obtain delta0 where delta0: "delta0 > 0" "ball 0 delta0 \<subseteq> - (p ` (S-U))"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   314
    by (auto simp: elim!: openE)
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   315
  then have pt_delta: "\<And>x. x \<in> S-U \<Longrightarrow> p x \<ge> delta0"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   316
    by (force simp: ball_def dist_norm dest: p01)
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62843
diff changeset
   317
  define \<delta> where "\<delta> = delta0/2"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   318
  have "delta0 \<le> 1" using delta0 p01 [of t1] t1
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   319
      by (force simp: ball_def dist_norm dest: p01)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   320
  with delta0 have \<delta>01: "0 < \<delta>" "\<delta> < 1"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   321
    by (auto simp: \<delta>_def)
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   322
  have pt_\<delta>: "\<And>x. x \<in> S-U \<Longrightarrow> p x \<ge> \<delta>"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   323
    using pt_delta delta0 by (force simp: \<delta>_def)
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   324
  have "\<exists>A. open A \<and> A \<inter> S = {x\<in>S. p x < \<delta>/2}"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   325
    by (rule open_Collect_less_Int [OF continuous [OF pR] continuous_on_const])
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   326
  then obtain V where V: "open V" "V \<inter> S = {x\<in>S. p x < \<delta>/2}"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   327
    by blast
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62843
diff changeset
   328
  define k where "k = nat\<lfloor>1/\<delta>\<rfloor> + 1"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   329
  have "k>0"  by (simp add: k_def)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   330
  have "k-1 \<le> 1/\<delta>"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   331
    using \<delta>01 by (simp add: k_def)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   332
  with \<delta>01 have "k \<le> (1+\<delta>)/\<delta>"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   333
    by (auto simp: algebra_simps add_divide_distrib)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   334
  also have "... < 2/\<delta>"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70614
diff changeset
   335
    using \<delta>01 by (auto simp: field_split_simps)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   336
  finally have k2\<delta>: "k < 2/\<delta>" .
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   337
  have "1/\<delta> < k"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   338
    using \<delta>01 unfolding k_def by linarith
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   339
  with \<delta>01 k2\<delta> have k\<delta>: "1 < k*\<delta>" "k*\<delta> < 2"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70614
diff changeset
   340
    by (auto simp: field_split_simps)
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62843
diff changeset
   341
  define q where [abs_def]: "q n t = (1 - p t ^ n) ^ (k^n)" for n t
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   342
  have qR: "q n \<in> R" for n
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   343
    by (simp add: q_def const diff power pR)
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   344
  have q01: "\<And>n t. t \<in> S \<Longrightarrow> q n t \<in> {0..1}"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   345
    using p01 by (simp add: q_def power_le_one algebra_simps)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   346
  have qt0 [simp]: "\<And>n. n>0 \<Longrightarrow> q n t0 = 1"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   347
    using t0 pf by (simp add: q_def power_0_left)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   348
  { fix t and n::nat
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   349
    assume t: "t \<in> S \<inter> V"
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60987
diff changeset
   350
    with \<open>k>0\<close> V have "k * p t < k * \<delta> / 2"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   351
       by force
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   352
    then have "1 - (k * \<delta> / 2)^n \<le> 1 - (k * p t)^n"
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60987
diff changeset
   353
      using  \<open>k>0\<close> p01 t by (simp add: power_mono)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   354
    also have "... \<le> q n t"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   355
      using Bernoulli_inequality [of "- ((p t)^n)" "k^n"]
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   356
      apply (simp add: q_def)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   357
      by (metis IntE atLeastAtMost_iff p01 power_le_one power_mult_distrib t)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   358
    finally have "1 - (k * \<delta> / 2) ^ n \<le> q n t" .
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   359
  } note limitV = this
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   360
  { fix t and n::nat
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   361
    assume t: "t \<in> S - U"
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60987
diff changeset
   362
    with \<open>k>0\<close> U have "k * \<delta> \<le> k * p t"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   363
      by (simp add: pt_\<delta>)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   364
    with k\<delta> have kpt: "1 < k * p t"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   365
      by (blast intro: less_le_trans)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   366
    have ptn_pos: "0 < p t ^ n"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   367
      using pt_pos [OF t] by simp
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   368
    have ptn_le: "p t ^ n \<le> 1"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   369
      by (meson DiffE atLeastAtMost_iff p01 power_le_one t)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   370
    have "q n t = (1/(k^n * (p t)^n)) * (1 - p t ^ n) ^ (k^n) * k^n * (p t)^n"
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60987
diff changeset
   371
      using pt_pos [OF t] \<open>k>0\<close> by (simp add: q_def)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   372
    also have "... \<le> (1/(k * (p t))^n) * (1 - p t ^ n) ^ (k^n) * (1 + k^n * (p t)^n)"
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60987
diff changeset
   373
      using pt_pos [OF t] \<open>k>0\<close>
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   374
      apply simp
72221
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   375
      apply (simp flip: times_divide_eq_right)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   376
      apply (rule mult_left_mono [of "1::real", simplified])
72221
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   377
       apply (simp_all add: power_mult_distrib ptn_le)
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   378
      done
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   379
    also have "... \<le> (1/(k * (p t))^n) * (1 - p t ^ n) ^ (k^n) * (1 + (p t)^n) ^ (k^n)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   380
      apply (rule mult_left_mono [OF Bernoulli_inequality [of "p t ^ n" "k^n"]])
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60987
diff changeset
   381
      using \<open>k>0\<close> ptn_pos ptn_le
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   382
      apply (auto simp: power_mult_distrib)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   383
      done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   384
    also have "... = (1/(k * (p t))^n) * (1 - p t ^ (2*n)) ^ (k^n)"
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60987
diff changeset
   385
      using pt_pos [OF t] \<open>k>0\<close>
68403
223172b97d0b reorient -> split; documented split
nipkow
parents: 68224
diff changeset
   386
      by (simp add: algebra_simps power_mult power2_eq_square flip: power_mult_distrib)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   387
    also have "... \<le> (1/(k * (p t))^n) * 1"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   388
      apply (rule mult_left_mono [OF power_le_one])
61762
d50b993b4fb9 Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
paulson <lp15@cam.ac.uk>
parents: 61711
diff changeset
   389
      using pt_pos \<open>k>0\<close> p01 power_le_one t apply auto
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   390
      done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   391
    also have "... \<le> (1 / (k*\<delta>))^n"
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60987
diff changeset
   392
      using \<open>k>0\<close> \<delta>01  power_mono pt_\<delta> t
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   393
      by (fastforce simp: field_simps)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   394
    finally have "q n t \<le> (1 / (real k * \<delta>)) ^ n " .
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   395
  } note limitNonU = this
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62843
diff changeset
   396
  define NN
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62843
diff changeset
   397
    where "NN e = 1 + nat \<lceil>max (ln e / ln (real k * \<delta> / 2)) (- ln e / ln (real k * \<delta>))\<rceil>" for e
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   398
  have NN: "of_nat (NN e) > ln e / ln (real k * \<delta> / 2)"  "of_nat (NN e) > - ln e / ln (real k * \<delta>)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   399
              if "0<e" for e
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   400
      unfolding NN_def  by linarith+
72221
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   401
    have NN1: "(k * \<delta> / 2)^NN e < e" if "e>0" for e
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   402
    proof -
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   403
      have "ln ((real k * \<delta> / 2) ^ NN e) < ln e"
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   404
        apply (subst ln_realpow)
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   405
        using NN k\<delta> that
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   406
        by (force simp add: field_simps)+
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   407
      then show ?thesis
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   408
        by (simp add: \<open>\<delta>>0\<close> \<open>0 < k\<close> that)
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   409
    qed
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
   410
  have NN0: "(1/(k*\<delta>)) ^ (NN e) < e" if "e>0" for e
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
   411
  proof -
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
   412
    have "0 < ln (real k) + ln \<delta>"
65585
a043de9ad41e Some fixes related to compactE_image
paulson <lp15@cam.ac.uk>
parents: 65583
diff changeset
   413
      using \<delta>01(1) \<open>0 < k\<close> k\<delta>(1) ln_gt_zero ln_mult by fastforce 
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
   414
    then have "real (NN e) * ln (1 / (real k * \<delta>)) < ln e"
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
   415
      using k\<delta>(1) NN(2) [of e] that by (simp add: ln_div divide_simps)
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
   416
    then have "exp (real (NN e) * ln (1 / (real k * \<delta>))) < e"
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
   417
      by (metis exp_less_mono exp_ln that)
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
   418
    then show ?thesis
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
   419
      by (simp add: \<delta>01(1) \<open>0 < k\<close> exp_of_nat_mult)
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
   420
  qed
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   421
  { fix t and e::real
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   422
    assume "e>0"
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   423
    have "t \<in> S \<inter> V \<Longrightarrow> 1 - q (NN e) t < e" "t \<in> S - U \<Longrightarrow> q (NN e) t < e"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   424
    proof -
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   425
      assume t: "t \<in> S \<inter> V"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   426
      show "1 - q (NN e) t < e"
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60987
diff changeset
   427
        by (metis add.commute diff_le_eq not_le limitV [OF t] less_le_trans [OF NN1 [OF \<open>e>0\<close>]])
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   428
    next
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   429
      assume t: "t \<in> S - U"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   430
      show "q (NN e) t < e"
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60987
diff changeset
   431
      using  limitNonU [OF t] less_le_trans [OF NN0 [OF \<open>e>0\<close>]] not_le by blast
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   432
    qed
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   433
  } then have "\<And>e. e > 0 \<Longrightarrow> \<exists>f\<in>R. f ` S \<subseteq> {0..1} \<and> (\<forall>t \<in> S \<inter> V. f t < e) \<and> (\<forall>t \<in> S - U. 1 - e < f t)"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   434
    using q01
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   435
    by (rule_tac x="\<lambda>x. 1 - q (NN e) x" in bexI) (auto simp: algebra_simps intro: diff const qR)
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   436
  moreover have t0V: "t0 \<in> V"  "S \<inter> V \<subseteq> U"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   437
    using pt_\<delta> t0 U V \<delta>01  by fastforce+
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   438
  ultimately show ?thesis using V t0V
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   439
    by blast
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   440
qed
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   441
69597
ff784d5a5bfb isabelle update -u control_cartouches;
wenzelm
parents: 69517
diff changeset
   442
text\<open>Non-trivial case, with \<^term>\<open>A\<close> and \<^term>\<open>B\<close> both non-empty\<close>
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   443
lemma (in function_ring_on) two_special:
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   444
  assumes A: "closed A" "A \<subseteq> S" "a \<in> A"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   445
      and B: "closed B" "B \<subseteq> S" "b \<in> B"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   446
      and disj: "A \<inter> B = {}"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   447
      and e: "0 < e" "e < 1"
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   448
    shows "\<exists>f \<in> R. f ` S \<subseteq> {0..1} \<and> (\<forall>x \<in> A. f x < e) \<and> (\<forall>x \<in> B. f x > 1 - e)"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   449
proof -
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   450
  { fix w
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   451
    assume "w \<in> A"
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   452
    then have "open ( - B)" "b \<in> S" "w \<notin> B" "w \<in> S"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   453
      using assms by auto
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   454
    then have "\<exists>V. open V \<and> w \<in> V \<and> S \<inter> V \<subseteq> -B \<and>
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   455
               (\<forall>e>0. \<exists>f \<in> R. f ` S \<subseteq> {0..1} \<and> (\<forall>x \<in> S \<inter> V. f x < e) \<and> (\<forall>x \<in> S \<inter> B. f x > 1 - e))"
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60987
diff changeset
   456
      using one [of "-B" w b] assms \<open>w \<in> A\<close> by simp
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   457
  }
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   458
  then obtain Vf where Vf:
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   459
         "\<And>w. w \<in> A \<Longrightarrow> open (Vf w) \<and> w \<in> Vf w \<and> S \<inter> Vf w \<subseteq> -B \<and>
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   460
                         (\<forall>e>0. \<exists>f \<in> R. f ` S \<subseteq> {0..1} \<and> (\<forall>x \<in> S \<inter> Vf w. f x < e) \<and> (\<forall>x \<in> S \<inter> B. f x > 1 - e))"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   461
    by metis
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   462
  then have open_Vf: "\<And>w. w \<in> A \<Longrightarrow> open (Vf w)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   463
    by blast
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   464
  have tVft: "\<And>w. w \<in> A \<Longrightarrow> w \<in> Vf w"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   465
    using Vf by blast
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
   466
  then have sum_max_0: "A \<subseteq> (\<Union>x \<in> A. Vf x)"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   467
    by blast
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   468
  have com_A: "compact A" using A
62843
313d3b697c9a Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
paulson <lp15@cam.ac.uk>
parents: 62623
diff changeset
   469
    by (metis compact compact_Int_closed inf.absorb_iff2)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   470
  obtain subA where subA: "subA \<subseteq> A" "finite subA" "A \<subseteq> (\<Union>x \<in> subA. Vf x)"
65585
a043de9ad41e Some fixes related to compactE_image
paulson <lp15@cam.ac.uk>
parents: 65583
diff changeset
   471
    by (blast intro: that compactE_image [OF com_A open_Vf sum_max_0])
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   472
  then have [simp]: "subA \<noteq> {}"
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60987
diff changeset
   473
    using \<open>a \<in> A\<close> by auto
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   474
  then have cardp: "card subA > 0" using subA
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   475
    by (simp add: card_gt_0_iff)
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   476
  have "\<And>w. w \<in> A \<Longrightarrow> \<exists>f \<in> R. f ` S \<subseteq> {0..1} \<and> (\<forall>x \<in> S \<inter> Vf w. f x < e / card subA) \<and> (\<forall>x \<in> S \<inter> B. f x > 1 - e / card subA)"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   477
    using Vf e cardp by simp
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   478
  then obtain ff where ff:
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   479
         "\<And>w. w \<in> A \<Longrightarrow> ff w \<in> R \<and> ff w ` S \<subseteq> {0..1} \<and>
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   480
                         (\<forall>x \<in> S \<inter> Vf w. ff w x < e / card subA) \<and> (\<forall>x \<in> S \<inter> B. ff w x > 1 - e / card subA)"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   481
    by metis
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62843
diff changeset
   482
  define pff where [abs_def]: "pff x = (\<Prod>w \<in> subA. ff w x)" for x
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   483
  have pffR: "pff \<in> R"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   484
    unfolding pff_def using subA ff by (auto simp: intro: prod)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   485
  moreover
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   486
  have pff01: "pff x \<in> {0..1}" if t: "x \<in> S" for x
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   487
  proof -
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   488
    have "0 \<le> pff x"
72221
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   489
      using subA cardp t ff
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   490
      by (fastforce simp: pff_def field_split_simps sum_nonneg intro: prod_nonneg)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   491
    moreover have "pff x \<le> 1"
72221
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   492
      using subA cardp t ff 
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   493
      by (fastforce simp add: pff_def field_split_simps sum_nonneg intro: prod_mono [where g = "\<lambda>x. 1", simplified])
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   494
    ultimately show ?thesis
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   495
      by auto
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   496
  qed
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   497
  moreover
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   498
  { fix v x
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   499
    assume v: "v \<in> subA" and x: "x \<in> Vf v" "x \<in> S"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   500
    from subA v have "pff x = ff v x * (\<Prod>w \<in> subA - {v}. ff w x)"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   501
      unfolding pff_def  by (metis prod.remove)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   502
    also have "... \<le> ff v x * 1"
72221
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   503
    proof -
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   504
      have "\<And>i. i \<in> subA - {v} \<Longrightarrow> 0 \<le> ff i x \<and> ff i x \<le> 1"
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   505
        by (metis Diff_subset atLeastAtMost_iff ff image_subset_iff subA(1) subsetD x(2))
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   506
      moreover have "0 \<le> ff v x"
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   507
        using ff subA(1) v x(2) by fastforce
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   508
      ultimately show ?thesis
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   509
        by (metis mult_left_mono prod_mono [where g = "\<lambda>x. 1", simplified])
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   510
    qed
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   511
    also have "... < e / card subA"
72221
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   512
      using ff subA(1) v x by auto
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   513
    also have "... \<le> e"
70817
dd675800469d dedicated fact collections for algebraic simplification rules potentially splitting goals
haftmann
parents: 70614
diff changeset
   514
      using cardp e by (simp add: field_split_simps)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   515
    finally have "pff x < e" .
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   516
  }
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   517
  then have "\<And>x. x \<in> A \<Longrightarrow> pff x < e"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   518
    using A Vf subA by (metis UN_E contra_subsetD)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   519
  moreover
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   520
  { fix x
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   521
    assume x: "x \<in> B"
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   522
    then have "x \<in> S"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   523
      using B by auto
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   524
    have "1 - e \<le> (1 - e / card subA) ^ card subA"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   525
      using Bernoulli_inequality [of "-e / card subA" "card subA"] e cardp
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   526
      by (auto simp: field_simps)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   527
    also have "... = (\<Prod>w \<in> subA. 1 - e / card subA)"
71172
nipkow
parents: 70817
diff changeset
   528
      by (simp add: subA(2))
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   529
    also have "... < pff x"
72221
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   530
    proof -
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   531
      have "\<And>i. i \<in> subA \<Longrightarrow> e / real (card subA) \<le> 1 \<and> 1 - e / real (card subA) < ff i x"
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   532
        using e \<open>B \<subseteq> S\<close> ff subA(1) x by (force simp: field_split_simps)
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   533
      then show ?thesis
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   534
      apply (simp add: pff_def)
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   535
      apply (rule prod_mono_strict [where f = "\<lambda>x. 1 - e / card subA", simplified])
72221
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   536
          apply (simp_all add: subA(2))
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   537
        done
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   538
    qed
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   539
    finally have "1 - e < pff x" .
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   540
  }
72221
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   541
  ultimately show ?thesis by blast
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   542
qed
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   543
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   544
lemma (in function_ring_on) two:
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   545
  assumes A: "closed A" "A \<subseteq> S"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   546
      and B: "closed B" "B \<subseteq> S"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   547
      and disj: "A \<inter> B = {}"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   548
      and e: "0 < e" "e < 1"
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   549
    shows "\<exists>f \<in> R. f ` S \<subseteq> {0..1} \<and> (\<forall>x \<in> A. f x < e) \<and> (\<forall>x \<in> B. f x > 1 - e)"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   550
proof (cases "A \<noteq> {} \<and> B \<noteq> {}")
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   551
  case True then show ?thesis
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   552
    using assms
72221
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
   553
    by (force simp flip: ex_in_conv intro!: two_special)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   554
next
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   555
  case False with e show ?thesis
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   556
    apply simp
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   557
    apply (erule disjE)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   558
    apply (rule_tac [2] x="\<lambda>x. 0" in bexI)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   559
    apply (rule_tac x="\<lambda>x. 1" in bexI)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   560
    apply (auto simp: const)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   561
    done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   562
qed
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   563
69597
ff784d5a5bfb isabelle update -u control_cartouches;
wenzelm
parents: 69517
diff changeset
   564
text\<open>The special case where \<^term>\<open>f\<close> is non-negative and \<^term>\<open>e<1/3\<close>\<close>
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   565
lemma (in function_ring_on) Stone_Weierstrass_special:
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   566
  assumes f: "continuous_on S f" and fpos: "\<And>x. x \<in> S \<Longrightarrow> f x \<ge> 0"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   567
      and e: "0 < e" "e < 1/3"
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   568
  shows "\<exists>g \<in> R. \<forall>x\<in>S. \<bar>f x - g x\<bar> < 2*e"
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   569
proof -
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62843
diff changeset
   570
  define n where "n = 1 + nat \<lceil>normf f / e\<rceil>"
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   571
  define A where "A j = {x \<in> S. f x \<le> (j - 1/3)*e}" for j :: nat
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   572
  define B where "B j = {x \<in> S. f x \<ge> (j + 1/3)*e}" for j :: nat
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   573
  have ngt: "(n-1) * e \<ge> normf f" "n\<ge>1"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   574
    using e
71633
07bec530f02e cleaned proofs
nipkow
parents: 71172
diff changeset
   575
    apply (simp_all add: n_def field_simps)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   576
    by (metis real_nat_ceiling_ge mult.commute not_less pos_less_divide_eq)
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   577
  then have ge_fx: "(n-1) * e \<ge> f x" if "x \<in> S" for x
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   578
    using f normf_upper that by fastforce
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   579
  { fix j
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   580
    have A: "closed (A j)" "A j \<subseteq> S"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   581
      apply (simp_all add: A_def Collect_restrict)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   582
      apply (rule continuous_on_closed_Collect_le [OF f continuous_on_const])
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   583
      apply (simp add: compact compact_imp_closed)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   584
      done
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   585
    have B: "closed (B j)" "B j \<subseteq> S"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   586
      apply (simp_all add: B_def Collect_restrict)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   587
      apply (rule continuous_on_closed_Collect_le [OF continuous_on_const f])
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   588
      apply (simp add: compact compact_imp_closed)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   589
      done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   590
    have disj: "(A j) \<inter> (B j) = {}"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   591
      using e by (auto simp: A_def B_def field_simps)
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   592
    have "\<exists>f \<in> R. f ` S \<subseteq> {0..1} \<and> (\<forall>x \<in> A j. f x < e/n) \<and> (\<forall>x \<in> B j. f x > 1 - e/n)"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   593
      apply (rule two)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   594
      using e A B disj ngt
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   595
      apply simp_all
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   596
      done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   597
  }
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   598
  then obtain xf where xfR: "\<And>j. xf j \<in> R" and xf01: "\<And>j. xf j ` S \<subseteq> {0..1}"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   599
                   and xfA: "\<And>x j. x \<in> A j \<Longrightarrow> xf j x < e/n"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   600
                   and xfB: "\<And>x j. x \<in> B j \<Longrightarrow> xf j x > 1 - e/n"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   601
    by metis
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62843
diff changeset
   602
  define g where [abs_def]: "g x = e * (\<Sum>i\<le>n. xf i x)" for x
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   603
  have gR: "g \<in> R"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
   604
    unfolding g_def by (fast intro: mult const sum xfR)
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   605
  have gge0: "\<And>x. x \<in> S \<Longrightarrow> g x \<ge> 0"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
   606
    using e xf01 by (simp add: g_def zero_le_mult_iff image_subset_iff sum_nonneg)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   607
  have A0: "A 0 = {}"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   608
    using fpos e by (fastforce simp: A_def)
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   609
  have An: "A n = S"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61284
diff changeset
   610
    using e ngt f normf_upper by (fastforce simp: A_def field_simps of_nat_diff)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   611
  have Asub: "A j \<subseteq> A i" if "i\<ge>j" for i j
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   612
    using e that apply (clarsimp simp: A_def)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   613
    apply (erule order_trans, simp)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   614
    done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   615
  { fix t
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   616
    assume t: "t \<in> S"
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62843
diff changeset
   617
    define j where "j = (LEAST j. t \<in> A j)"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   618
    have jn: "j \<le> n"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   619
      using t An by (simp add: Least_le j_def)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   620
    have Aj: "t \<in> A j"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   621
      using t An by (fastforce simp add: j_def intro: LeastI)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   622
    then have Ai: "t \<in> A i" if "i\<ge>j" for i
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   623
      using Asub [OF that] by blast
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   624
    then have fj1: "f t \<le> (j - 1/3)*e"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   625
      by (simp add: A_def)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   626
    then have Anj: "t \<notin> A i" if "i<j" for i
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60987
diff changeset
   627
      using  Aj  \<open>i<j\<close>
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   628
      apply (simp add: j_def)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   629
      using not_less_Least by blast
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   630
    have j1: "1 \<le> j"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   631
      using A0 Aj j_def not_less_eq_eq by (fastforce simp add: j_def)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   632
    then have Anj: "t \<notin> A (j-1)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   633
      using Least_le by (fastforce simp add: j_def)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   634
    then have fj2: "(j - 4/3)*e < f t"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61284
diff changeset
   635
      using j1 t  by (simp add: A_def of_nat_diff)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   636
    have ***: "xf i t \<le> e/n" if "i\<ge>j" for i
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   637
      using xfA [OF Ai] that by (simp add: less_eq_real_def)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   638
    { fix i
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   639
      assume "i+2 \<le> j"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   640
      then obtain d where "i+2+d = j"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   641
        using le_Suc_ex that by blast
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   642
      then have "t \<in> B i"
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60987
diff changeset
   643
        using Anj e ge_fx [OF t] \<open>1 \<le> n\<close> fpos [OF t] t
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   644
        apply (simp add: A_def B_def)
71633
07bec530f02e cleaned proofs
nipkow
parents: 71172
diff changeset
   645
        apply (clarsimp simp add: field_simps of_nat_diff not_le)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   646
        apply (rule order_trans [of _ "e * 2 + (e * (real d * 3) + e * (real i * 3))"])
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   647
        apply auto
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   648
        done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   649
      then have "xf i t > 1 - e/n"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   650
        by (rule xfB)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   651
    } note **** = this
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   652
    have xf_le1: "\<And>i. xf i t \<le> 1"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   653
      using xf01 t by force
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   654
    have "g t = e * (\<Sum>i<j. xf i t) + e * (\<Sum>i=j..n. xf i t)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   655
      using j1 jn e
68403
223172b97d0b reorient -> split; documented split
nipkow
parents: 68224
diff changeset
   656
      apply (simp add: g_def flip: distrib_left)
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
   657
      apply (subst sum.union_disjoint [symmetric])
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   658
      apply (auto simp: ivl_disj_un)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   659
      done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   660
    also have "... \<le> e*j + e * ((Suc n - j)*e/n)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   661
      apply (rule add_mono)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61284
diff changeset
   662
      apply (simp_all only: mult_le_cancel_left_pos e)
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
   663
      apply (rule sum_bounded_above [OF xf_le1, where A = "lessThan j", simplified])
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
   664
      using sum_bounded_above [of "{j..n}" "\<lambda>i. xf i t", OF ***]
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   665
      apply simp
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   666
      done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   667
    also have "... \<le> j*e + e*(n - j + 1)*e/n "
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61284
diff changeset
   668
      using \<open>1 \<le> n\<close> e  by (simp add: field_simps del: of_nat_Suc)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   669
    also have "... \<le> j*e + e*e"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61284
diff changeset
   670
      using \<open>1 \<le> n\<close> e j1 by (simp add: field_simps del: of_nat_Suc)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   671
    also have "... < (j + 1/3)*e"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   672
      using e by (auto simp: field_simps)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   673
    finally have gj1: "g t < (j + 1 / 3) * e" .
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   674
    have gj2: "(j - 4/3)*e < g t"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   675
    proof (cases "2 \<le> j")
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   676
      case False
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   677
      then have "j=1" using j1 by simp
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   678
      with t gge0 e show ?thesis by force
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   679
    next
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   680
      case True
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   681
      then have "(j - 4/3)*e < (j-1)*e - e^2"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61284
diff changeset
   682
        using e by (auto simp: of_nat_diff algebra_simps power2_eq_square)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   683
      also have "... < (j-1)*e - ((j - 1)/n) * e^2"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   684
        using e True jn by (simp add: power2_eq_square field_simps)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   685
      also have "... = e * (j-1) * (1 - e/n)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   686
        by (simp add: power2_eq_square field_simps)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   687
      also have "... \<le> e * (\<Sum>i\<le>j-2. xf i t)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   688
        using e
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   689
        apply simp
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
   690
        apply (rule order_trans [OF _ sum_bounded_below [OF less_imp_le [OF ****]]])
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   691
        using True
71633
07bec530f02e cleaned proofs
nipkow
parents: 71172
diff changeset
   692
        apply (simp_all add: of_nat_diff)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   693
        done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   694
      also have "... \<le> g t"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   695
        using jn e
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   696
        using e xf01 t
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
   697
        apply (simp add: g_def zero_le_mult_iff image_subset_iff sum_nonneg)
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
   698
        apply (rule Groups_Big.sum_mono2, auto)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   699
        done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   700
      finally show ?thesis .
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   701
    qed
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   702
    have "\<bar>f t - g t\<bar> < 2 * e"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   703
      using fj1 fj2 gj1 gj2 by (simp add: abs_less_iff field_simps)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   704
  }
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   705
  then show ?thesis
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   706
    by (rule_tac x=g in bexI) (auto intro: gR)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   707
qed
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   708
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   709
text\<open>The ``unpretentious'' formulation\<close>
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   710
proposition (in function_ring_on) Stone_Weierstrass_basic:
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   711
  assumes f: "continuous_on S f" and e: "e > 0"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   712
  shows "\<exists>g \<in> R. \<forall>x\<in>S. \<bar>f x - g x\<bar> < e"
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   713
proof -
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   714
  have "\<exists>g \<in> R. \<forall>x\<in>S. \<bar>(f x + normf f) - g x\<bar> < 2 * min (e/2) (1/4)"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   715
    apply (rule Stone_Weierstrass_special)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   716
    apply (rule Limits.continuous_on_add [OF f Topological_Spaces.continuous_on_const])
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   717
    using normf_upper [OF f] apply force
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   718
    apply (simp add: e, linarith)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   719
    done
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   720
  then obtain g where "g \<in> R" "\<forall>x\<in>S. \<bar>g x - (f x + normf f)\<bar> < e"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   721
    by force
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   722
  then show ?thesis
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   723
    apply (rule_tac x="\<lambda>x. g x - normf f" in bexI)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   724
    apply (auto simp: algebra_simps intro: diff const)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   725
    done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   726
qed
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   727
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   728
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   729
theorem (in function_ring_on) Stone_Weierstrass:
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   730
  assumes f: "continuous_on S f"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   731
  shows "\<exists>F\<in>UNIV \<rightarrow> R. LIM n sequentially. F n :> uniformly_on S f"
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   732
proof -
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   733
  { fix e::real
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   734
    assume e: "0 < e"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   735
    then obtain N::nat where N: "0 < N" "0 < inverse N" "inverse N < e"
62623
dbc62f86a1a9 rationalisation of theorem names esp about "real Archimedian" etc.
paulson <lp15@cam.ac.uk>
parents: 61945
diff changeset
   736
      by (auto simp: real_arch_inverse [of e])
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   737
    { fix n :: nat and x :: 'a and g :: "'a \<Rightarrow> real"
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   738
      assume n: "N \<le> n"  "\<forall>x\<in>S. \<bar>f x - g x\<bar> < 1 / (1 + real n)"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   739
      assume x: "x \<in> S"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   740
      have "\<not> real (Suc n) < inverse e"
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60987
diff changeset
   741
        using \<open>N \<le> n\<close> N using less_imp_inverse_less by force
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   742
      then have "1 / (1 + real n) \<le> e"
71633
07bec530f02e cleaned proofs
nipkow
parents: 71172
diff changeset
   743
        using e by (simp add: field_simps)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   744
      then have "\<bar>f x - g x\<bar> < e"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   745
        using n(2) x by auto
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   746
    } note * = this
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   747
    have "\<forall>\<^sub>F n in sequentially. \<forall>x\<in>S. \<bar>f x - (SOME g. g \<in> R \<and> (\<forall>x\<in>S. \<bar>f x - g x\<bar> < 1 / (1 + real n))) x\<bar> < e"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   748
      apply (rule eventually_sequentiallyI [of N])
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   749
      apply (auto intro: someI2_bex [OF Stone_Weierstrass_basic [OF f]] *)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   750
      done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   751
  } then
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   752
  show ?thesis
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   753
    apply (rule_tac x="\<lambda>n::nat. SOME g. g \<in> R \<and> (\<forall>x\<in>S. \<bar>f x - g x\<bar> < 1 / (1 + n))" in bexI)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   754
    prefer 2  apply (force intro: someI2_bex [OF Stone_Weierstrass_basic [OF f]])
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   755
    unfolding uniform_limit_iff
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   756
    apply (auto simp: dist_norm abs_minus_commute)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   757
    done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   758
qed
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   759
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60987
diff changeset
   760
text\<open>A HOL Light formulation\<close>
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   761
corollary Stone_Weierstrass_HOL:
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   762
  fixes R :: "('a::t2_space \<Rightarrow> real) set" and S :: "'a set"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   763
  assumes "compact S"  "\<And>c. P(\<lambda>x. c::real)"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   764
          "\<And>f. P f \<Longrightarrow> continuous_on S f"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   765
          "\<And>f g. P(f) \<and> P(g) \<Longrightarrow> P(\<lambda>x. f x + g x)"  "\<And>f g. P(f) \<and> P(g) \<Longrightarrow> P(\<lambda>x. f x * g x)"
69508
2a4c8a2a3f8e tuned headers; ~ -> \<not>
nipkow
parents: 69260
diff changeset
   766
          "\<And>x y. x \<in> S \<and> y \<in> S \<and> x \<noteq> y \<Longrightarrow> \<exists>f. P(f) \<and> f x \<noteq> f y"
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   767
          "continuous_on S f"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   768
       "0 < e"
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   769
    shows "\<exists>g. P(g) \<and> (\<forall>x \<in> S. \<bar>f x - g x\<bar> < e)"
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   770
proof -
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   771
  interpret PR: function_ring_on "Collect P"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   772
    apply unfold_locales
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   773
    using assms
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   774
    by auto
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   775
  show ?thesis
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
   776
    using PR.Stone_Weierstrass_basic [OF \<open>continuous_on S f\<close> \<open>0 < e\<close>]
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   777
    by blast
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   778
qed
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   779
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   780
69683
8b3458ca0762 subsection is always %important
immler
parents: 69597
diff changeset
   781
subsection \<open>Polynomial functions\<close>
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   782
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   783
inductive real_polynomial_function :: "('a::real_normed_vector \<Rightarrow> real) \<Rightarrow> bool" where
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   784
    linear: "bounded_linear f \<Longrightarrow> real_polynomial_function f"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   785
  | const: "real_polynomial_function (\<lambda>x. c)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   786
  | add:   "\<lbrakk>real_polynomial_function f; real_polynomial_function g\<rbrakk> \<Longrightarrow> real_polynomial_function (\<lambda>x. f x + g x)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   787
  | mult:  "\<lbrakk>real_polynomial_function f; real_polynomial_function g\<rbrakk> \<Longrightarrow> real_polynomial_function (\<lambda>x. f x * g x)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   788
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   789
declare real_polynomial_function.intros [intro]
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   790
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69737
diff changeset
   791
definition\<^marker>\<open>tag important\<close> polynomial_function :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> bool"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   792
  where
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   793
   "polynomial_function p \<equiv> (\<forall>f. bounded_linear f \<longrightarrow> real_polynomial_function (f o p))"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   794
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   795
lemma real_polynomial_function_eq: "real_polynomial_function p = polynomial_function p"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   796
unfolding polynomial_function_def
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   797
proof
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   798
  assume "real_polynomial_function p"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   799
  then show " \<forall>f. bounded_linear f \<longrightarrow> real_polynomial_function (f \<circ> p)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   800
  proof (induction p rule: real_polynomial_function.induct)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   801
    case (linear h) then show ?case
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   802
      by (auto simp: bounded_linear_compose real_polynomial_function.linear)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   803
  next
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   804
    case (const h) then show ?case
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   805
      by (simp add: real_polynomial_function.const)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   806
  next
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   807
    case (add h) then show ?case
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   808
      by (force simp add: bounded_linear_def linear_add real_polynomial_function.add)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   809
  next
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   810
    case (mult h) then show ?case
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   811
      by (force simp add: real_bounded_linear const real_polynomial_function.mult)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   812
  qed
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   813
next
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   814
  assume [rule_format, OF bounded_linear_ident]: "\<forall>f. bounded_linear f \<longrightarrow> real_polynomial_function (f \<circ> p)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   815
  then show "real_polynomial_function p"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   816
    by (simp add: o_def)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   817
qed
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   818
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   819
lemma polynomial_function_const [iff]: "polynomial_function (\<lambda>x. c)"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   820
  by (simp add: polynomial_function_def o_def const)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   821
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   822
lemma polynomial_function_bounded_linear:
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   823
  "bounded_linear f \<Longrightarrow> polynomial_function f"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   824
  by (simp add: polynomial_function_def o_def bounded_linear_compose real_polynomial_function.linear)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   825
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   826
lemma polynomial_function_id [iff]: "polynomial_function(\<lambda>x. x)"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   827
  by (simp add: polynomial_function_bounded_linear)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   828
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   829
lemma polynomial_function_add [intro]:
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   830
    "\<lbrakk>polynomial_function f; polynomial_function g\<rbrakk> \<Longrightarrow> polynomial_function (\<lambda>x. f x + g x)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   831
  by (auto simp: polynomial_function_def bounded_linear_def linear_add real_polynomial_function.add o_def)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   832
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   833
lemma polynomial_function_mult [intro]:
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   834
  assumes f: "polynomial_function f" and g: "polynomial_function g"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   835
    shows "polynomial_function (\<lambda>x. f x *\<^sub>R g x)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   836
  using g
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   837
  apply (auto simp: polynomial_function_def bounded_linear_def Real_Vector_Spaces.linear.scaleR  const real_polynomial_function.mult o_def)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   838
  apply (rule mult)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   839
  using f
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   840
  apply (auto simp: real_polynomial_function_eq)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   841
  done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   842
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   843
lemma polynomial_function_cmul [intro]:
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   844
  assumes f: "polynomial_function f"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   845
    shows "polynomial_function (\<lambda>x. c *\<^sub>R f x)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   846
  by (rule polynomial_function_mult [OF polynomial_function_const f])
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   847
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   848
lemma polynomial_function_minus [intro]:
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   849
  assumes f: "polynomial_function f"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   850
    shows "polynomial_function (\<lambda>x. - f x)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   851
  using polynomial_function_cmul [OF f, of "-1"] by simp
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   852
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   853
lemma polynomial_function_diff [intro]:
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   854
    "\<lbrakk>polynomial_function f; polynomial_function g\<rbrakk> \<Longrightarrow> polynomial_function (\<lambda>x. f x - g x)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   855
  unfolding add_uminus_conv_diff [symmetric]
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   856
  by (metis polynomial_function_add polynomial_function_minus)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   857
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   858
lemma polynomial_function_sum [intro]:
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
   859
    "\<lbrakk>finite I; \<And>i. i \<in> I \<Longrightarrow> polynomial_function (\<lambda>x. f x i)\<rbrakk> \<Longrightarrow> polynomial_function (\<lambda>x. sum (f x) I)"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   860
by (induct I rule: finite_induct) auto
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   861
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   862
lemma real_polynomial_function_minus [intro]:
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   863
    "real_polynomial_function f \<Longrightarrow> real_polynomial_function (\<lambda>x. - f x)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   864
  using polynomial_function_minus [of f]
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   865
  by (simp add: real_polynomial_function_eq)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   866
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   867
lemma real_polynomial_function_diff [intro]:
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   868
    "\<lbrakk>real_polynomial_function f; real_polynomial_function g\<rbrakk> \<Longrightarrow> real_polynomial_function (\<lambda>x. f x - g x)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   869
  using polynomial_function_diff [of f]
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   870
  by (simp add: real_polynomial_function_eq)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   871
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   872
lemma real_polynomial_function_sum [intro]:
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
   873
    "\<lbrakk>finite I; \<And>i. i \<in> I \<Longrightarrow> real_polynomial_function (\<lambda>x. f x i)\<rbrakk> \<Longrightarrow> real_polynomial_function (\<lambda>x. sum (f x) I)"
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
   874
  using polynomial_function_sum [of I f]
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   875
  by (simp add: real_polynomial_function_eq)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   876
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   877
lemma real_polynomial_function_power [intro]:
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   878
    "real_polynomial_function f \<Longrightarrow> real_polynomial_function (\<lambda>x. f x ^ n)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   879
  by (induct n) (simp_all add: const mult)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   880
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   881
lemma real_polynomial_function_compose [intro]:
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   882
  assumes f: "polynomial_function f" and g: "real_polynomial_function g"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   883
    shows "real_polynomial_function (g o f)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   884
  using g
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   885
  apply (induction g rule: real_polynomial_function.induct)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   886
  using f
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   887
  apply (simp_all add: polynomial_function_def o_def const add mult)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   888
  done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   889
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   890
lemma polynomial_function_compose [intro]:
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   891
  assumes f: "polynomial_function f" and g: "polynomial_function g"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   892
    shows "polynomial_function (g o f)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   893
  using g real_polynomial_function_compose [OF f]
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   894
  by (auto simp: polynomial_function_def o_def)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   895
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   896
lemma sum_max_0:
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   897
  fixes x::real (*in fact "'a::comm_ring_1"*)
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
   898
  shows "(\<Sum>i\<le>max m n. x^i * (if i \<le> m then a i else 0)) = (\<Sum>i\<le>m. x^i * a i)"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   899
proof -
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
   900
  have "(\<Sum>i\<le>max m n. x^i * (if i \<le> m then a i else 0)) = (\<Sum>i\<le>max m n. (if i \<le> m then x^i * a i else 0))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
   901
    by (auto simp: algebra_simps intro: sum.cong)
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
   902
  also have "... = (\<Sum>i\<le>m. (if i \<le> m then x^i * a i else 0))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
   903
    by (rule sum.mono_neutral_right) auto
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
   904
  also have "... = (\<Sum>i\<le>m. x^i * a i)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
   905
    by (auto simp: algebra_simps intro: sum.cong)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   906
  finally show ?thesis .
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   907
qed
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   908
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   909
lemma real_polynomial_function_imp_sum:
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   910
  assumes "real_polynomial_function f"
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
   911
    shows "\<exists>a n::nat. f = (\<lambda>x. \<Sum>i\<le>n. a i * x ^ i)"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   912
using assms
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   913
proof (induct f)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   914
  case (linear f)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   915
  then show ?case
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   916
    apply (clarsimp simp add: real_bounded_linear)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   917
    apply (rule_tac x="\<lambda>i. if i=0 then 0 else c" in exI)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   918
    apply (rule_tac x=1 in exI)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   919
    apply (simp add: mult_ac)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   920
    done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   921
next
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   922
  case (const c)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   923
  show ?case
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   924
    apply (rule_tac x="\<lambda>i. c" in exI)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   925
    apply (rule_tac x=0 in exI)
71633
07bec530f02e cleaned proofs
nipkow
parents: 71172
diff changeset
   926
    apply (auto simp: mult_ac)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   927
    done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   928
  case (add f1 f2)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   929
  then obtain a1 n1 a2 n2 where
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
   930
    "f1 = (\<lambda>x. \<Sum>i\<le>n1. a1 i * x ^ i)" "f2 = (\<lambda>x. \<Sum>i\<le>n2. a2 i * x ^ i)"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   931
    by auto
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   932
  then show ?case
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   933
    apply (rule_tac x="\<lambda>i. (if i \<le> n1 then a1 i else 0) + (if i \<le> n2 then a2 i else 0)" in exI)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   934
    apply (rule_tac x="max n1 n2" in exI)
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
   935
    using sum_max_0 [where m=n1 and n=n2] sum_max_0 [where m=n2 and n=n1]
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
   936
    apply (simp add: sum.distrib algebra_simps max.commute)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   937
    done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   938
  case (mult f1 f2)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   939
  then obtain a1 n1 a2 n2 where
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
   940
    "f1 = (\<lambda>x. \<Sum>i\<le>n1. a1 i * x ^ i)" "f2 = (\<lambda>x. \<Sum>i\<le>n2. a2 i * x ^ i)"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   941
    by auto
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   942
  then obtain b1 b2 where
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
   943
    "f1 = (\<lambda>x. \<Sum>i\<le>n1. b1 i * x ^ i)" "f2 = (\<lambda>x. \<Sum>i\<le>n2. b2 i * x ^ i)"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   944
    "b1 = (\<lambda>i. if i\<le>n1 then a1 i else 0)" "b2 = (\<lambda>i. if i\<le>n2 then a2 i else 0)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   945
    by auto
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   946
  then show ?case
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   947
    apply (rule_tac x="\<lambda>i. \<Sum>k\<le>i. b1 k * b2 (i - k)" in exI)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   948
    apply (rule_tac x="n1+n2" in exI)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   949
    using polynomial_product [of n1 b1 n2 b2]
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   950
    apply (simp add: Set_Interval.atLeast0AtMost)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   951
    done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   952
qed
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   953
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   954
lemma real_polynomial_function_iff_sum:
68077
ee8c13ae81e9 Some tidying up (mostly regarding summations from 0)
paulson <lp15@cam.ac.uk>
parents: 68072
diff changeset
   955
     "real_polynomial_function f \<longleftrightarrow> (\<exists>a n::nat. f = (\<lambda>x. \<Sum>i\<le>n. a i * x ^ i))"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   956
  apply (rule iffI)
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
   957
  apply (erule real_polynomial_function_imp_sum)
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
   958
  apply (auto simp: linear mult const real_polynomial_function_power real_polynomial_function_sum)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   959
  done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   960
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   961
lemma polynomial_function_iff_Basis_inner:
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   962
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::euclidean_space"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   963
  shows "polynomial_function f \<longleftrightarrow> (\<forall>b\<in>Basis. real_polynomial_function (\<lambda>x. inner (f x) b))"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   964
        (is "?lhs = ?rhs")
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   965
unfolding polynomial_function_def
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   966
proof (intro iffI allI impI)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   967
  assume "\<forall>h. bounded_linear h \<longrightarrow> real_polynomial_function (h \<circ> f)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   968
  then show ?rhs
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   969
    by (force simp add: bounded_linear_inner_left o_def)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   970
next
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   971
  fix h :: "'b \<Rightarrow> real"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   972
  assume rp: "\<forall>b\<in>Basis. real_polynomial_function (\<lambda>x. f x \<bullet> b)" and h: "bounded_linear h"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   973
  have "real_polynomial_function (h \<circ> (\<lambda>x. \<Sum>b\<in>Basis. (f x \<bullet> b) *\<^sub>R b))"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   974
    apply (rule real_polynomial_function_compose [OF _  linear [OF h]])
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   975
    using rp
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   976
    apply (auto simp: real_polynomial_function_eq polynomial_function_mult)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   977
    done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   978
  then show "real_polynomial_function (h \<circ> f)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
   979
    by (simp add: euclidean_representation_sum_fun)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   980
qed
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   981
69683
8b3458ca0762 subsection is always %important
immler
parents: 69597
diff changeset
   982
subsection \<open>Stone-Weierstrass theorem for polynomial functions\<close>
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   983
70381
b151d1f00204 More results about measure and integration theory
paulson <lp15@cam.ac.uk>
parents: 70138
diff changeset
   984
text\<open>First, we need to show that they are continuous, differentiable and separable.\<close>
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   985
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   986
lemma continuous_real_polymonial_function:
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   987
  assumes "real_polynomial_function f"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   988
    shows "continuous (at x) f"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   989
using assms
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   990
by (induct f) (auto simp: linear_continuous_at)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   991
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   992
lemma continuous_polymonial_function:
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   993
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::euclidean_space"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   994
  assumes "polynomial_function f"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   995
    shows "continuous (at x) f"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   996
  apply (rule euclidean_isCont)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   997
  using assms apply (simp add: polynomial_function_iff_Basis_inner)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   998
  apply (force dest: continuous_real_polymonial_function intro: isCont_scaleR)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   999
  done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1000
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
  1001
lemma continuous_on_polymonial_function:
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1002
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::euclidean_space"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1003
  assumes "polynomial_function f"
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1004
    shows "continuous_on S f"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1005
  using continuous_polymonial_function [OF assms] continuous_at_imp_continuous_on
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1006
  by blast
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1007
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
  1008
lemma has_real_derivative_polynomial_function:
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1009
  assumes "real_polynomial_function p"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1010
    shows "\<exists>p'. real_polynomial_function p' \<and>
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1011
                 (\<forall>x. (p has_real_derivative (p' x)) (at x))"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1012
using assms
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1013
proof (induct p)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1014
  case (linear p)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1015
  then show ?case
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1016
    by (force simp: real_bounded_linear const intro!: derivative_eq_intros)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1017
next
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1018
  case (const c)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1019
  show ?case
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1020
    by (rule_tac x="\<lambda>x. 0" in exI) auto
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1021
  case (add f1 f2)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1022
  then obtain p1 p2 where
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1023
    "real_polynomial_function p1" "\<And>x. (f1 has_real_derivative p1 x) (at x)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1024
    "real_polynomial_function p2" "\<And>x. (f2 has_real_derivative p2 x) (at x)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1025
    by auto
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1026
  then show ?case
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1027
    apply (rule_tac x="\<lambda>x. p1 x + p2 x" in exI)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1028
    apply (auto intro!: derivative_eq_intros)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1029
    done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1030
  case (mult f1 f2)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1031
  then obtain p1 p2 where
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1032
    "real_polynomial_function p1" "\<And>x. (f1 has_real_derivative p1 x) (at x)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1033
    "real_polynomial_function p2" "\<And>x. (f2 has_real_derivative p2 x) (at x)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1034
    by auto
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1035
  then show ?case
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1036
    using mult
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1037
    apply (rule_tac x="\<lambda>x. f1 x * p2 x + f2 x * p1 x" in exI)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1038
    apply (auto intro!: derivative_eq_intros)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1039
    done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1040
qed
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1041
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
  1042
lemma has_vector_derivative_polynomial_function:
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1043
  fixes p :: "real \<Rightarrow> 'a::euclidean_space"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1044
  assumes "polynomial_function p"
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1045
  obtains p' where "polynomial_function p'" "\<And>x. (p has_vector_derivative (p' x)) (at x)"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1046
proof -
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1047
  { fix b :: 'a
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1048
    assume "b \<in> Basis"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1049
    then
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1050
    obtain p' where p': "real_polynomial_function p'" and pd: "\<And>x. ((\<lambda>x. p x \<bullet> b) has_real_derivative p' x) (at x)"
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60987
diff changeset
  1051
      using assms [unfolded polynomial_function_iff_Basis_inner, rule_format]  \<open>b \<in> Basis\<close>
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1052
      has_real_derivative_polynomial_function
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1053
      by blast
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1054
    have "\<exists>q. polynomial_function q \<and> (\<forall>x. ((\<lambda>u. (p u \<bullet> b) *\<^sub>R b) has_vector_derivative q x) (at x))"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1055
      apply (rule_tac x="\<lambda>x. p' x *\<^sub>R b" in exI)
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60987
diff changeset
  1056
      using \<open>b \<in> Basis\<close> p'
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1057
      apply (simp add: polynomial_function_iff_Basis_inner inner_Basis)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1058
      apply (auto intro: derivative_eq_intros pd)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1059
      done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1060
  }
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1061
  then obtain qf where qf:
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1062
      "\<And>b. b \<in> Basis \<Longrightarrow> polynomial_function (qf b)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1063
      "\<And>b x. b \<in> Basis \<Longrightarrow> ((\<lambda>u. (p u \<bullet> b) *\<^sub>R b) has_vector_derivative qf b x) (at x)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1064
    by metis
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1065
  show ?thesis
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1066
    apply (rule_tac p'="\<lambda>x. \<Sum>b\<in>Basis. qf b x" in that)
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1067
     apply (force intro: qf)
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
  1068
    apply (subst euclidean_representation_sum_fun [of p, symmetric])
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
  1069
     apply (auto intro: has_vector_derivative_sum qf)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1070
    done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1071
qed
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1072
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
  1073
lemma real_polynomial_function_separable:
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1074
  fixes x :: "'a::euclidean_space"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1075
  assumes "x \<noteq> y" shows "\<exists>f. real_polynomial_function f \<and> f x \<noteq> f y"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1076
proof -
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1077
  have "real_polynomial_function (\<lambda>u. \<Sum>b\<in>Basis. (inner (x-u) b)^2)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
  1078
    apply (rule real_polynomial_function_sum)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1079
    apply (auto simp: algebra_simps real_polynomial_function_power real_polynomial_function_diff
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1080
                 const linear bounded_linear_inner_left)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1081
    done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1082
  then show ?thesis
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1083
    apply (intro exI conjI, assumption)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1084
    using assms
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
  1085
    apply (force simp add: euclidean_eq_iff [of x y] sum_nonneg_eq_0_iff algebra_simps)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1086
    done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1087
qed
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1088
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
  1089
lemma Stone_Weierstrass_real_polynomial_function:
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1090
  fixes f :: "'a::euclidean_space \<Rightarrow> real"
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1091
  assumes "compact S" "continuous_on S f" "0 < e"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1092
  obtains g where "real_polynomial_function g" "\<And>x. x \<in> S \<Longrightarrow> \<bar>f x - g x\<bar> < e"
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
  1093
proof -
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1094
  interpret PR: function_ring_on "Collect real_polynomial_function"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1095
    apply unfold_locales
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1096
    using assms continuous_on_polymonial_function real_polynomial_function_eq
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1097
    apply (auto intro: real_polynomial_function_separable)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1098
    done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1099
  show ?thesis
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1100
    using PR.Stone_Weierstrass_basic [OF \<open>continuous_on S f\<close> \<open>0 < e\<close>] that
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1101
    by blast
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1102
qed
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1103
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
  1104
theorem Stone_Weierstrass_polynomial_function:
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1105
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1106
  assumes S: "compact S"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1107
      and f: "continuous_on S f"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1108
      and e: "0 < e"
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1109
    shows "\<exists>g. polynomial_function g \<and> (\<forall>x \<in> S. norm(f x - g x) < e)"
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
  1110
proof -
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1111
  { fix b :: 'b
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1112
    assume "b \<in> Basis"
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1113
    have "\<exists>p. real_polynomial_function p \<and> (\<forall>x \<in> S. \<bar>f x \<bullet> b - p x\<bar> < e / DIM('b))"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1114
      apply (rule exE [OF Stone_Weierstrass_real_polynomial_function [OF S _, of "\<lambda>x. f x \<bullet> b" "e / card Basis"]])
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1115
      using e f
71172
nipkow
parents: 70817
diff changeset
  1116
      apply (auto intro: continuous_intros)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1117
      done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1118
  }
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1119
  then obtain pf where pf:
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1120
      "\<And>b. b \<in> Basis \<Longrightarrow> real_polynomial_function (pf b) \<and> (\<forall>x \<in> S. \<bar>f x \<bullet> b - pf b x\<bar> < e / DIM('b))"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1121
      apply (rule bchoice [rule_format, THEN exE])
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1122
      apply assumption
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1123
      apply (force simp add: intro: that)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1124
      done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1125
  have "polynomial_function (\<lambda>x. \<Sum>b\<in>Basis. pf b x *\<^sub>R b)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1126
    using pf
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
  1127
    by (simp add: polynomial_function_sum polynomial_function_mult real_polynomial_function_eq)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1128
  moreover
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1129
  { fix x
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1130
    assume "x \<in> S"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1131
    have "norm (\<Sum>b\<in>Basis. (f x \<bullet> b) *\<^sub>R b - pf b x *\<^sub>R b) \<le> (\<Sum>b\<in>Basis. norm ((f x \<bullet> b) *\<^sub>R b - pf b x *\<^sub>R b))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
  1132
      by (rule norm_sum)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1133
    also have "... < of_nat DIM('b) * (e / DIM('b))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
  1134
      apply (rule sum_bounded_above_strict)
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1135
      apply (simp add: Real_Vector_Spaces.scaleR_diff_left [symmetric] pf \<open>x \<in> S\<close>)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1136
      apply (rule DIM_positive)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1137
      done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1138
    also have "... = e"
71172
nipkow
parents: 70817
diff changeset
  1139
      by (simp add: field_simps)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1140
    finally have "norm (\<Sum>b\<in>Basis. (f x \<bullet> b) *\<^sub>R b - pf b x *\<^sub>R b) < e" .
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1141
  }
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1142
  ultimately
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1143
  show ?thesis
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
  1144
    apply (subst euclidean_representation_sum_fun [of f, symmetric])
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1145
    apply (rule_tac x="\<lambda>x. \<Sum>b\<in>Basis. pf b x *\<^sub>R b" in exI)
68403
223172b97d0b reorient -> split; documented split
nipkow
parents: 68224
diff changeset
  1146
    apply (auto simp flip: sum_subtractf)
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1147
    done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1148
qed
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1149
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
  1150
proposition Stone_Weierstrass_uniform_limit:
65204
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  1151
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  1152
  assumes S: "compact S"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  1153
    and f: "continuous_on S f"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  1154
  obtains g where "uniform_limit S g f sequentially" "\<And>n. polynomial_function (g n)"
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
  1155
proof -
65204
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  1156
  have pos: "inverse (Suc n) > 0" for n by auto
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  1157
  obtain g where g: "\<And>n. polynomial_function (g n)" "\<And>x n. x \<in> S \<Longrightarrow> norm(f x - g n x) < inverse (Suc n)"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  1158
    using Stone_Weierstrass_polynomial_function[OF S f pos]
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  1159
    by metis
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  1160
  have "uniform_limit S g f sequentially"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  1161
  proof (rule uniform_limitI)
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  1162
    fix e::real assume "0 < e"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  1163
    with LIMSEQ_inverse_real_of_nat have "\<forall>\<^sub>F n in sequentially. inverse (Suc n) < e"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  1164
      by (rule order_tendstoD)
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  1165
    moreover have "\<forall>\<^sub>F n in sequentially. \<forall>x\<in>S. dist (g n x) (f x) < inverse (Suc n)"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  1166
      using g by (simp add: dist_norm norm_minus_commute)
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  1167
    ultimately show "\<forall>\<^sub>F n in sequentially. \<forall>x\<in>S. dist (g n x) (f x) < e"
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  1168
      by (eventually_elim) auto
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  1169
  qed
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  1170
  then show ?thesis using g(1) ..
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  1171
qed
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 64272
diff changeset
  1172
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1173
69683
8b3458ca0762 subsection is always %important
immler
parents: 69597
diff changeset
  1174
subsection\<open>Polynomial functions as paths\<close>
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1175
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60987
diff changeset
  1176
text\<open>One application is to pick a smooth approximation to a path,
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60987
diff changeset
  1177
or just pick a smooth path anyway in an open connected set\<close>
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1178
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
  1179
lemma path_polynomial_function:
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1180
    fixes g  :: "real \<Rightarrow> 'b::euclidean_space"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1181
    shows "polynomial_function g \<Longrightarrow> path g"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1182
  by (simp add: path_def continuous_on_polymonial_function)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1183
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
  1184
lemma path_approx_polynomial_function:
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1185
    fixes g :: "real \<Rightarrow> 'b::euclidean_space"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1186
    assumes "path g" "0 < e"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1187
    shows "\<exists>p. polynomial_function p \<and>
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1188
                pathstart p = pathstart g \<and>
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1189
                pathfinish p = pathfinish g \<and>
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1190
                (\<forall>t \<in> {0..1}. norm(p t - g t) < e)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1191
proof -
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1192
  obtain q where poq: "polynomial_function q" and noq: "\<And>x. x \<in> {0..1} \<Longrightarrow> norm (g x - q x) < e/4"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1193
    using Stone_Weierstrass_polynomial_function [of "{0..1}" g "e/4"] assms
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1194
    by (auto simp: path_def)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1195
  have pf: "polynomial_function (\<lambda>t. q t + (g 0 - q 0) + t *\<^sub>R (g 1 - q 1 - (g 0 - q 0)))"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1196
    by (force simp add: poq)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1197
  have *: "\<And>t. t \<in> {0..1} \<Longrightarrow> norm (((q t - g t) + (g 0 - q 0)) + (t *\<^sub>R (g 1 - q 1) + t *\<^sub>R (q 0 - g 0))) < (e/4 + e/4) + (e/4+e/4)"
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1198
    apply (intro Real_Vector_Spaces.norm_add_less)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1199
    using noq
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1200
    apply (auto simp: norm_minus_commute intro: le_less_trans [OF mult_left_le_one_le noq] simp del: less_divide_eq_numeral1)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1201
    done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1202
  show ?thesis
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1203
    apply (intro exI conjI)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1204
    apply (rule pf)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1205
    using *
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1206
    apply (auto simp add: pathstart_def pathfinish_def algebra_simps)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1207
    done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1208
qed
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1209
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
  1210
proposition connected_open_polynomial_connected:
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1211
  fixes S :: "'a::euclidean_space set"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1212
  assumes S: "open S" "connected S"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1213
      and "x \<in> S" "y \<in> S"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1214
    shows "\<exists>g. polynomial_function g \<and> path_image g \<subseteq> S \<and>
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1215
               pathstart g = x \<and> pathfinish g = y"
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
  1216
proof -
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1217
  have "path_connected S" using assms
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1218
    by (simp add: connected_open_path_connected)
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1219
  with \<open>x \<in> S\<close> \<open>y \<in> S\<close> obtain p where p: "path p" "path_image p \<subseteq> S" "pathstart p = x" "pathfinish p = y"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1220
    by (force simp: path_connected_def)
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1221
  have "\<exists>e. 0 < e \<and> (\<forall>x \<in> path_image p. ball x e \<subseteq> S)"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1222
  proof (cases "S = UNIV")
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1223
    case True then show ?thesis
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1224
      by (simp add: gt_ex)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1225
  next
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1226
    case False
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1227
    then have "- S \<noteq> {}" by blast
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1228
    then show ?thesis
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1229
      apply (rule_tac x="setdist (path_image p) (-S)" in exI)
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1230
      using S p
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1231
      apply (simp add: setdist_gt_0_compact_closed compact_path_image open_closed)
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1232
      using setdist_le_dist [of _ "path_image p" _ "-S"]
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1233
      by fastforce
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1234
  qed
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1235
  then obtain e where "0 < e"and eb: "\<And>x. x \<in> path_image p \<Longrightarrow> ball x e \<subseteq> S"
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1236
    by auto
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1237
  show ?thesis
61222
05d28dc76e5c isabelle update_cartouches;
wenzelm
parents: 60987
diff changeset
  1238
    using path_approx_polynomial_function [OF \<open>path p\<close> \<open>0 < e\<close>]
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1239
    apply clarify
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1240
    apply (intro exI conjI, assumption)
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1241
    using p
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1242
    apply (fastforce simp add: dist_norm path_image_def norm_minus_commute intro: eb [THEN subsetD])+
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1243
    done
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1244
qed
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1245
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
  1246
lemma differentiable_componentwise_within:
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1247
   "f differentiable (at a within S) \<longleftrightarrow>
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1248
    (\<forall>i \<in> Basis. (\<lambda>x. f x \<bullet> i) differentiable at a within S)"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1249
proof -
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1250
  { assume "\<forall>i\<in>Basis. \<exists>D. ((\<lambda>x. f x \<bullet> i) has_derivative D) (at a within S)"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1251
    then obtain f' where f':
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1252
           "\<And>i. i \<in> Basis \<Longrightarrow> ((\<lambda>x. f x \<bullet> i) has_derivative f' i) (at a within S)"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1253
      by metis
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1254
    have eq: "(\<lambda>x. (\<Sum>j\<in>Basis. f' j x *\<^sub>R j) \<bullet> i) = f' i" if "i \<in> Basis" for i
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1255
      using that by (simp add: inner_add_left inner_add_right)
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1256
    have "\<exists>D. \<forall>i\<in>Basis. ((\<lambda>x. f x \<bullet> i) has_derivative (\<lambda>x. D x \<bullet> i)) (at a within S)"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1257
      apply (rule_tac x="\<lambda>x::'a. (\<Sum>j\<in>Basis. f' j x *\<^sub>R j) :: 'b" in exI)
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1258
      apply (simp add: eq f')
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1259
      done
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1260
  }
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1261
  then show ?thesis
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1262
    apply (simp add: differentiable_def)
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1263
    using has_derivative_componentwise_within
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1264
    by blast
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1265
qed
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1266
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
  1267
lemma polynomial_function_inner [intro]:
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1268
  fixes i :: "'a::euclidean_space"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1269
  shows "polynomial_function g \<Longrightarrow> polynomial_function (\<lambda>x. g x \<bullet> i)"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1270
  apply (subst euclidean_representation [where x=i, symmetric])
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
  1271
  apply (force simp: inner_sum_right polynomial_function_iff_Basis_inner polynomial_function_sum)
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1272
  done
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1273
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1274
text\<open> Differentiability of real and vector polynomial functions.\<close>
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1275
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
  1276
lemma differentiable_at_real_polynomial_function:
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1277
   "real_polynomial_function f \<Longrightarrow> f differentiable (at a within S)"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1278
  by (induction f rule: real_polynomial_function.induct)
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1279
     (simp_all add: bounded_linear_imp_differentiable)
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1280
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
  1281
lemma differentiable_on_real_polynomial_function:
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1282
   "real_polynomial_function p \<Longrightarrow> p differentiable_on S"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1283
by (simp add: differentiable_at_imp_differentiable_on differentiable_at_real_polynomial_function)
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1284
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
  1285
lemma differentiable_at_polynomial_function:
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1286
  fixes f :: "_ \<Rightarrow> 'a::euclidean_space"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1287
  shows "polynomial_function f \<Longrightarrow> f differentiable (at a within S)"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1288
  by (metis differentiable_at_real_polynomial_function polynomial_function_iff_Basis_inner differentiable_componentwise_within)
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1289
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
  1290
lemma differentiable_on_polynomial_function:
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1291
  fixes f :: "_ \<Rightarrow> 'a::euclidean_space"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1292
  shows "polynomial_function f \<Longrightarrow> f differentiable_on S"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1293
by (simp add: differentiable_at_polynomial_function differentiable_on_def)
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1294
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
  1295
lemma vector_eq_dot_span:
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1296
  assumes "x \<in> span B" "y \<in> span B" and i: "\<And>i. i \<in> B \<Longrightarrow> i \<bullet> x = i \<bullet> y"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1297
  shows "x = y"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1298
proof -
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1299
  have "\<And>i. i \<in> B \<Longrightarrow> orthogonal (x - y) i"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1300
    by (simp add: i inner_commute inner_diff_right orthogonal_def)
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1301
  moreover have "x - y \<in> span B"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1302
    by (simp add: assms span_diff)
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1303
  ultimately have "x - y = 0"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1304
    using orthogonal_to_span orthogonal_self by blast
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1305
    then show ?thesis by simp
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1306
qed
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1307
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
  1308
lemma orthonormal_basis_expand:
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1309
  assumes B: "pairwise orthogonal B"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1310
      and 1: "\<And>i. i \<in> B \<Longrightarrow> norm i = 1"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1311
      and "x \<in> span B"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1312
      and "finite B"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1313
    shows "(\<Sum>i\<in>B. (x \<bullet> i) *\<^sub>R i) = x"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1314
proof (rule vector_eq_dot_span [OF _ \<open>x \<in> span B\<close>])
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1315
  show "(\<Sum>i\<in>B. (x \<bullet> i) *\<^sub>R i) \<in> span B"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
  1316
    by (simp add: span_clauses span_sum)
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1317
  show "i \<bullet> (\<Sum>i\<in>B. (x \<bullet> i) *\<^sub>R i) = i \<bullet> x" if "i \<in> B" for i
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1318
  proof -
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1319
    have [simp]: "i \<bullet> j = (if j = i then 1 else 0)" if "j \<in> B" for j
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1320
      using B 1 that \<open>i \<in> B\<close>
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1321
      by (force simp: norm_eq_1 orthogonal_def pairwise_def)
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1322
    have "i \<bullet> (\<Sum>i\<in>B. (x \<bullet> i) *\<^sub>R i) = (\<Sum>j\<in>B. x \<bullet> j * (i \<bullet> j))"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
  1323
      by (simp add: inner_sum_right)
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1324
    also have "... = (\<Sum>j\<in>B. if j = i then x \<bullet> i else 0)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
  1325
      by (rule sum.cong; simp)
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1326
    also have "... = i \<bullet> x"
71633
07bec530f02e cleaned proofs
nipkow
parents: 71172
diff changeset
  1327
      by (simp add: \<open>finite B\<close> that inner_commute)
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1328
    finally show ?thesis .
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1329
  qed
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1330
qed
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1331
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1332
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
  1333
theorem Stone_Weierstrass_polynomial_function_subspace:
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1334
  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1335
  assumes "compact S"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1336
      and contf: "continuous_on S f"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1337
      and "0 < e"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1338
      and "subspace T" "f ` S \<subseteq> T"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1339
    obtains g where "polynomial_function g" "g ` S \<subseteq> T"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1340
                    "\<And>x. x \<in> S \<Longrightarrow> norm(f x - g x) < e"
69737
ec3cc98c38db tagged 4 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
  1341
proof -
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1342
  obtain B where "B \<subseteq> T" and orthB: "pairwise orthogonal B"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1343
             and B1: "\<And>x. x \<in> B \<Longrightarrow> norm x = 1"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1344
             and "independent B" and cardB: "card B = dim T"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1345
             and spanB: "span B = T"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1346
    using orthonormal_basis_subspace \<open>subspace T\<close> by metis
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1347
  then have "finite B"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1348
    by (simp add: independent_imp_finite)
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1349
  then obtain n::nat and b where "B = b ` {i. i < n}" "inj_on b {i. i < n}"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1350
    using finite_imp_nat_seg_image_inj_on by metis
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1351
  with cardB have "n = card B" "dim T = n"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1352
    by (auto simp: card_image)
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1353
  have fx: "(\<Sum>i\<in>B. (f x \<bullet> i) *\<^sub>R i) = f x" if "x \<in> S" for x
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1354
    apply (rule orthonormal_basis_expand [OF orthB B1 _ \<open>finite B\<close>])
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1355
    using \<open>f ` S \<subseteq> T\<close> spanB that by auto
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1356
  have cont: "continuous_on S (\<lambda>x. \<Sum>i\<in>B. (f x \<bullet> i) *\<^sub>R i)"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1357
    by (intro continuous_intros contf)
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1358
  obtain g where "polynomial_function g"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1359
             and g: "\<And>x. x \<in> S \<Longrightarrow> norm ((\<Sum>i\<in>B. (f x \<bullet> i) *\<^sub>R i) - g x) < e / (n+2)"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1360
    using Stone_Weierstrass_polynomial_function [OF \<open>compact S\<close> cont, of "e / real (n + 2)"] \<open>0 < e\<close>
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1361
    by auto
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1362
  with fx have g: "\<And>x. x \<in> S \<Longrightarrow> norm (f x - g x) < e / (n+2)"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1363
    by auto
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1364
  show ?thesis
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1365
  proof
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1366
    show "polynomial_function (\<lambda>x. \<Sum>i\<in>B. (g x \<bullet> i) *\<^sub>R i)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
  1367
      apply (rule polynomial_function_sum)
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1368
       apply (simp add: \<open>finite B\<close>)
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1369
      using \<open>polynomial_function g\<close>  by auto
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1370
    show "(\<lambda>x. \<Sum>i\<in>B. (g x \<bullet> i) *\<^sub>R i) ` S \<subseteq> T"
67986
b65c4a6a015e quite a few more results about negligibility, etc., and a bit of tidying up
paulson <lp15@cam.ac.uk>
parents: 65585
diff changeset
  1371
      using \<open>B \<subseteq> T\<close>
68072
493b818e8e10 added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
immler
parents: 67986
diff changeset
  1372
      by (blast intro: subspace_sum subspace_mul \<open>subspace T\<close>)
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1373
    show "norm (f x - (\<Sum>i\<in>B. (g x \<bullet> i) *\<^sub>R i)) < e" if "x \<in> S" for x
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1374
    proof -
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1375
      have orth': "pairwise (\<lambda>i j. orthogonal ((f x \<bullet> i) *\<^sub>R i - (g x \<bullet> i) *\<^sub>R i)
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1376
                                              ((f x \<bullet> j) *\<^sub>R j - (g x \<bullet> j) *\<^sub>R j)) B"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1377
        apply (rule pairwise_mono [OF orthB])
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1378
        apply (auto simp: orthogonal_def inner_diff_right inner_diff_left)
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1379
        done
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1380
      then have "(norm (\<Sum>i\<in>B. (f x \<bullet> i) *\<^sub>R i - (g x \<bullet> i) *\<^sub>R i))\<^sup>2 =
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1381
                 (\<Sum>i\<in>B. (norm ((f x \<bullet> i) *\<^sub>R i - (g x \<bullet> i) *\<^sub>R i))\<^sup>2)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
  1382
        by (simp add:  norm_sum_Pythagorean [OF \<open>finite B\<close> orth'])
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1383
      also have "... = (\<Sum>i\<in>B. (norm (((f x - g x) \<bullet> i) *\<^sub>R i))\<^sup>2)"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1384
        by (simp add: algebra_simps)
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1385
      also have "... \<le> (\<Sum>i\<in>B. (norm (f x - g x))\<^sup>2)"
72221
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1386
      proof -
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1387
        have "\<And>i. i \<in> B \<Longrightarrow> ((f x - g x) \<bullet> i)\<^sup>2 \<le> (norm (f x - g x))\<^sup>2"
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1388
          by (metis B1 Cauchy_Schwarz_ineq inner_commute mult.left_neutral norm_eq_1 power2_norm_eq_inner)
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1389
        then show ?thesis
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1390
          by (intro sum_mono) (simp add: sum_mono B1)
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1391
      qed
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1392
      also have "... = n * norm (f x - g x)^2"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1393
        by (simp add: \<open>n = card B\<close>)
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1394
      also have "... \<le> n * (e / (n+2))^2"
72221
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1395
      proof (rule mult_left_mono)
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1396
        show "(norm (f x - g x))\<^sup>2 \<le> (e / real (n + 2))\<^sup>2"
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1397
          by (meson dual_order.order_iff_strict g norm_ge_zero power_mono that)
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1398
      qed auto
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1399
      also have "... \<le> e^2 / (n+2)"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1400
        using \<open>0 < e\<close> by (simp add: divide_simps power2_eq_square)
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1401
      also have "... < e^2"
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1402
        using \<open>0 < e\<close> by (simp add: divide_simps)
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1403
      finally have "(norm (\<Sum>i\<in>B. (f x \<bullet> i) *\<^sub>R i - (g x \<bullet> i) *\<^sub>R i))\<^sup>2 < e^2" .
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1404
      then have "(norm (\<Sum>i\<in>B. (f x \<bullet> i) *\<^sub>R i - (g x \<bullet> i) *\<^sub>R i)) < e"
72221
98ef41a82b73 just a bit of streamlining
paulson <lp15@cam.ac.uk>
parents: 71633
diff changeset
  1405
        by (simp add: \<open>0 < e\<close> norm_lt_square power2_norm_eq_inner)
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1406
      then show ?thesis
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63938
diff changeset
  1407
        using fx that by (simp add: sum_subtractf)
63938
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1408
    qed
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1409
  qed
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1410
qed
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1411
f6ce08859d4c More mainly topological results
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1412
60987
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1413
hide_fact linear add mult const
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1414
ea00d17eba3b The Stone-Weierstrass theorem
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1415
end