doc-src/IsarImplementation/Thy/Logic.thy
author wenzelm
Sun, 23 Jan 2011 13:28:10 +0100
changeset 41625 e4a9ea748bd2
parent 40255 9ffbc25e1606
child 42401 9bfaf6819291
permissions -rw-r--r--
Added tag isa2011-test2 for changeset 237328506a42
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
29755
d66b34e46bdf observe usual theory naming conventions;
wenzelm
parents: 29615
diff changeset
     1
theory Logic
d66b34e46bdf observe usual theory naming conventions;
wenzelm
parents: 29615
diff changeset
     2
imports Base
d66b34e46bdf observe usual theory naming conventions;
wenzelm
parents: 29615
diff changeset
     3
begin
18537
2681f9e34390 "The Isabelle/Isar Implementation" manual;
wenzelm
parents:
diff changeset
     4
20470
c839b38a1f32 more on variables;
wenzelm
parents: 20451
diff changeset
     5
chapter {* Primitive logic \label{ch:logic} *}
18537
2681f9e34390 "The Isabelle/Isar Implementation" manual;
wenzelm
parents:
diff changeset
     6
20480
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
     7
text {*
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
     8
  The logical foundations of Isabelle/Isar are that of the Pure logic,
29774
wenzelm
parents: 29771
diff changeset
     9
  which has been introduced as a Natural Deduction framework in
20480
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
    10
  \cite{paulson700}.  This is essentially the same logic as ``@{text
20493
wenzelm
parents: 20491
diff changeset
    11
  "\<lambda>HOL"}'' in the more abstract setting of Pure Type Systems (PTS)
20480
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
    12
  \cite{Barendregt-Geuvers:2001}, although there are some key
20491
wenzelm
parents: 20480
diff changeset
    13
  differences in the specific treatment of simple types in
wenzelm
parents: 20480
diff changeset
    14
  Isabelle/Pure.
20480
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
    15
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
    16
  Following type-theoretic parlance, the Pure logic consists of three
20543
wenzelm
parents: 20542
diff changeset
    17
  levels of @{text "\<lambda>"}-calculus with corresponding arrows, @{text
20480
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
    18
  "\<Rightarrow>"} for syntactic function space (terms depending on terms), @{text
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
    19
  "\<And>"} for universal quantification (proofs depending on terms), and
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
    20
  @{text "\<Longrightarrow>"} for implication (proofs depending on proofs).
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
    21
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
    22
  Derivations are relative to a logical theory, which declares type
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
    23
  constructors, constants, and axioms.  Theory declarations support
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
    24
  schematic polymorphism, which is strictly speaking outside the
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
    25
  logic.\footnote{This is the deeper logical reason, why the theory
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
    26
  context @{text "\<Theta>"} is separate from the proof context @{text "\<Gamma>"}
34929
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
    27
  of the core calculus: type constructors, term constants, and facts
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
    28
  (proof constants) may involve arbitrary type schemes, but the type
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
    29
  of a locally fixed term parameter is also fixed!}
20480
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
    30
*}
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
    31
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
    32
20451
27ea2ba48fa3 misc cleanup;
wenzelm
parents: 20450
diff changeset
    33
section {* Types \label{sec:types} *}
20437
wenzelm
parents: 18537
diff changeset
    34
wenzelm
parents: 18537
diff changeset
    35
text {*
20480
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
    36
  The language of types is an uninterpreted order-sorted first-order
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
    37
  algebra; types are qualified by ordered type classes.
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
    38
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
    39
  \medskip A \emph{type class} is an abstract syntactic entity
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
    40
  declared in the theory context.  The \emph{subclass relation} @{text
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
    41
  "c\<^isub>1 \<subseteq> c\<^isub>2"} is specified by stating an acyclic
20491
wenzelm
parents: 20480
diff changeset
    42
  generating relation; the transitive closure is maintained
wenzelm
parents: 20480
diff changeset
    43
  internally.  The resulting relation is an ordering: reflexive,
wenzelm
parents: 20480
diff changeset
    44
  transitive, and antisymmetric.
20451
27ea2ba48fa3 misc cleanup;
wenzelm
parents: 20450
diff changeset
    45
34929
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
    46
  A \emph{sort} is a list of type classes written as @{text "s = {c\<^isub>1,
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
    47
  \<dots>, c\<^isub>m}"}, it represents symbolic intersection.  Notationally, the
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
    48
  curly braces are omitted for singleton intersections, i.e.\ any
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
    49
  class @{text "c"} may be read as a sort @{text "{c}"}.  The ordering
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
    50
  on type classes is extended to sorts according to the meaning of
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
    51
  intersections: @{text "{c\<^isub>1, \<dots> c\<^isub>m} \<subseteq> {d\<^isub>1, \<dots>, d\<^isub>n}"} iff @{text
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
    52
  "\<forall>j. \<exists>i. c\<^isub>i \<subseteq> d\<^isub>j"}.  The empty intersection @{text "{}"} refers to
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
    53
  the universal sort, which is the largest element wrt.\ the sort
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
    54
  order.  Thus @{text "{}"} represents the ``full sort'', not the
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
    55
  empty one!  The intersection of all (finitely many) classes declared
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
    56
  in the current theory is the least element wrt.\ the sort ordering.
20480
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
    57
20491
wenzelm
parents: 20480
diff changeset
    58
  \medskip A \emph{fixed type variable} is a pair of a basic name
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
    59
  (starting with a @{text "'"} character) and a sort constraint, e.g.\
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
    60
  @{text "('a, s)"} which is usually printed as @{text "\<alpha>\<^isub>s"}.
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
    61
  A \emph{schematic type variable} is a pair of an indexname and a
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
    62
  sort constraint, e.g.\ @{text "(('a, 0), s)"} which is usually
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
    63
  printed as @{text "?\<alpha>\<^isub>s"}.
20451
27ea2ba48fa3 misc cleanup;
wenzelm
parents: 20450
diff changeset
    64
20480
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
    65
  Note that \emph{all} syntactic components contribute to the identity
34929
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
    66
  of type variables: basic name, index, and sort constraint.  The core
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
    67
  logic handles type variables with the same name but different sorts
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
    68
  as different, although the type-inference layer (which is outside
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
    69
  the core) rejects anything like that.
20451
27ea2ba48fa3 misc cleanup;
wenzelm
parents: 20450
diff changeset
    70
20493
wenzelm
parents: 20491
diff changeset
    71
  A \emph{type constructor} @{text "\<kappa>"} is a @{text "k"}-ary operator
wenzelm
parents: 20491
diff changeset
    72
  on types declared in the theory.  Type constructor application is
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
    73
  written postfix as @{text "(\<alpha>\<^isub>1, \<dots>, \<alpha>\<^isub>k)\<kappa>"}.  For
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
    74
  @{text "k = 0"} the argument tuple is omitted, e.g.\ @{text "prop"}
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
    75
  instead of @{text "()prop"}.  For @{text "k = 1"} the parentheses
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
    76
  are omitted, e.g.\ @{text "\<alpha> list"} instead of @{text "(\<alpha>)list"}.
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
    77
  Further notation is provided for specific constructors, notably the
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
    78
  right-associative infix @{text "\<alpha> \<Rightarrow> \<beta>"} instead of @{text "(\<alpha>,
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
    79
  \<beta>)fun"}.
20480
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
    80
  
34929
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
    81
  The logical category \emph{type} is defined inductively over type
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
    82
  variables and type constructors as follows: @{text "\<tau> = \<alpha>\<^isub>s | ?\<alpha>\<^isub>s |
20543
wenzelm
parents: 20542
diff changeset
    83
  (\<tau>\<^sub>1, \<dots>, \<tau>\<^sub>k)\<kappa>"}.
20451
27ea2ba48fa3 misc cleanup;
wenzelm
parents: 20450
diff changeset
    84
20514
5ede702cd2ca more on terms;
wenzelm
parents: 20501
diff changeset
    85
  A \emph{type abbreviation} is a syntactic definition @{text
20494
wenzelm
parents: 20493
diff changeset
    86
  "(\<^vec>\<alpha>)\<kappa> = \<tau>"} of an arbitrary type expression @{text "\<tau>"} over
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
    87
  variables @{text "\<^vec>\<alpha>"}.  Type abbreviations appear as type
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
    88
  constructors in the syntax, but are expanded before entering the
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
    89
  logical core.
20480
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
    90
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
    91
  A \emph{type arity} declares the image behavior of a type
20494
wenzelm
parents: 20493
diff changeset
    92
  constructor wrt.\ the algebra of sorts: @{text "\<kappa> :: (s\<^isub>1, \<dots>,
wenzelm
parents: 20493
diff changeset
    93
  s\<^isub>k)s"} means that @{text "(\<tau>\<^isub>1, \<dots>, \<tau>\<^isub>k)\<kappa>"} is
wenzelm
parents: 20493
diff changeset
    94
  of sort @{text "s"} if every argument type @{text "\<tau>\<^isub>i"} is
wenzelm
parents: 20493
diff changeset
    95
  of sort @{text "s\<^isub>i"}.  Arity declarations are implicitly
wenzelm
parents: 20493
diff changeset
    96
  completed, i.e.\ @{text "\<kappa> :: (\<^vec>s)c"} entails @{text "\<kappa> ::
20491
wenzelm
parents: 20480
diff changeset
    97
  (\<^vec>s)c'"} for any @{text "c' \<supseteq> c"}.
wenzelm
parents: 20480
diff changeset
    98
wenzelm
parents: 20480
diff changeset
    99
  \medskip The sort algebra is always maintained as \emph{coregular},
wenzelm
parents: 20480
diff changeset
   100
  which means that type arities are consistent with the subclass
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   101
  relation: for any type constructor @{text "\<kappa>"}, and classes @{text
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   102
  "c\<^isub>1 \<subseteq> c\<^isub>2"}, and arities @{text "\<kappa> ::
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   103
  (\<^vec>s\<^isub>1)c\<^isub>1"} and @{text "\<kappa> ::
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   104
  (\<^vec>s\<^isub>2)c\<^isub>2"} holds @{text "\<^vec>s\<^isub>1 \<subseteq>
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   105
  \<^vec>s\<^isub>2"} component-wise.
20451
27ea2ba48fa3 misc cleanup;
wenzelm
parents: 20450
diff changeset
   106
20491
wenzelm
parents: 20480
diff changeset
   107
  The key property of a coregular order-sorted algebra is that sort
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   108
  constraints can be solved in a most general fashion: for each type
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   109
  constructor @{text "\<kappa>"} and sort @{text "s"} there is a most general
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   110
  vector of argument sorts @{text "(s\<^isub>1, \<dots>, s\<^isub>k)"} such
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   111
  that a type scheme @{text "(\<alpha>\<^bsub>s\<^isub>1\<^esub>, \<dots>,
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   112
  \<alpha>\<^bsub>s\<^isub>k\<^esub>)\<kappa>"} is of sort @{text "s"}.
20543
wenzelm
parents: 20542
diff changeset
   113
  Consequently, type unification has most general solutions (modulo
wenzelm
parents: 20542
diff changeset
   114
  equivalence of sorts), so type-inference produces primary types as
wenzelm
parents: 20542
diff changeset
   115
  expected \cite{nipkow-prehofer}.
20480
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
   116
*}
20451
27ea2ba48fa3 misc cleanup;
wenzelm
parents: 20450
diff changeset
   117
20480
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
   118
text %mlref {*
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
   119
  \begin{mldecls}
34921
008126f730a0 formal markup of type aliases;
wenzelm
parents: 33174
diff changeset
   120
  @{index_ML_type class: string} \\
008126f730a0 formal markup of type aliases;
wenzelm
parents: 33174
diff changeset
   121
  @{index_ML_type sort: "class list"} \\
008126f730a0 formal markup of type aliases;
wenzelm
parents: 33174
diff changeset
   122
  @{index_ML_type arity: "string * sort list * sort"} \\
20480
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
   123
  @{index_ML_type typ} \\
39846
cb6634eb8926 examples in Isabelle/HOL;
wenzelm
parents: 39840
diff changeset
   124
  @{index_ML Term.map_atyps: "(typ -> typ) -> typ -> typ"} \\
cb6634eb8926 examples in Isabelle/HOL;
wenzelm
parents: 39840
diff changeset
   125
  @{index_ML Term.fold_atyps: "(typ -> 'a -> 'a) -> typ -> 'a -> 'a"} \\
20547
wenzelm
parents: 20543
diff changeset
   126
  \end{mldecls}
wenzelm
parents: 20543
diff changeset
   127
  \begin{mldecls}
20480
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
   128
  @{index_ML Sign.subsort: "theory -> sort * sort -> bool"} \\
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
   129
  @{index_ML Sign.of_sort: "theory -> typ * sort -> bool"} \\
30355
8066d80cd51e use binding type;
wenzelm
parents: 30288
diff changeset
   130
  @{index_ML Sign.add_types: "(binding * int * mixfix) list -> theory -> theory"} \\
36345
3cbce59ed78d updated Sign.add_type_abbrev;
wenzelm
parents: 36166
diff changeset
   131
  @{index_ML Sign.add_type_abbrev: "binding * string list * typ -> theory -> theory"} \\
30355
8066d80cd51e use binding type;
wenzelm
parents: 30288
diff changeset
   132
  @{index_ML Sign.primitive_class: "binding * class list -> theory -> theory"} \\
20480
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
   133
  @{index_ML Sign.primitive_classrel: "class * class -> theory -> theory"} \\
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
   134
  @{index_ML Sign.primitive_arity: "arity -> theory -> theory"} \\
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
   135
  \end{mldecls}
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
   136
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
   137
  \begin{description}
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
   138
39864
wenzelm
parents: 39861
diff changeset
   139
  \item Type @{ML_type class} represents type classes.
20480
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
   140
39864
wenzelm
parents: 39861
diff changeset
   141
  \item Type @{ML_type sort} represents sorts, i.e.\ finite
wenzelm
parents: 39861
diff changeset
   142
  intersections of classes.  The empty list @{ML "[]: sort"} refers to
wenzelm
parents: 39861
diff changeset
   143
  the empty class intersection, i.e.\ the ``full sort''.
20451
27ea2ba48fa3 misc cleanup;
wenzelm
parents: 20450
diff changeset
   144
39864
wenzelm
parents: 39861
diff changeset
   145
  \item Type @{ML_type arity} represents type arities.  A triple
wenzelm
parents: 39861
diff changeset
   146
  @{text "(\<kappa>, \<^vec>s, s) : arity"} represents @{text "\<kappa> ::
wenzelm
parents: 39861
diff changeset
   147
  (\<^vec>s)s"} as described above.
20480
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
   148
39864
wenzelm
parents: 39861
diff changeset
   149
  \item Type @{ML_type typ} represents types; this is a datatype with
20480
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
   150
  constructors @{ML TFree}, @{ML TVar}, @{ML Type}.
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
   151
39846
cb6634eb8926 examples in Isabelle/HOL;
wenzelm
parents: 39840
diff changeset
   152
  \item @{ML Term.map_atyps}~@{text "f \<tau>"} applies the mapping @{text
cb6634eb8926 examples in Isabelle/HOL;
wenzelm
parents: 39840
diff changeset
   153
  "f"} to all atomic types (@{ML TFree}, @{ML TVar}) occurring in
cb6634eb8926 examples in Isabelle/HOL;
wenzelm
parents: 39840
diff changeset
   154
  @{text "\<tau>"}.
20519
d7ad1217c24a more on terms;
wenzelm
parents: 20514
diff changeset
   155
39846
cb6634eb8926 examples in Isabelle/HOL;
wenzelm
parents: 39840
diff changeset
   156
  \item @{ML Term.fold_atyps}~@{text "f \<tau>"} iterates the operation
cb6634eb8926 examples in Isabelle/HOL;
wenzelm
parents: 39840
diff changeset
   157
  @{text "f"} over all occurrences of atomic types (@{ML TFree}, @{ML
cb6634eb8926 examples in Isabelle/HOL;
wenzelm
parents: 39840
diff changeset
   158
  TVar}) in @{text "\<tau>"}; the type structure is traversed from left to
cb6634eb8926 examples in Isabelle/HOL;
wenzelm
parents: 39840
diff changeset
   159
  right.
20494
wenzelm
parents: 20493
diff changeset
   160
20480
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
   161
  \item @{ML Sign.subsort}~@{text "thy (s\<^isub>1, s\<^isub>2)"}
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
   162
  tests the subsort relation @{text "s\<^isub>1 \<subseteq> s\<^isub>2"}.
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
   163
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   164
  \item @{ML Sign.of_sort}~@{text "thy (\<tau>, s)"} tests whether type
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   165
  @{text "\<tau>"} is of sort @{text "s"}.
20480
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
   166
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   167
  \item @{ML Sign.add_types}~@{text "[(\<kappa>, k, mx), \<dots>]"} declares a new
20494
wenzelm
parents: 20493
diff changeset
   168
  type constructors @{text "\<kappa>"} with @{text "k"} arguments and
20480
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
   169
  optional mixfix syntax.
20451
27ea2ba48fa3 misc cleanup;
wenzelm
parents: 20450
diff changeset
   170
36345
3cbce59ed78d updated Sign.add_type_abbrev;
wenzelm
parents: 36166
diff changeset
   171
  \item @{ML Sign.add_type_abbrev}~@{text "(\<kappa>, \<^vec>\<alpha>,
3cbce59ed78d updated Sign.add_type_abbrev;
wenzelm
parents: 36166
diff changeset
   172
  \<tau>)"} defines a new type abbreviation @{text
3cbce59ed78d updated Sign.add_type_abbrev;
wenzelm
parents: 36166
diff changeset
   173
  "(\<^vec>\<alpha>)\<kappa> = \<tau>"}.
20480
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
   174
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
   175
  \item @{ML Sign.primitive_class}~@{text "(c, [c\<^isub>1, \<dots>,
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   176
  c\<^isub>n])"} declares a new class @{text "c"}, together with class
20494
wenzelm
parents: 20493
diff changeset
   177
  relations @{text "c \<subseteq> c\<^isub>i"}, for @{text "i = 1, \<dots>, n"}.
20480
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
   178
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
   179
  \item @{ML Sign.primitive_classrel}~@{text "(c\<^isub>1,
20543
wenzelm
parents: 20542
diff changeset
   180
  c\<^isub>2)"} declares the class relation @{text "c\<^isub>1 \<subseteq>
20480
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
   181
  c\<^isub>2"}.
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
   182
20494
wenzelm
parents: 20493
diff changeset
   183
  \item @{ML Sign.primitive_arity}~@{text "(\<kappa>, \<^vec>s, s)"} declares
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   184
  the arity @{text "\<kappa> :: (\<^vec>s)s"}.
20480
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
   185
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
   186
  \end{description}
20437
wenzelm
parents: 18537
diff changeset
   187
*}
wenzelm
parents: 18537
diff changeset
   188
39832
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   189
text %mlantiq {*
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   190
  \begin{matharray}{rcl}
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   191
  @{ML_antiquotation_def "class"} & : & @{text ML_antiquotation} \\
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   192
  @{ML_antiquotation_def "sort"} & : & @{text ML_antiquotation} \\
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   193
  @{ML_antiquotation_def "type_name"} & : & @{text ML_antiquotation} \\
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   194
  @{ML_antiquotation_def "type_abbrev"} & : & @{text ML_antiquotation} \\
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   195
  @{ML_antiquotation_def "nonterminal"} & : & @{text ML_antiquotation} \\
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   196
  @{ML_antiquotation_def "typ"} & : & @{text ML_antiquotation} \\
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   197
  \end{matharray}
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   198
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   199
  \begin{rail}
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   200
  'class' nameref
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   201
  ;
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   202
  'sort' sort
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   203
  ;
40255
9ffbc25e1606 eliminated obsolete \_ escapes in rail environments;
wenzelm
parents: 40126
diff changeset
   204
  ('type_name' | 'type_abbrev' | 'nonterminal') nameref
39832
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   205
  ;
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   206
  'typ' type
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   207
  ;
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   208
  \end{rail}
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   209
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   210
  \begin{description}
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   211
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   212
  \item @{text "@{class c}"} inlines the internalized class @{text
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   213
  "c"} --- as @{ML_type string} literal.
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   214
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   215
  \item @{text "@{sort s}"} inlines the internalized sort @{text "s"}
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   216
  --- as @{ML_type "string list"} literal.
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   217
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   218
  \item @{text "@{type_name c}"} inlines the internalized type
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   219
  constructor @{text "c"} --- as @{ML_type string} literal.
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   220
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   221
  \item @{text "@{type_abbrev c}"} inlines the internalized type
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   222
  abbreviation @{text "c"} --- as @{ML_type string} literal.
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   223
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   224
  \item @{text "@{nonterminal c}"} inlines the internalized syntactic
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   225
  type~/ grammar nonterminal @{text "c"} --- as @{ML_type string}
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   226
  literal.
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   227
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   228
  \item @{text "@{typ \<tau>}"} inlines the internalized type @{text "\<tau>"}
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   229
  --- as constructor term for datatype @{ML_type typ}.
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   230
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   231
  \end{description}
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   232
*}
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   233
20437
wenzelm
parents: 18537
diff changeset
   234
20451
27ea2ba48fa3 misc cleanup;
wenzelm
parents: 20450
diff changeset
   235
section {* Terms \label{sec:terms} *}
18537
2681f9e34390 "The Isabelle/Isar Implementation" manual;
wenzelm
parents:
diff changeset
   236
2681f9e34390 "The Isabelle/Isar Implementation" manual;
wenzelm
parents:
diff changeset
   237
text {*
20491
wenzelm
parents: 20480
diff changeset
   238
  The language of terms is that of simply-typed @{text "\<lambda>"}-calculus
20520
wenzelm
parents: 20519
diff changeset
   239
  with de-Bruijn indices for bound variables (cf.\ \cite{debruijn72}
29761
2b658e50683a minor tuning and typographic fixes;
wenzelm
parents: 29758
diff changeset
   240
  or \cite{paulson-ml2}), with the types being determined by the
2b658e50683a minor tuning and typographic fixes;
wenzelm
parents: 29758
diff changeset
   241
  corresponding binders.  In contrast, free variables and constants
34929
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   242
  have an explicit name and type in each occurrence.
20514
5ede702cd2ca more on terms;
wenzelm
parents: 20501
diff changeset
   243
5ede702cd2ca more on terms;
wenzelm
parents: 20501
diff changeset
   244
  \medskip A \emph{bound variable} is a natural number @{text "b"},
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   245
  which accounts for the number of intermediate binders between the
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   246
  variable occurrence in the body and its binding position.  For
34929
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   247
  example, the de-Bruijn term @{text "\<lambda>\<^bsub>bool\<^esub>. \<lambda>\<^bsub>bool\<^esub>. 1 \<and> 0"} would
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   248
  correspond to @{text "\<lambda>x\<^bsub>bool\<^esub>. \<lambda>y\<^bsub>bool\<^esub>. x \<and> y"} in a named
20543
wenzelm
parents: 20542
diff changeset
   249
  representation.  Note that a bound variable may be represented by
wenzelm
parents: 20542
diff changeset
   250
  different de-Bruijn indices at different occurrences, depending on
wenzelm
parents: 20542
diff changeset
   251
  the nesting of abstractions.
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   252
20543
wenzelm
parents: 20542
diff changeset
   253
  A \emph{loose variable} is a bound variable that is outside the
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   254
  scope of local binders.  The types (and names) for loose variables
20543
wenzelm
parents: 20542
diff changeset
   255
  can be managed as a separate context, that is maintained as a stack
wenzelm
parents: 20542
diff changeset
   256
  of hypothetical binders.  The core logic operates on closed terms,
wenzelm
parents: 20542
diff changeset
   257
  without any loose variables.
20514
5ede702cd2ca more on terms;
wenzelm
parents: 20501
diff changeset
   258
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   259
  A \emph{fixed variable} is a pair of a basic name and a type, e.g.\
34929
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   260
  @{text "(x, \<tau>)"} which is usually printed @{text "x\<^isub>\<tau>"} here.  A
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   261
  \emph{schematic variable} is a pair of an indexname and a type,
34929
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   262
  e.g.\ @{text "((x, 0), \<tau>)"} which is likewise printed as @{text
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   263
  "?x\<^isub>\<tau>"}.
20491
wenzelm
parents: 20480
diff changeset
   264
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   265
  \medskip A \emph{constant} is a pair of a basic name and a type,
34929
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   266
  e.g.\ @{text "(c, \<tau>)"} which is usually printed as @{text "c\<^isub>\<tau>"}
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   267
  here.  Constants are declared in the context as polymorphic families
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   268
  @{text "c :: \<sigma>"}, meaning that all substitution instances @{text
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   269
  "c\<^isub>\<tau>"} for @{text "\<tau> = \<sigma>\<vartheta>"} are valid.
20514
5ede702cd2ca more on terms;
wenzelm
parents: 20501
diff changeset
   270
34929
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   271
  The vector of \emph{type arguments} of constant @{text "c\<^isub>\<tau>"} wrt.\
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   272
  the declaration @{text "c :: \<sigma>"} is defined as the codomain of the
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   273
  matcher @{text "\<vartheta> = {?\<alpha>\<^isub>1 \<mapsto> \<tau>\<^isub>1, \<dots>, ?\<alpha>\<^isub>n \<mapsto> \<tau>\<^isub>n}"} presented in
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   274
  canonical order @{text "(\<tau>\<^isub>1, \<dots>, \<tau>\<^isub>n)"}, corresponding to the
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   275
  left-to-right occurrences of the @{text "\<alpha>\<^isub>i"} in @{text "\<sigma>"}.
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   276
  Within a given theory context, there is a one-to-one correspondence
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   277
  between any constant @{text "c\<^isub>\<tau>"} and the application @{text "c(\<tau>\<^isub>1,
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   278
  \<dots>, \<tau>\<^isub>n)"} of its type arguments.  For example, with @{text "plus :: \<alpha>
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   279
  \<Rightarrow> \<alpha> \<Rightarrow> \<alpha>"}, the instance @{text "plus\<^bsub>nat \<Rightarrow> nat \<Rightarrow> nat\<^esub>"} corresponds to
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   280
  @{text "plus(nat)"}.
20480
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
   281
20514
5ede702cd2ca more on terms;
wenzelm
parents: 20501
diff changeset
   282
  Constant declarations @{text "c :: \<sigma>"} may contain sort constraints
5ede702cd2ca more on terms;
wenzelm
parents: 20501
diff changeset
   283
  for type variables in @{text "\<sigma>"}.  These are observed by
5ede702cd2ca more on terms;
wenzelm
parents: 20501
diff changeset
   284
  type-inference as expected, but \emph{ignored} by the core logic.
5ede702cd2ca more on terms;
wenzelm
parents: 20501
diff changeset
   285
  This means the primitive logic is able to reason with instances of
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   286
  polymorphic constants that the user-level type-checker would reject
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   287
  due to violation of type class restrictions.
20480
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
   288
39861
b8d89db3e238 use continental paragraph style, which works better with mixture of (in)formal text;
wenzelm
parents: 39846
diff changeset
   289
  \medskip An \emph{atomic term} is either a variable or constant.
34929
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   290
  The logical category \emph{term} is defined inductively over atomic
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   291
  terms, with abstraction and application as follows: @{text "t = b |
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   292
  x\<^isub>\<tau> | ?x\<^isub>\<tau> | c\<^isub>\<tau> | \<lambda>\<^isub>\<tau>. t | t\<^isub>1 t\<^isub>2"}.  Parsing and printing takes care of
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   293
  converting between an external representation with named bound
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   294
  variables.  Subsequently, we shall use the latter notation instead
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   295
  of internal de-Bruijn representation.
20498
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
   296
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   297
  The inductive relation @{text "t :: \<tau>"} assigns a (unique) type to a
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   298
  term according to the structure of atomic terms, abstractions, and
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   299
  applicatins:
20498
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
   300
  \[
20501
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   301
  \infer{@{text "a\<^isub>\<tau> :: \<tau>"}}{}
20498
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
   302
  \qquad
20501
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   303
  \infer{@{text "(\<lambda>x\<^sub>\<tau>. t) :: \<tau> \<Rightarrow> \<sigma>"}}{@{text "t :: \<sigma>"}}
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   304
  \qquad
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   305
  \infer{@{text "t u :: \<sigma>"}}{@{text "t :: \<tau> \<Rightarrow> \<sigma>"} & @{text "u :: \<tau>"}}
20498
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
   306
  \]
20514
5ede702cd2ca more on terms;
wenzelm
parents: 20501
diff changeset
   307
  A \emph{well-typed term} is a term that can be typed according to these rules.
20498
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
   308
20514
5ede702cd2ca more on terms;
wenzelm
parents: 20501
diff changeset
   309
  Typing information can be omitted: type-inference is able to
5ede702cd2ca more on terms;
wenzelm
parents: 20501
diff changeset
   310
  reconstruct the most general type of a raw term, while assigning
5ede702cd2ca more on terms;
wenzelm
parents: 20501
diff changeset
   311
  most general types to all of its variables and constants.
5ede702cd2ca more on terms;
wenzelm
parents: 20501
diff changeset
   312
  Type-inference depends on a context of type constraints for fixed
5ede702cd2ca more on terms;
wenzelm
parents: 20501
diff changeset
   313
  variables, and declarations for polymorphic constants.
5ede702cd2ca more on terms;
wenzelm
parents: 20501
diff changeset
   314
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   315
  The identity of atomic terms consists both of the name and the type
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   316
  component.  This means that different variables @{text
34929
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   317
  "x\<^bsub>\<tau>\<^isub>1\<^esub>"} and @{text "x\<^bsub>\<tau>\<^isub>2\<^esub>"} may become the same after
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   318
  type instantiation.  Type-inference rejects variables of the same
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   319
  name, but different types.  In contrast, mixed instances of
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   320
  polymorphic constants occur routinely.
20514
5ede702cd2ca more on terms;
wenzelm
parents: 20501
diff changeset
   321
5ede702cd2ca more on terms;
wenzelm
parents: 20501
diff changeset
   322
  \medskip The \emph{hidden polymorphism} of a term @{text "t :: \<sigma>"}
5ede702cd2ca more on terms;
wenzelm
parents: 20501
diff changeset
   323
  is the set of type variables occurring in @{text "t"}, but not in
34929
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   324
  its type @{text "\<sigma>"}.  This means that the term implicitly depends
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   325
  on type arguments that are not accounted in the result type, i.e.\
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   326
  there are different type instances @{text "t\<vartheta> :: \<sigma>"} and
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   327
  @{text "t\<vartheta>' :: \<sigma>"} with the same type.  This slightly
20543
wenzelm
parents: 20542
diff changeset
   328
  pathological situation notoriously demands additional care.
20514
5ede702cd2ca more on terms;
wenzelm
parents: 20501
diff changeset
   329
5ede702cd2ca more on terms;
wenzelm
parents: 20501
diff changeset
   330
  \medskip A \emph{term abbreviation} is a syntactic definition @{text
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   331
  "c\<^isub>\<sigma> \<equiv> t"} of a closed term @{text "t"} of type @{text "\<sigma>"},
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   332
  without any hidden polymorphism.  A term abbreviation looks like a
20543
wenzelm
parents: 20542
diff changeset
   333
  constant in the syntax, but is expanded before entering the logical
wenzelm
parents: 20542
diff changeset
   334
  core.  Abbreviations are usually reverted when printing terms, using
wenzelm
parents: 20542
diff changeset
   335
  @{text "t \<rightarrow> c\<^isub>\<sigma>"} as rules for higher-order rewriting.
20519
d7ad1217c24a more on terms;
wenzelm
parents: 20514
diff changeset
   336
d7ad1217c24a more on terms;
wenzelm
parents: 20514
diff changeset
   337
  \medskip Canonical operations on @{text "\<lambda>"}-terms include @{text
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   338
  "\<alpha>\<beta>\<eta>"}-conversion: @{text "\<alpha>"}-conversion refers to capture-free
20519
d7ad1217c24a more on terms;
wenzelm
parents: 20514
diff changeset
   339
  renaming of bound variables; @{text "\<beta>"}-conversion contracts an
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   340
  abstraction applied to an argument term, substituting the argument
20519
d7ad1217c24a more on terms;
wenzelm
parents: 20514
diff changeset
   341
  in the body: @{text "(\<lambda>x. b)a"} becomes @{text "b[a/x]"}; @{text
d7ad1217c24a more on terms;
wenzelm
parents: 20514
diff changeset
   342
  "\<eta>"}-conversion contracts vacuous application-abstraction: @{text
d7ad1217c24a more on terms;
wenzelm
parents: 20514
diff changeset
   343
  "\<lambda>x. f x"} becomes @{text "f"}, provided that the bound variable
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   344
  does not occur in @{text "f"}.
20519
d7ad1217c24a more on terms;
wenzelm
parents: 20514
diff changeset
   345
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   346
  Terms are normally treated modulo @{text "\<alpha>"}-conversion, which is
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   347
  implicit in the de-Bruijn representation.  Names for bound variables
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   348
  in abstractions are maintained separately as (meaningless) comments,
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   349
  mostly for parsing and printing.  Full @{text "\<alpha>\<beta>\<eta>"}-conversion is
28784
9495aec512e2 renamed "Rules" to "Object-level rules";
wenzelm
parents: 28674
diff changeset
   350
  commonplace in various standard operations (\secref{sec:obj-rules})
9495aec512e2 renamed "Rules" to "Object-level rules";
wenzelm
parents: 28674
diff changeset
   351
  that are based on higher-order unification and matching.
18537
2681f9e34390 "The Isabelle/Isar Implementation" manual;
wenzelm
parents:
diff changeset
   352
*}
2681f9e34390 "The Isabelle/Isar Implementation" manual;
wenzelm
parents:
diff changeset
   353
20514
5ede702cd2ca more on terms;
wenzelm
parents: 20501
diff changeset
   354
text %mlref {*
5ede702cd2ca more on terms;
wenzelm
parents: 20501
diff changeset
   355
  \begin{mldecls}
5ede702cd2ca more on terms;
wenzelm
parents: 20501
diff changeset
   356
  @{index_ML_type term} \\
20519
d7ad1217c24a more on terms;
wenzelm
parents: 20514
diff changeset
   357
  @{index_ML "op aconv": "term * term -> bool"} \\
39846
cb6634eb8926 examples in Isabelle/HOL;
wenzelm
parents: 39840
diff changeset
   358
  @{index_ML Term.map_types: "(typ -> typ) -> term -> term"} \\
cb6634eb8926 examples in Isabelle/HOL;
wenzelm
parents: 39840
diff changeset
   359
  @{index_ML Term.fold_types: "(typ -> 'a -> 'a) -> term -> 'a -> 'a"} \\
cb6634eb8926 examples in Isabelle/HOL;
wenzelm
parents: 39840
diff changeset
   360
  @{index_ML Term.map_aterms: "(term -> term) -> term -> term"} \\
cb6634eb8926 examples in Isabelle/HOL;
wenzelm
parents: 39840
diff changeset
   361
  @{index_ML Term.fold_aterms: "(term -> 'a -> 'a) -> term -> 'a -> 'a"} \\
20547
wenzelm
parents: 20543
diff changeset
   362
  \end{mldecls}
wenzelm
parents: 20543
diff changeset
   363
  \begin{mldecls}
20514
5ede702cd2ca more on terms;
wenzelm
parents: 20501
diff changeset
   364
  @{index_ML fastype_of: "term -> typ"} \\
20519
d7ad1217c24a more on terms;
wenzelm
parents: 20514
diff changeset
   365
  @{index_ML lambda: "term -> term -> term"} \\
d7ad1217c24a more on terms;
wenzelm
parents: 20514
diff changeset
   366
  @{index_ML betapply: "term * term -> term"} \\
33174
1f2051f41335 adjusted to changes in corresponding ML code
haftmann
parents: 32833
diff changeset
   367
  @{index_ML Sign.declare_const: "(binding * typ) * mixfix ->
24972
acafb18a47dc replaced Sign.add_consts_i by Sign.declare_const;
wenzelm
parents: 24828
diff changeset
   368
  theory -> term * theory"} \\
33174
1f2051f41335 adjusted to changes in corresponding ML code
haftmann
parents: 32833
diff changeset
   369
  @{index_ML Sign.add_abbrev: "string -> binding * term ->
24972
acafb18a47dc replaced Sign.add_consts_i by Sign.declare_const;
wenzelm
parents: 24828
diff changeset
   370
  theory -> (term * term) * theory"} \\
20519
d7ad1217c24a more on terms;
wenzelm
parents: 20514
diff changeset
   371
  @{index_ML Sign.const_typargs: "theory -> string * typ -> typ list"} \\
d7ad1217c24a more on terms;
wenzelm
parents: 20514
diff changeset
   372
  @{index_ML Sign.const_instance: "theory -> string * typ list -> typ"} \\
20514
5ede702cd2ca more on terms;
wenzelm
parents: 20501
diff changeset
   373
  \end{mldecls}
18537
2681f9e34390 "The Isabelle/Isar Implementation" manual;
wenzelm
parents:
diff changeset
   374
20514
5ede702cd2ca more on terms;
wenzelm
parents: 20501
diff changeset
   375
  \begin{description}
18537
2681f9e34390 "The Isabelle/Isar Implementation" manual;
wenzelm
parents:
diff changeset
   376
39864
wenzelm
parents: 39861
diff changeset
   377
  \item Type @{ML_type term} represents de-Bruijn terms, with comments
wenzelm
parents: 39861
diff changeset
   378
  in abstractions, and explicitly named free variables and constants;
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   379
  this is a datatype with constructors @{ML Bound}, @{ML Free}, @{ML
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   380
  Var}, @{ML Const}, @{ML Abs}, @{ML "op $"}.
20519
d7ad1217c24a more on terms;
wenzelm
parents: 20514
diff changeset
   381
36166
da7b40aa2215 made SML/NJ happy;
wenzelm
parents: 36134
diff changeset
   382
  \item @{text "t"}~@{ML_text aconv}~@{text "u"} checks @{text
20519
d7ad1217c24a more on terms;
wenzelm
parents: 20514
diff changeset
   383
  "\<alpha>"}-equivalence of two terms.  This is the basic equality relation
d7ad1217c24a more on terms;
wenzelm
parents: 20514
diff changeset
   384
  on type @{ML_type term}; raw datatype equality should only be used
d7ad1217c24a more on terms;
wenzelm
parents: 20514
diff changeset
   385
  for operations related to parsing or printing!
d7ad1217c24a more on terms;
wenzelm
parents: 20514
diff changeset
   386
39846
cb6634eb8926 examples in Isabelle/HOL;
wenzelm
parents: 39840
diff changeset
   387
  \item @{ML Term.map_types}~@{text "f t"} applies the mapping @{text
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   388
  "f"} to all types occurring in @{text "t"}.
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   389
39846
cb6634eb8926 examples in Isabelle/HOL;
wenzelm
parents: 39840
diff changeset
   390
  \item @{ML Term.fold_types}~@{text "f t"} iterates the operation
cb6634eb8926 examples in Isabelle/HOL;
wenzelm
parents: 39840
diff changeset
   391
  @{text "f"} over all occurrences of types in @{text "t"}; the term
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   392
  structure is traversed from left to right.
20519
d7ad1217c24a more on terms;
wenzelm
parents: 20514
diff changeset
   393
39846
cb6634eb8926 examples in Isabelle/HOL;
wenzelm
parents: 39840
diff changeset
   394
  \item @{ML Term.map_aterms}~@{text "f t"} applies the mapping @{text
cb6634eb8926 examples in Isabelle/HOL;
wenzelm
parents: 39840
diff changeset
   395
  "f"} to all atomic terms (@{ML Bound}, @{ML Free}, @{ML Var}, @{ML
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   396
  Const}) occurring in @{text "t"}.
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   397
39846
cb6634eb8926 examples in Isabelle/HOL;
wenzelm
parents: 39840
diff changeset
   398
  \item @{ML Term.fold_aterms}~@{text "f t"} iterates the operation
cb6634eb8926 examples in Isabelle/HOL;
wenzelm
parents: 39840
diff changeset
   399
  @{text "f"} over all occurrences of atomic terms (@{ML Bound}, @{ML
cb6634eb8926 examples in Isabelle/HOL;
wenzelm
parents: 39840
diff changeset
   400
  Free}, @{ML Var}, @{ML Const}) in @{text "t"}; the term structure is
20519
d7ad1217c24a more on terms;
wenzelm
parents: 20514
diff changeset
   401
  traversed from left to right.
d7ad1217c24a more on terms;
wenzelm
parents: 20514
diff changeset
   402
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   403
  \item @{ML fastype_of}~@{text "t"} determines the type of a
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   404
  well-typed term.  This operation is relatively slow, despite the
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   405
  omission of any sanity checks.
20519
d7ad1217c24a more on terms;
wenzelm
parents: 20514
diff changeset
   406
d7ad1217c24a more on terms;
wenzelm
parents: 20514
diff changeset
   407
  \item @{ML lambda}~@{text "a b"} produces an abstraction @{text
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   408
  "\<lambda>a. b"}, where occurrences of the atomic term @{text "a"} in the
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   409
  body @{text "b"} are replaced by bound variables.
20519
d7ad1217c24a more on terms;
wenzelm
parents: 20514
diff changeset
   410
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   411
  \item @{ML betapply}~@{text "(t, u)"} produces an application @{text
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   412
  "t u"}, with topmost @{text "\<beta>"}-conversion if @{text "t"} is an
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   413
  abstraction.
20519
d7ad1217c24a more on terms;
wenzelm
parents: 20514
diff changeset
   414
33174
1f2051f41335 adjusted to changes in corresponding ML code
haftmann
parents: 32833
diff changeset
   415
  \item @{ML Sign.declare_const}~@{text "((c, \<sigma>), mx)"}
24972
acafb18a47dc replaced Sign.add_consts_i by Sign.declare_const;
wenzelm
parents: 24828
diff changeset
   416
  declares a new constant @{text "c :: \<sigma>"} with optional mixfix
acafb18a47dc replaced Sign.add_consts_i by Sign.declare_const;
wenzelm
parents: 24828
diff changeset
   417
  syntax.
20519
d7ad1217c24a more on terms;
wenzelm
parents: 20514
diff changeset
   418
33174
1f2051f41335 adjusted to changes in corresponding ML code
haftmann
parents: 32833
diff changeset
   419
  \item @{ML Sign.add_abbrev}~@{text "print_mode (c, t)"}
21827
0b1d07f79c1e updated;
wenzelm
parents: 21324
diff changeset
   420
  introduces a new term abbreviation @{text "c \<equiv> t"}.
20519
d7ad1217c24a more on terms;
wenzelm
parents: 20514
diff changeset
   421
20520
wenzelm
parents: 20519
diff changeset
   422
  \item @{ML Sign.const_typargs}~@{text "thy (c, \<tau>)"} and @{ML
wenzelm
parents: 20519
diff changeset
   423
  Sign.const_instance}~@{text "thy (c, [\<tau>\<^isub>1, \<dots>, \<tau>\<^isub>n])"}
20543
wenzelm
parents: 20542
diff changeset
   424
  convert between two representations of polymorphic constants: full
wenzelm
parents: 20542
diff changeset
   425
  type instance vs.\ compact type arguments form.
18537
2681f9e34390 "The Isabelle/Isar Implementation" manual;
wenzelm
parents:
diff changeset
   426
20514
5ede702cd2ca more on terms;
wenzelm
parents: 20501
diff changeset
   427
  \end{description}
18537
2681f9e34390 "The Isabelle/Isar Implementation" manual;
wenzelm
parents:
diff changeset
   428
*}
2681f9e34390 "The Isabelle/Isar Implementation" manual;
wenzelm
parents:
diff changeset
   429
39832
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   430
text %mlantiq {*
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   431
  \begin{matharray}{rcl}
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   432
  @{ML_antiquotation_def "const_name"} & : & @{text ML_antiquotation} \\
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   433
  @{ML_antiquotation_def "const_abbrev"} & : & @{text ML_antiquotation} \\
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   434
  @{ML_antiquotation_def "const"} & : & @{text ML_antiquotation} \\
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   435
  @{ML_antiquotation_def "term"} & : & @{text ML_antiquotation} \\
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   436
  @{ML_antiquotation_def "prop"} & : & @{text ML_antiquotation} \\
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   437
  \end{matharray}
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   438
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   439
  \begin{rail}
40255
9ffbc25e1606 eliminated obsolete \_ escapes in rail environments;
wenzelm
parents: 40126
diff changeset
   440
  ('const_name' | 'const_abbrev') nameref
39832
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   441
  ;
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   442
  'const' ('(' (type + ',') ')')?
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   443
  ;
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   444
  'term' term
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   445
  ;
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   446
  'prop' prop
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   447
  ;
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   448
  \end{rail}
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   449
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   450
  \begin{description}
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   451
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   452
  \item @{text "@{const_name c}"} inlines the internalized logical
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   453
  constant name @{text "c"} --- as @{ML_type string} literal.
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   454
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   455
  \item @{text "@{const_abbrev c}"} inlines the internalized
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   456
  abbreviated constant name @{text "c"} --- as @{ML_type string}
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   457
  literal.
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   458
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   459
  \item @{text "@{const c(\<^vec>\<tau>)}"} inlines the internalized
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   460
  constant @{text "c"} with precise type instantiation in the sense of
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   461
  @{ML Sign.const_instance} --- as @{ML Const} constructor term for
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   462
  datatype @{ML_type term}.
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   463
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   464
  \item @{text "@{term t}"} inlines the internalized term @{text "t"}
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   465
  --- as constructor term for datatype @{ML_type term}.
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   466
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   467
  \item @{text "@{prop \<phi>}"} inlines the internalized proposition
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   468
  @{text "\<phi>"} --- as constructor term for datatype @{ML_type term}.
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   469
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   470
  \end{description}
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   471
*}
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   472
18537
2681f9e34390 "The Isabelle/Isar Implementation" manual;
wenzelm
parents:
diff changeset
   473
20451
27ea2ba48fa3 misc cleanup;
wenzelm
parents: 20450
diff changeset
   474
section {* Theorems \label{sec:thms} *}
18537
2681f9e34390 "The Isabelle/Isar Implementation" manual;
wenzelm
parents:
diff changeset
   475
2681f9e34390 "The Isabelle/Isar Implementation" manual;
wenzelm
parents:
diff changeset
   476
text {*
20543
wenzelm
parents: 20542
diff changeset
   477
  A \emph{proposition} is a well-typed term of type @{text "prop"}, a
20521
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   478
  \emph{theorem} is a proven proposition (depending on a context of
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   479
  hypotheses and the background theory).  Primitive inferences include
29774
wenzelm
parents: 29771
diff changeset
   480
  plain Natural Deduction rules for the primary connectives @{text
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   481
  "\<And>"} and @{text "\<Longrightarrow>"} of the framework.  There is also a builtin
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   482
  notion of equality/equivalence @{text "\<equiv>"}.
20521
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   483
*}
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   484
29758
7a3b5bbed313 removed rudiments of glossary;
wenzelm
parents: 29755
diff changeset
   485
26872
336dfd860744 fixed some labels;
wenzelm
parents: 24972
diff changeset
   486
subsection {* Primitive connectives and rules \label{sec:prim-rules} *}
18537
2681f9e34390 "The Isabelle/Isar Implementation" manual;
wenzelm
parents:
diff changeset
   487
20521
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   488
text {*
20543
wenzelm
parents: 20542
diff changeset
   489
  The theory @{text "Pure"} contains constant declarations for the
wenzelm
parents: 20542
diff changeset
   490
  primitive connectives @{text "\<And>"}, @{text "\<Longrightarrow>"}, and @{text "\<equiv>"} of
wenzelm
parents: 20542
diff changeset
   491
  the logical framework, see \figref{fig:pure-connectives}.  The
wenzelm
parents: 20542
diff changeset
   492
  derivability judgment @{text "A\<^isub>1, \<dots>, A\<^isub>n \<turnstile> B"} is
wenzelm
parents: 20542
diff changeset
   493
  defined inductively by the primitive inferences given in
wenzelm
parents: 20542
diff changeset
   494
  \figref{fig:prim-rules}, with the global restriction that the
wenzelm
parents: 20542
diff changeset
   495
  hypotheses must \emph{not} contain any schematic variables.  The
wenzelm
parents: 20542
diff changeset
   496
  builtin equality is conceptually axiomatized as shown in
20521
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   497
  \figref{fig:pure-equality}, although the implementation works
20543
wenzelm
parents: 20542
diff changeset
   498
  directly with derived inferences.
20521
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   499
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   500
  \begin{figure}[htb]
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   501
  \begin{center}
20501
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   502
  \begin{tabular}{ll}
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   503
  @{text "all :: (\<alpha> \<Rightarrow> prop) \<Rightarrow> prop"} & universal quantification (binder @{text "\<And>"}) \\
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   504
  @{text "\<Longrightarrow> :: prop \<Rightarrow> prop \<Rightarrow> prop"} & implication (right associative infix) \\
20521
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   505
  @{text "\<equiv> :: \<alpha> \<Rightarrow> \<alpha> \<Rightarrow> prop"} & equality relation (infix) \\
20501
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   506
  \end{tabular}
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   507
  \caption{Primitive connectives of Pure}\label{fig:pure-connectives}
20521
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   508
  \end{center}
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   509
  \end{figure}
18537
2681f9e34390 "The Isabelle/Isar Implementation" manual;
wenzelm
parents:
diff changeset
   510
20501
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   511
  \begin{figure}[htb]
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   512
  \begin{center}
20498
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
   513
  \[
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
   514
  \infer[@{text "(axiom)"}]{@{text "\<turnstile> A"}}{@{text "A \<in> \<Theta>"}}
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
   515
  \qquad
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
   516
  \infer[@{text "(assume)"}]{@{text "A \<turnstile> A"}}{}
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
   517
  \]
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
   518
  \[
34929
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   519
  \infer[@{text "(\<And>\<dash>intro)"}]{@{text "\<Gamma> \<turnstile> \<And>x. b[x]"}}{@{text "\<Gamma> \<turnstile> b[x]"} & @{text "x \<notin> \<Gamma>"}}
20498
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
   520
  \qquad
34929
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   521
  \infer[@{text "(\<And>\<dash>elim)"}]{@{text "\<Gamma> \<turnstile> b[a]"}}{@{text "\<Gamma> \<turnstile> \<And>x. b[x]"}}
20498
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
   522
  \]
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
   523
  \[
34929
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   524
  \infer[@{text "(\<Longrightarrow>\<dash>intro)"}]{@{text "\<Gamma> - A \<turnstile> A \<Longrightarrow> B"}}{@{text "\<Gamma> \<turnstile> B"}}
20498
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
   525
  \qquad
34929
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   526
  \infer[@{text "(\<Longrightarrow>\<dash>elim)"}]{@{text "\<Gamma>\<^sub>1 \<union> \<Gamma>\<^sub>2 \<turnstile> B"}}{@{text "\<Gamma>\<^sub>1 \<turnstile> A \<Longrightarrow> B"} & @{text "\<Gamma>\<^sub>2 \<turnstile> A"}}
20498
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
   527
  \]
20521
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   528
  \caption{Primitive inferences of Pure}\label{fig:prim-rules}
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   529
  \end{center}
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   530
  \end{figure}
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   531
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   532
  \begin{figure}[htb]
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   533
  \begin{center}
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   534
  \begin{tabular}{ll}
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   535
  @{text "\<turnstile> (\<lambda>x. b[x]) a \<equiv> b[a]"} & @{text "\<beta>"}-conversion \\
20521
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   536
  @{text "\<turnstile> x \<equiv> x"} & reflexivity \\
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   537
  @{text "\<turnstile> x \<equiv> y \<Longrightarrow> P x \<Longrightarrow> P y"} & substitution \\
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   538
  @{text "\<turnstile> (\<And>x. f x \<equiv> g x) \<Longrightarrow> f \<equiv> g"} & extensionality \\
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   539
  @{text "\<turnstile> (A \<Longrightarrow> B) \<Longrightarrow> (B \<Longrightarrow> A) \<Longrightarrow> A \<equiv> B"} & logical equivalence \\
20521
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   540
  \end{tabular}
20542
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   541
  \caption{Conceptual axiomatization of Pure equality}\label{fig:pure-equality}
20501
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   542
  \end{center}
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   543
  \end{figure}
18537
2681f9e34390 "The Isabelle/Isar Implementation" manual;
wenzelm
parents:
diff changeset
   544
20501
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   545
  The introduction and elimination rules for @{text "\<And>"} and @{text
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   546
  "\<Longrightarrow>"} are analogous to formation of dependently typed @{text
20501
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   547
  "\<lambda>"}-terms representing the underlying proof objects.  Proof terms
20543
wenzelm
parents: 20542
diff changeset
   548
  are irrelevant in the Pure logic, though; they cannot occur within
wenzelm
parents: 20542
diff changeset
   549
  propositions.  The system provides a runtime option to record
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   550
  explicit proof terms for primitive inferences.  Thus all three
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   551
  levels of @{text "\<lambda>"}-calculus become explicit: @{text "\<Rightarrow>"} for
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   552
  terms, and @{text "\<And>/\<Longrightarrow>"} for proofs (cf.\
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   553
  \cite{Berghofer-Nipkow:2000:TPHOL}).
20491
wenzelm
parents: 20480
diff changeset
   554
34929
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   555
  Observe that locally fixed parameters (as in @{text
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   556
  "\<And>\<dash>intro"}) need not be recorded in the hypotheses, because
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   557
  the simple syntactic types of Pure are always inhabitable.
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   558
  ``Assumptions'' @{text "x :: \<tau>"} for type-membership are only
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   559
  present as long as some @{text "x\<^isub>\<tau>"} occurs in the statement
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   560
  body.\footnote{This is the key difference to ``@{text "\<lambda>HOL"}'' in
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   561
  the PTS framework \cite{Barendregt-Geuvers:2001}, where hypotheses
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   562
  @{text "x : A"} are treated uniformly for propositions and types.}
20501
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   563
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   564
  \medskip The axiomatization of a theory is implicitly closed by
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   565
  forming all instances of type and term variables: @{text "\<turnstile>
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   566
  A\<vartheta>"} holds for any substitution instance of an axiom
20543
wenzelm
parents: 20542
diff changeset
   567
  @{text "\<turnstile> A"}.  By pushing substitutions through derivations
wenzelm
parents: 20542
diff changeset
   568
  inductively, we also get admissible @{text "generalize"} and @{text
34929
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   569
  "instantiate"} rules as shown in \figref{fig:subst-rules}.
20501
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   570
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   571
  \begin{figure}[htb]
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   572
  \begin{center}
20498
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
   573
  \[
20501
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   574
  \infer{@{text "\<Gamma> \<turnstile> B[?\<alpha>]"}}{@{text "\<Gamma> \<turnstile> B[\<alpha>]"} & @{text "\<alpha> \<notin> \<Gamma>"}}
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   575
  \quad
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   576
  \infer[\quad@{text "(generalize)"}]{@{text "\<Gamma> \<turnstile> B[?x]"}}{@{text "\<Gamma> \<turnstile> B[x]"} & @{text "x \<notin> \<Gamma>"}}
20498
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
   577
  \]
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
   578
  \[
20501
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   579
  \infer{@{text "\<Gamma> \<turnstile> B[\<tau>]"}}{@{text "\<Gamma> \<turnstile> B[?\<alpha>]"}}
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   580
  \quad
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   581
  \infer[\quad@{text "(instantiate)"}]{@{text "\<Gamma> \<turnstile> B[t]"}}{@{text "\<Gamma> \<turnstile> B[?x]"}}
20498
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
   582
  \]
20501
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   583
  \caption{Admissible substitution rules}\label{fig:subst-rules}
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   584
  \end{center}
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   585
  \end{figure}
18537
2681f9e34390 "The Isabelle/Isar Implementation" manual;
wenzelm
parents:
diff changeset
   586
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   587
  Note that @{text "instantiate"} does not require an explicit
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   588
  side-condition, because @{text "\<Gamma>"} may never contain schematic
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   589
  variables.
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   590
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   591
  In principle, variables could be substituted in hypotheses as well,
20543
wenzelm
parents: 20542
diff changeset
   592
  but this would disrupt the monotonicity of reasoning: deriving
wenzelm
parents: 20542
diff changeset
   593
  @{text "\<Gamma>\<vartheta> \<turnstile> B\<vartheta>"} from @{text "\<Gamma> \<turnstile> B"} is
wenzelm
parents: 20542
diff changeset
   594
  correct, but @{text "\<Gamma>\<vartheta> \<supseteq> \<Gamma>"} does not necessarily hold:
wenzelm
parents: 20542
diff changeset
   595
  the result belongs to a different proof context.
20542
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   596
20543
wenzelm
parents: 20542
diff changeset
   597
  \medskip An \emph{oracle} is a function that produces axioms on the
wenzelm
parents: 20542
diff changeset
   598
  fly.  Logically, this is an instance of the @{text "axiom"} rule
wenzelm
parents: 20542
diff changeset
   599
  (\figref{fig:prim-rules}), but there is an operational difference.
wenzelm
parents: 20542
diff changeset
   600
  The system always records oracle invocations within derivations of
29768
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   601
  theorems by a unique tag.
20542
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   602
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   603
  Axiomatizations should be limited to the bare minimum, typically as
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   604
  part of the initial logical basis of an object-logic formalization.
20543
wenzelm
parents: 20542
diff changeset
   605
  Later on, theories are usually developed in a strictly definitional
wenzelm
parents: 20542
diff changeset
   606
  fashion, by stating only certain equalities over new constants.
20542
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   607
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   608
  A \emph{simple definition} consists of a constant declaration @{text
20543
wenzelm
parents: 20542
diff changeset
   609
  "c :: \<sigma>"} together with an axiom @{text "\<turnstile> c \<equiv> t"}, where @{text "t
wenzelm
parents: 20542
diff changeset
   610
  :: \<sigma>"} is a closed term without any hidden polymorphism.  The RHS
wenzelm
parents: 20542
diff changeset
   611
  may depend on further defined constants, but not @{text "c"} itself.
wenzelm
parents: 20542
diff changeset
   612
  Definitions of functions may be presented as @{text "c \<^vec>x \<equiv>
wenzelm
parents: 20542
diff changeset
   613
  t"} instead of the puristic @{text "c \<equiv> \<lambda>\<^vec>x. t"}.
20542
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   614
20543
wenzelm
parents: 20542
diff changeset
   615
  An \emph{overloaded definition} consists of a collection of axioms
wenzelm
parents: 20542
diff changeset
   616
  for the same constant, with zero or one equations @{text
wenzelm
parents: 20542
diff changeset
   617
  "c((\<^vec>\<alpha>)\<kappa>) \<equiv> t"} for each type constructor @{text "\<kappa>"} (for
wenzelm
parents: 20542
diff changeset
   618
  distinct variables @{text "\<^vec>\<alpha>"}).  The RHS may mention
wenzelm
parents: 20542
diff changeset
   619
  previously defined constants as above, or arbitrary constants @{text
wenzelm
parents: 20542
diff changeset
   620
  "d(\<alpha>\<^isub>i)"} for some @{text "\<alpha>\<^isub>i"} projected from @{text
wenzelm
parents: 20542
diff changeset
   621
  "\<^vec>\<alpha>"}.  Thus overloaded definitions essentially work by
wenzelm
parents: 20542
diff changeset
   622
  primitive recursion over the syntactic structure of a single type
39840
3eb0694e6fcb more refs;
wenzelm
parents: 39832
diff changeset
   623
  argument.  See also \cite[\S4.3]{Haftmann-Wenzel:2006:classes}.
20521
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   624
*}
20498
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
   625
20521
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   626
text %mlref {*
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   627
  \begin{mldecls}
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   628
  @{index_ML_type ctyp} \\
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   629
  @{index_ML_type cterm} \\
20547
wenzelm
parents: 20543
diff changeset
   630
  @{index_ML Thm.ctyp_of: "theory -> typ -> ctyp"} \\
wenzelm
parents: 20543
diff changeset
   631
  @{index_ML Thm.cterm_of: "theory -> term -> cterm"} \\
wenzelm
parents: 20543
diff changeset
   632
  \end{mldecls}
wenzelm
parents: 20543
diff changeset
   633
  \begin{mldecls}
20521
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   634
  @{index_ML_type thm} \\
32833
f3716d1a2e48 explicitly Unsynchronized;
wenzelm
parents: 30552
diff changeset
   635
  @{index_ML proofs: "int Unsynchronized.ref"} \\
20542
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   636
  @{index_ML Thm.assume: "cterm -> thm"} \\
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   637
  @{index_ML Thm.forall_intr: "cterm -> thm -> thm"} \\
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   638
  @{index_ML Thm.forall_elim: "cterm -> thm -> thm"} \\
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   639
  @{index_ML Thm.implies_intr: "cterm -> thm -> thm"} \\
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   640
  @{index_ML Thm.implies_elim: "thm -> thm -> thm"} \\
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   641
  @{index_ML Thm.generalize: "string list * string list -> int -> thm -> thm"} \\
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   642
  @{index_ML Thm.instantiate: "(ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm"} \\
36134
c210a8fda4c5 updated Thm.add_axiom/add_def;
wenzelm
parents: 35927
diff changeset
   643
  @{index_ML Thm.add_axiom: "binding * term -> theory -> (string * thm) * theory"} \\
39821
bf164c153d10 minor tuning and updating;
wenzelm
parents: 39281
diff changeset
   644
  @{index_ML Thm.add_oracle: "binding * ('a -> cterm) -> theory ->
bf164c153d10 minor tuning and updating;
wenzelm
parents: 39281
diff changeset
   645
  (string * ('a -> thm)) * theory"} \\
bf164c153d10 minor tuning and updating;
wenzelm
parents: 39281
diff changeset
   646
  @{index_ML Thm.add_def: "bool -> bool -> binding * term -> theory ->
bf164c153d10 minor tuning and updating;
wenzelm
parents: 39281
diff changeset
   647
  (string * thm) * theory"} \\
20547
wenzelm
parents: 20543
diff changeset
   648
  \end{mldecls}
wenzelm
parents: 20543
diff changeset
   649
  \begin{mldecls}
39821
bf164c153d10 minor tuning and updating;
wenzelm
parents: 39281
diff changeset
   650
  @{index_ML Theory.add_deps: "string -> string * typ -> (string * typ) list ->
bf164c153d10 minor tuning and updating;
wenzelm
parents: 39281
diff changeset
   651
  theory -> theory"} \\
20521
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   652
  \end{mldecls}
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   653
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   654
  \begin{description}
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   655
39864
wenzelm
parents: 39861
diff changeset
   656
  \item Types @{ML_type ctyp} and @{ML_type cterm} represent certified
wenzelm
parents: 39861
diff changeset
   657
  types and terms, respectively.  These are abstract datatypes that
20542
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   658
  guarantee that its values have passed the full well-formedness (and
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   659
  well-typedness) checks, relative to the declarations of type
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   660
  constructors, constants etc. in the theory.
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   661
29768
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   662
  \item @{ML Thm.ctyp_of}~@{text "thy \<tau>"} and @{ML
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   663
  Thm.cterm_of}~@{text "thy t"} explicitly checks types and terms,
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   664
  respectively.  This also involves some basic normalizations, such
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   665
  expansion of type and term abbreviations from the theory context.
20547
wenzelm
parents: 20543
diff changeset
   666
wenzelm
parents: 20543
diff changeset
   667
  Re-certification is relatively slow and should be avoided in tight
wenzelm
parents: 20543
diff changeset
   668
  reasoning loops.  There are separate operations to decompose
wenzelm
parents: 20543
diff changeset
   669
  certified entities (including actual theorems).
20542
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   670
39864
wenzelm
parents: 39861
diff changeset
   671
  \item Type @{ML_type thm} represents proven propositions.  This is
wenzelm
parents: 39861
diff changeset
   672
  an abstract datatype that guarantees that its values have been
20542
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   673
  constructed by basic principles of the @{ML_struct Thm} module.
39281
148b78fb70d8 fixed antiquotation;
wenzelm
parents: 36345
diff changeset
   674
  Every @{ML_type thm} value contains a sliding back-reference to the
20543
wenzelm
parents: 20542
diff changeset
   675
  enclosing theory, cf.\ \secref{sec:context-theory}.
20542
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   676
34929
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   677
  \item @{ML proofs} specifies the detail of proof recording within
29768
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   678
  @{ML_type thm} values: @{ML 0} records only the names of oracles,
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   679
  @{ML 1} records oracle names and propositions, @{ML 2} additionally
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   680
  records full proof terms.  Officially named theorems that contribute
34929
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   681
  to a result are recorded in any case.
20542
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   682
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   683
  \item @{ML Thm.assume}, @{ML Thm.forall_intr}, @{ML
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   684
  Thm.forall_elim}, @{ML Thm.implies_intr}, and @{ML Thm.implies_elim}
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   685
  correspond to the primitive inferences of \figref{fig:prim-rules}.
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   686
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   687
  \item @{ML Thm.generalize}~@{text "(\<^vec>\<alpha>, \<^vec>x)"}
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   688
  corresponds to the @{text "generalize"} rules of
20543
wenzelm
parents: 20542
diff changeset
   689
  \figref{fig:subst-rules}.  Here collections of type and term
wenzelm
parents: 20542
diff changeset
   690
  variables are generalized simultaneously, specified by the given
wenzelm
parents: 20542
diff changeset
   691
  basic names.
20521
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   692
20542
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   693
  \item @{ML Thm.instantiate}~@{text "(\<^vec>\<alpha>\<^isub>s,
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   694
  \<^vec>x\<^isub>\<tau>)"} corresponds to the @{text "instantiate"} rules
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   695
  of \figref{fig:subst-rules}.  Type variables are substituted before
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   696
  term variables.  Note that the types in @{text "\<^vec>x\<^isub>\<tau>"}
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   697
  refer to the instantiated versions.
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   698
35927
343d5b0df29a updated Thm.add_axiom/add_def;
wenzelm
parents: 34929
diff changeset
   699
  \item @{ML Thm.add_axiom}~@{text "(name, A) thy"} declares an
343d5b0df29a updated Thm.add_axiom/add_def;
wenzelm
parents: 34929
diff changeset
   700
  arbitrary proposition as axiom, and retrieves it as a theorem from
343d5b0df29a updated Thm.add_axiom/add_def;
wenzelm
parents: 34929
diff changeset
   701
  the resulting theory, cf.\ @{text "axiom"} in
343d5b0df29a updated Thm.add_axiom/add_def;
wenzelm
parents: 34929
diff changeset
   702
  \figref{fig:prim-rules}.  Note that the low-level representation in
343d5b0df29a updated Thm.add_axiom/add_def;
wenzelm
parents: 34929
diff changeset
   703
  the axiom table may differ slightly from the returned theorem.
20542
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   704
30288
a32700e45ab3 Thm.add_oracle interface: replaced old bstring by binding;
wenzelm
parents: 30272
diff changeset
   705
  \item @{ML Thm.add_oracle}~@{text "(binding, oracle)"} produces a named
28290
4cc2b6046258 simplified oracle interface;
wenzelm
parents: 28110
diff changeset
   706
  oracle rule, essentially generating arbitrary axioms on the fly,
4cc2b6046258 simplified oracle interface;
wenzelm
parents: 28110
diff changeset
   707
  cf.\ @{text "axiom"} in \figref{fig:prim-rules}.
20521
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   708
35927
343d5b0df29a updated Thm.add_axiom/add_def;
wenzelm
parents: 34929
diff changeset
   709
  \item @{ML Thm.add_def}~@{text "unchecked overloaded (name, c
343d5b0df29a updated Thm.add_axiom/add_def;
wenzelm
parents: 34929
diff changeset
   710
  \<^vec>x \<equiv> t)"} states a definitional axiom for an existing constant
343d5b0df29a updated Thm.add_axiom/add_def;
wenzelm
parents: 34929
diff changeset
   711
  @{text "c"}.  Dependencies are recorded via @{ML Theory.add_deps},
343d5b0df29a updated Thm.add_axiom/add_def;
wenzelm
parents: 34929
diff changeset
   712
  unless the @{text "unchecked"} option is set.  Note that the
343d5b0df29a updated Thm.add_axiom/add_def;
wenzelm
parents: 34929
diff changeset
   713
  low-level representation in the axiom table may differ slightly from
343d5b0df29a updated Thm.add_axiom/add_def;
wenzelm
parents: 34929
diff changeset
   714
  the returned theorem.
20542
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   715
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   716
  \item @{ML Theory.add_deps}~@{text "name c\<^isub>\<tau>
20543
wenzelm
parents: 20542
diff changeset
   717
  \<^vec>d\<^isub>\<sigma>"} declares dependencies of a named specification
wenzelm
parents: 20542
diff changeset
   718
  for constant @{text "c\<^isub>\<tau>"}, relative to existing
wenzelm
parents: 20542
diff changeset
   719
  specifications for constants @{text "\<^vec>d\<^isub>\<sigma>"}.
20542
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   720
20521
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   721
  \end{description}
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   722
*}
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   723
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   724
39832
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   725
text %mlantiq {*
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   726
  \begin{matharray}{rcl}
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   727
  @{ML_antiquotation_def "ctyp"} & : & @{text ML_antiquotation} \\
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   728
  @{ML_antiquotation_def "cterm"} & : & @{text ML_antiquotation} \\
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   729
  @{ML_antiquotation_def "cprop"} & : & @{text ML_antiquotation} \\
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   730
  @{ML_antiquotation_def "thm"} & : & @{text ML_antiquotation} \\
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   731
  @{ML_antiquotation_def "thms"} & : & @{text ML_antiquotation} \\
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   732
  @{ML_antiquotation_def "lemma"} & : & @{text ML_antiquotation} \\
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   733
  \end{matharray}
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   734
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   735
  \begin{rail}
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   736
  'ctyp' typ
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   737
  ;
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   738
  'cterm' term
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   739
  ;
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   740
  'cprop' prop
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   741
  ;
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   742
  'thm' thmref
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   743
  ;
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   744
  'thms' thmrefs
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   745
  ;
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   746
  'lemma' ('(open)')? ((prop +) + 'and') \\ 'by' method method?
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   747
  \end{rail}
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   748
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   749
  \begin{description}
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   750
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   751
  \item @{text "@{ctyp \<tau>}"} produces a certified type wrt.\ the
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   752
  current background theory --- as abstract value of type @{ML_type
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   753
  ctyp}.
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   754
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   755
  \item @{text "@{cterm t}"} and @{text "@{cprop \<phi>}"} produce a
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   756
  certified term wrt.\ the current background theory --- as abstract
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   757
  value of type @{ML_type cterm}.
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   758
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   759
  \item @{text "@{thm a}"} produces a singleton fact --- as abstract
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   760
  value of type @{ML_type thm}.
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   761
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   762
  \item @{text "@{thms a}"} produces a general fact --- as abstract
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   763
  value of type @{ML_type "thm list"}.
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   764
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   765
  \item @{text "@{lemma \<phi> by meth}"} produces a fact that is proven on
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   766
  the spot according to the minimal proof, which imitates a terminal
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   767
  Isar proof.  The result is an abstract value of type @{ML_type thm}
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   768
  or @{ML_type "thm list"}, depending on the number of propositions
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   769
  given here.
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   770
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   771
  The internal derivation object lacks a proper theorem name, but it
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   772
  is formally closed, unless the @{text "(open)"} option is specified
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   773
  (this may impact performance of applications with proof terms).
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   774
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   775
  Since ML antiquotations are always evaluated at compile-time, there
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   776
  is no run-time overhead even for non-trivial proofs.  Nonetheless,
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   777
  the justification is syntactically limited to a single @{command
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   778
  "by"} step.  More complex Isar proofs should be done in regular
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   779
  theory source, before compiling the corresponding ML text that uses
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   780
  the result.
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   781
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   782
  \end{description}
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   783
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   784
*}
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   785
1080dee73a53 various concrete ML antiquotations;
wenzelm
parents: 39821
diff changeset
   786
40126
916cb4a28ffd misc tuning;
wenzelm
parents: 39864
diff changeset
   787
subsection {* Auxiliary definitions \label{sec:logic-aux} *}
20521
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   788
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   789
text {*
20543
wenzelm
parents: 20542
diff changeset
   790
  Theory @{text "Pure"} provides a few auxiliary definitions, see
wenzelm
parents: 20542
diff changeset
   791
  \figref{fig:pure-aux}.  These special constants are normally not
wenzelm
parents: 20542
diff changeset
   792
  exposed to the user, but appear in internal encodings.
20501
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   793
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   794
  \begin{figure}[htb]
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   795
  \begin{center}
20498
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
   796
  \begin{tabular}{ll}
34929
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   797
  @{text "conjunction :: prop \<Rightarrow> prop \<Rightarrow> prop"} & (infix @{text "&&&"}) \\
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   798
  @{text "\<turnstile> A &&& B \<equiv> (\<And>C. (A \<Longrightarrow> B \<Longrightarrow> C) \<Longrightarrow> C)"} \\[1ex]
20543
wenzelm
parents: 20542
diff changeset
   799
  @{text "prop :: prop \<Rightarrow> prop"} & (prefix @{text "#"}, suppressed) \\
20521
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   800
  @{text "#A \<equiv> A"} \\[1ex]
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   801
  @{text "term :: \<alpha> \<Rightarrow> prop"} & (prefix @{text "TERM"}) \\
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   802
  @{text "term x \<equiv> (\<And>A. A \<Longrightarrow> A)"} \\[1ex]
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   803
  @{text "TYPE :: \<alpha> itself"} & (prefix @{text "TYPE"}) \\
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   804
  @{text "(unspecified)"} \\
20498
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
   805
  \end{tabular}
20521
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   806
  \caption{Definitions of auxiliary connectives}\label{fig:pure-aux}
20501
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   807
  \end{center}
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   808
  \end{figure}
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   809
34929
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   810
  The introduction @{text "A \<Longrightarrow> B \<Longrightarrow> A &&& B"}, and eliminations
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   811
  (projections) @{text "A &&& B \<Longrightarrow> A"} and @{text "A &&& B \<Longrightarrow> B"} are
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   812
  available as derived rules.  Conjunction allows to treat
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   813
  simultaneous assumptions and conclusions uniformly, e.g.\ consider
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   814
  @{text "A \<Longrightarrow> B \<Longrightarrow> C &&& D"}.  In particular, the goal mechanism
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   815
  represents multiple claims as explicit conjunction internally, but
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   816
  this is refined (via backwards introduction) into separate sub-goals
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   817
  before the user commences the proof; the final result is projected
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   818
  into a list of theorems using eliminations (cf.\
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   819
  \secref{sec:tactical-goals}).
20498
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
   820
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   821
  The @{text "prop"} marker (@{text "#"}) makes arbitrarily complex
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   822
  propositions appear as atomic, without changing the meaning: @{text
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   823
  "\<Gamma> \<turnstile> A"} and @{text "\<Gamma> \<turnstile> #A"} are interchangeable.  See
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   824
  \secref{sec:tactical-goals} for specific operations.
20521
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   825
20543
wenzelm
parents: 20542
diff changeset
   826
  The @{text "term"} marker turns any well-typed term into a derivable
wenzelm
parents: 20542
diff changeset
   827
  proposition: @{text "\<turnstile> TERM t"} holds unconditionally.  Although
wenzelm
parents: 20542
diff changeset
   828
  this is logically vacuous, it allows to treat terms and proofs
wenzelm
parents: 20542
diff changeset
   829
  uniformly, similar to a type-theoretic framework.
20498
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
   830
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   831
  The @{text "TYPE"} constructor is the canonical representative of
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   832
  the unspecified type @{text "\<alpha> itself"}; it essentially injects the
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   833
  language of types into that of terms.  There is specific notation
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   834
  @{text "TYPE(\<tau>)"} for @{text "TYPE\<^bsub>\<tau>
20521
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   835
 itself\<^esub>"}.
34929
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   836
  Although being devoid of any particular meaning, the term @{text
20537
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   837
  "TYPE(\<tau>)"} accounts for the type @{text "\<tau>"} within the term
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   838
  language.  In particular, @{text "TYPE(\<alpha>)"} may be used as formal
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   839
  argument in primitive definitions, in order to circumvent hidden
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   840
  polymorphism (cf.\ \secref{sec:terms}).  For example, @{text "c
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   841
  TYPE(\<alpha>) \<equiv> A[\<alpha>]"} defines @{text "c :: \<alpha> itself \<Rightarrow> prop"} in terms of
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   842
  a proposition @{text "A"} that depends on an additional type
b6b49903db7e *** empty log message ***
wenzelm
parents: 20521
diff changeset
   843
  argument, which is essentially a predicate on types.
20521
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   844
*}
20501
de0b523b0d62 more rules;
wenzelm
parents: 20498
diff changeset
   845
20521
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   846
text %mlref {*
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   847
  \begin{mldecls}
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   848
  @{index_ML Conjunction.intr: "thm -> thm -> thm"} \\
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   849
  @{index_ML Conjunction.elim: "thm -> thm * thm"} \\
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   850
  @{index_ML Drule.mk_term: "cterm -> thm"} \\
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   851
  @{index_ML Drule.dest_term: "thm -> cterm"} \\
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   852
  @{index_ML Logic.mk_type: "typ -> term"} \\
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   853
  @{index_ML Logic.dest_type: "term -> typ"} \\
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   854
  \end{mldecls}
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   855
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   856
  \begin{description}
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   857
34929
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   858
  \item @{ML Conjunction.intr} derives @{text "A &&& B"} from @{text
20542
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   859
  "A"} and @{text "B"}.
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   860
20543
wenzelm
parents: 20542
diff changeset
   861
  \item @{ML Conjunction.elim} derives @{text "A"} and @{text "B"}
34929
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   862
  from @{text "A &&& B"}.
20542
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   863
20543
wenzelm
parents: 20542
diff changeset
   864
  \item @{ML Drule.mk_term} derives @{text "TERM t"}.
20542
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   865
20543
wenzelm
parents: 20542
diff changeset
   866
  \item @{ML Drule.dest_term} recovers term @{text "t"} from @{text
wenzelm
parents: 20542
diff changeset
   867
  "TERM t"}.
20542
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   868
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   869
  \item @{ML Logic.mk_type}~@{text "\<tau>"} produces the term @{text
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   870
  "TYPE(\<tau>)"}.
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   871
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   872
  \item @{ML Logic.dest_type}~@{text "TYPE(\<tau>)"} recovers the type
a54ca4e90874 more on theorems;
wenzelm
parents: 20537
diff changeset
   873
  @{text "\<tau>"}.
20521
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   874
189811b39869 more on theorems;
wenzelm
parents: 20520
diff changeset
   875
  \end{description}
20491
wenzelm
parents: 20480
diff changeset
   876
*}
18537
2681f9e34390 "The Isabelle/Isar Implementation" manual;
wenzelm
parents:
diff changeset
   877
20480
4e0522d38968 more on types and type classes;
wenzelm
parents: 20477
diff changeset
   878
28784
9495aec512e2 renamed "Rules" to "Object-level rules";
wenzelm
parents: 28674
diff changeset
   879
section {* Object-level rules \label{sec:obj-rules} *}
18537
2681f9e34390 "The Isabelle/Isar Implementation" manual;
wenzelm
parents:
diff changeset
   880
29768
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   881
text {*
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   882
  The primitive inferences covered so far mostly serve foundational
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   883
  purposes.  User-level reasoning usually works via object-level rules
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   884
  that are represented as theorems of Pure.  Composition of rules
29771
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
   885
  involves \emph{backchaining}, \emph{higher-order unification} modulo
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
   886
  @{text "\<alpha>\<beta>\<eta>"}-conversion of @{text "\<lambda>"}-terms, and so-called
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
   887
  \emph{lifting} of rules into a context of @{text "\<And>"} and @{text
29774
wenzelm
parents: 29771
diff changeset
   888
  "\<Longrightarrow>"} connectives.  Thus the full power of higher-order Natural
wenzelm
parents: 29771
diff changeset
   889
  Deduction in Isabelle/Pure becomes readily available.
29769
03634a9e91ae improved section on "Hereditary Harrop Formulae";
wenzelm
parents: 29768
diff changeset
   890
*}
20491
wenzelm
parents: 20480
diff changeset
   891
29769
03634a9e91ae improved section on "Hereditary Harrop Formulae";
wenzelm
parents: 29768
diff changeset
   892
03634a9e91ae improved section on "Hereditary Harrop Formulae";
wenzelm
parents: 29768
diff changeset
   893
subsection {* Hereditary Harrop Formulae *}
03634a9e91ae improved section on "Hereditary Harrop Formulae";
wenzelm
parents: 29768
diff changeset
   894
03634a9e91ae improved section on "Hereditary Harrop Formulae";
wenzelm
parents: 29768
diff changeset
   895
text {*
29768
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   896
  The idea of object-level rules is to model Natural Deduction
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   897
  inferences in the style of Gentzen \cite{Gentzen:1935}, but we allow
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   898
  arbitrary nesting similar to \cite{extensions91}.  The most basic
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   899
  rule format is that of a \emph{Horn Clause}:
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   900
  \[
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   901
  \infer{@{text "A"}}{@{text "A\<^sub>1"} & @{text "\<dots>"} & @{text "A\<^sub>n"}}
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   902
  \]
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   903
  where @{text "A, A\<^sub>1, \<dots>, A\<^sub>n"} are atomic propositions
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   904
  of the framework, usually of the form @{text "Trueprop B"}, where
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   905
  @{text "B"} is a (compound) object-level statement.  This
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   906
  object-level inference corresponds to an iterated implication in
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   907
  Pure like this:
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   908
  \[
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   909
  @{text "A\<^sub>1 \<Longrightarrow> \<dots> A\<^sub>n \<Longrightarrow> A"}
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   910
  \]
29769
03634a9e91ae improved section on "Hereditary Harrop Formulae";
wenzelm
parents: 29768
diff changeset
   911
  As an example consider conjunction introduction: @{text "A \<Longrightarrow> B \<Longrightarrow> A \<and>
03634a9e91ae improved section on "Hereditary Harrop Formulae";
wenzelm
parents: 29768
diff changeset
   912
  B"}.  Any parameters occurring in such rule statements are
03634a9e91ae improved section on "Hereditary Harrop Formulae";
wenzelm
parents: 29768
diff changeset
   913
  conceptionally treated as arbitrary:
29768
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   914
  \[
29769
03634a9e91ae improved section on "Hereditary Harrop Formulae";
wenzelm
parents: 29768
diff changeset
   915
  @{text "\<And>x\<^sub>1 \<dots> x\<^sub>m. A\<^sub>1 x\<^sub>1 \<dots> x\<^sub>m \<Longrightarrow> \<dots> A\<^sub>n x\<^sub>1 \<dots> x\<^sub>m \<Longrightarrow> A x\<^sub>1 \<dots> x\<^sub>m"}
29768
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   916
  \]
20491
wenzelm
parents: 20480
diff changeset
   917
29769
03634a9e91ae improved section on "Hereditary Harrop Formulae";
wenzelm
parents: 29768
diff changeset
   918
  Nesting of rules means that the positions of @{text "A\<^sub>i"} may
29770
wenzelm
parents: 29769
diff changeset
   919
  again hold compound rules, not just atomic propositions.
29769
03634a9e91ae improved section on "Hereditary Harrop Formulae";
wenzelm
parents: 29768
diff changeset
   920
  Propositions of this format are called \emph{Hereditary Harrop
03634a9e91ae improved section on "Hereditary Harrop Formulae";
wenzelm
parents: 29768
diff changeset
   921
  Formulae} in the literature \cite{Miller:1991}.  Here we give an
03634a9e91ae improved section on "Hereditary Harrop Formulae";
wenzelm
parents: 29768
diff changeset
   922
  inductive characterization as follows:
29768
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   923
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   924
  \medskip
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   925
  \begin{tabular}{ll}
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   926
  @{text "\<^bold>x"} & set of variables \\
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   927
  @{text "\<^bold>A"} & set of atomic propositions \\
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   928
  @{text "\<^bold>H  =  \<And>\<^bold>x\<^sup>*. \<^bold>H\<^sup>* \<Longrightarrow> \<^bold>A"} & set of Hereditary Harrop Formulas \\
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   929
  \end{tabular}
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   930
  \medskip
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   931
39861
b8d89db3e238 use continental paragraph style, which works better with mixture of (in)formal text;
wenzelm
parents: 39846
diff changeset
   932
  Thus we essentially impose nesting levels on propositions formed
b8d89db3e238 use continental paragraph style, which works better with mixture of (in)formal text;
wenzelm
parents: 39846
diff changeset
   933
  from @{text "\<And>"} and @{text "\<Longrightarrow>"}.  At each level there is a prefix
b8d89db3e238 use continental paragraph style, which works better with mixture of (in)formal text;
wenzelm
parents: 39846
diff changeset
   934
  of parameters and compound premises, concluding an atomic
29770
wenzelm
parents: 29769
diff changeset
   935
  proposition.  Typical examples are @{text "\<longrightarrow>"}-introduction @{text
wenzelm
parents: 29769
diff changeset
   936
  "(A \<Longrightarrow> B) \<Longrightarrow> A \<longrightarrow> B"} or mathematical induction @{text "P 0 \<Longrightarrow> (\<And>n. P n
wenzelm
parents: 29769
diff changeset
   937
  \<Longrightarrow> P (Suc n)) \<Longrightarrow> P n"}.  Even deeper nesting occurs in well-founded
wenzelm
parents: 29769
diff changeset
   938
  induction @{text "(\<And>x. (\<And>y. y \<prec> x \<Longrightarrow> P y) \<Longrightarrow> P x) \<Longrightarrow> P x"}, but this
34929
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   939
  already marks the limit of rule complexity that is usually seen in
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
   940
  practice.
29769
03634a9e91ae improved section on "Hereditary Harrop Formulae";
wenzelm
parents: 29768
diff changeset
   941
29770
wenzelm
parents: 29769
diff changeset
   942
  \medskip Regular user-level inferences in Isabelle/Pure always
wenzelm
parents: 29769
diff changeset
   943
  maintain the following canonical form of results:
29769
03634a9e91ae improved section on "Hereditary Harrop Formulae";
wenzelm
parents: 29768
diff changeset
   944
03634a9e91ae improved section on "Hereditary Harrop Formulae";
wenzelm
parents: 29768
diff changeset
   945
  \begin{itemize}
29768
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
   946
29774
wenzelm
parents: 29771
diff changeset
   947
  \item Normalization by @{text "(A \<Longrightarrow> (\<And>x. B x)) \<equiv> (\<And>x. A \<Longrightarrow> B x)"},
wenzelm
parents: 29771
diff changeset
   948
  which is a theorem of Pure, means that quantifiers are pushed in
wenzelm
parents: 29771
diff changeset
   949
  front of implication at each level of nesting.  The normal form is a
wenzelm
parents: 29771
diff changeset
   950
  Hereditary Harrop Formula.
29769
03634a9e91ae improved section on "Hereditary Harrop Formulae";
wenzelm
parents: 29768
diff changeset
   951
03634a9e91ae improved section on "Hereditary Harrop Formulae";
wenzelm
parents: 29768
diff changeset
   952
  \item The outermost prefix of parameters is represented via
29770
wenzelm
parents: 29769
diff changeset
   953
  schematic variables: instead of @{text "\<And>\<^vec>x. \<^vec>H \<^vec>x
29774
wenzelm
parents: 29771
diff changeset
   954
  \<Longrightarrow> A \<^vec>x"} we have @{text "\<^vec>H ?\<^vec>x \<Longrightarrow> A ?\<^vec>x"}.
wenzelm
parents: 29771
diff changeset
   955
  Note that this representation looses information about the order of
wenzelm
parents: 29771
diff changeset
   956
  parameters, and vacuous quantifiers vanish automatically.
29769
03634a9e91ae improved section on "Hereditary Harrop Formulae";
wenzelm
parents: 29768
diff changeset
   957
03634a9e91ae improved section on "Hereditary Harrop Formulae";
wenzelm
parents: 29768
diff changeset
   958
  \end{itemize}
03634a9e91ae improved section on "Hereditary Harrop Formulae";
wenzelm
parents: 29768
diff changeset
   959
*}
03634a9e91ae improved section on "Hereditary Harrop Formulae";
wenzelm
parents: 29768
diff changeset
   960
29771
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
   961
text %mlref {*
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
   962
  \begin{mldecls}
30552
58db56278478 provide Simplifier.norm_hhf(_protect) as regular simplifier operation;
wenzelm
parents: 30355
diff changeset
   963
  @{index_ML Simplifier.norm_hhf: "thm -> thm"} \\
29771
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
   964
  \end{mldecls}
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
   965
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
   966
  \begin{description}
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
   967
30552
58db56278478 provide Simplifier.norm_hhf(_protect) as regular simplifier operation;
wenzelm
parents: 30355
diff changeset
   968
  \item @{ML Simplifier.norm_hhf}~@{text thm} normalizes the given
29771
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
   969
  theorem according to the canonical form specified above.  This is
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
   970
  occasionally helpful to repair some low-level tools that do not
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
   971
  handle Hereditary Harrop Formulae properly.
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
   972
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
   973
  \end{description}
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
   974
*}
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
   975
29769
03634a9e91ae improved section on "Hereditary Harrop Formulae";
wenzelm
parents: 29768
diff changeset
   976
03634a9e91ae improved section on "Hereditary Harrop Formulae";
wenzelm
parents: 29768
diff changeset
   977
subsection {* Rule composition *}
03634a9e91ae improved section on "Hereditary Harrop Formulae";
wenzelm
parents: 29768
diff changeset
   978
03634a9e91ae improved section on "Hereditary Harrop Formulae";
wenzelm
parents: 29768
diff changeset
   979
text {*
29771
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
   980
  The rule calculus of Isabelle/Pure provides two main inferences:
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
   981
  @{inference resolution} (i.e.\ back-chaining of rules) and
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
   982
  @{inference assumption} (i.e.\ closing a branch), both modulo
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
   983
  higher-order unification.  There are also combined variants, notably
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
   984
  @{inference elim_resolution} and @{inference dest_resolution}.
20491
wenzelm
parents: 20480
diff changeset
   985
29771
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
   986
  To understand the all-important @{inference resolution} principle,
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
   987
  we first consider raw @{inference_def composition} (modulo
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
   988
  higher-order unification with substitution @{text "\<vartheta>"}):
20498
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
   989
  \[
29771
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
   990
  \infer[(@{inference_def composition})]{@{text "\<^vec>A\<vartheta> \<Longrightarrow> C\<vartheta>"}}
20498
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
   991
  {@{text "\<^vec>A \<Longrightarrow> B"} & @{text "B' \<Longrightarrow> C"} & @{text "B\<vartheta> = B'\<vartheta>"}}
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
   992
  \]
29771
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
   993
  Here the conclusion of the first rule is unified with the premise of
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
   994
  the second; the resulting rule instance inherits the premises of the
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
   995
  first and conclusion of the second.  Note that @{text "C"} can again
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
   996
  consist of iterated implications.  We can also permute the premises
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
   997
  of the second rule back-and-forth in order to compose with @{text
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
   998
  "B'"} in any position (subsequently we shall always refer to
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
   999
  position 1 w.l.o.g.).
20498
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
  1000
29774
wenzelm
parents: 29771
diff changeset
  1001
  In @{inference composition} the internal structure of the common
wenzelm
parents: 29771
diff changeset
  1002
  part @{text "B"} and @{text "B'"} is not taken into account.  For
wenzelm
parents: 29771
diff changeset
  1003
  proper @{inference resolution} we require @{text "B"} to be atomic,
wenzelm
parents: 29771
diff changeset
  1004
  and explicitly observe the structure @{text "\<And>\<^vec>x. \<^vec>H
wenzelm
parents: 29771
diff changeset
  1005
  \<^vec>x \<Longrightarrow> B' \<^vec>x"} of the premise of the second rule.  The
wenzelm
parents: 29771
diff changeset
  1006
  idea is to adapt the first rule by ``lifting'' it into this context,
wenzelm
parents: 29771
diff changeset
  1007
  by means of iterated application of the following inferences:
20498
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
  1008
  \[
29771
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
  1009
  \infer[(@{inference_def imp_lift})]{@{text "(\<^vec>H \<Longrightarrow> \<^vec>A) \<Longrightarrow> (\<^vec>H \<Longrightarrow> B)"}}{@{text "\<^vec>A \<Longrightarrow> B"}}
20498
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
  1010
  \]
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
  1011
  \[
29771
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
  1012
  \infer[(@{inference_def all_lift})]{@{text "(\<And>\<^vec>x. \<^vec>A (?\<^vec>a \<^vec>x)) \<Longrightarrow> (\<And>\<^vec>x. B (?\<^vec>a \<^vec>x))"}}{@{text "\<^vec>A ?\<^vec>a \<Longrightarrow> B ?\<^vec>a"}}
20498
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
  1013
  \]
29771
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
  1014
  By combining raw composition with lifting, we get full @{inference
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
  1015
  resolution} as follows:
20498
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
  1016
  \[
29771
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
  1017
  \infer[(@{inference_def resolution})]
20498
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
  1018
  {@{text "(\<And>\<^vec>x. \<^vec>H \<^vec>x \<Longrightarrow> \<^vec>A (?\<^vec>a \<^vec>x))\<vartheta> \<Longrightarrow> C\<vartheta>"}}
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
  1019
  {\begin{tabular}{l}
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
  1020
    @{text "\<^vec>A ?\<^vec>a \<Longrightarrow> B ?\<^vec>a"} \\
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
  1021
    @{text "(\<And>\<^vec>x. \<^vec>H \<^vec>x \<Longrightarrow> B' \<^vec>x) \<Longrightarrow> C"} \\
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
  1022
    @{text "(\<lambda>\<^vec>x. B (?\<^vec>a \<^vec>x))\<vartheta> = B'\<vartheta>"} \\
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
  1023
   \end{tabular}}
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
  1024
  \]
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
  1025
29774
wenzelm
parents: 29771
diff changeset
  1026
  Continued resolution of rules allows to back-chain a problem towards
wenzelm
parents: 29771
diff changeset
  1027
  more and sub-problems.  Branches are closed either by resolving with
wenzelm
parents: 29771
diff changeset
  1028
  a rule of 0 premises, or by producing a ``short-circuit'' within a
wenzelm
parents: 29771
diff changeset
  1029
  solved situation (again modulo unification):
29771
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
  1030
  \[
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
  1031
  \infer[(@{inference_def assumption})]{@{text "C\<vartheta>"}}
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
  1032
  {@{text "(\<And>\<^vec>x. \<^vec>H \<^vec>x \<Longrightarrow> A \<^vec>x) \<Longrightarrow> C"} & @{text "A\<vartheta> = H\<^sub>i\<vartheta>"}~~\text{(for some~@{text i})}}
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
  1033
  \]
20498
825a8d2335ce more rules;
wenzelm
parents: 20494
diff changeset
  1034
29771
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
  1035
  FIXME @{inference_def elim_resolution}, @{inference_def dest_resolution}
18537
2681f9e34390 "The Isabelle/Isar Implementation" manual;
wenzelm
parents:
diff changeset
  1036
*}
2681f9e34390 "The Isabelle/Isar Implementation" manual;
wenzelm
parents:
diff changeset
  1037
29768
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
  1038
text %mlref {*
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
  1039
  \begin{mldecls}
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
  1040
  @{index_ML "op RS": "thm * thm -> thm"} \\
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
  1041
  @{index_ML "op OF": "thm * thm list -> thm"} \\
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
  1042
  \end{mldecls}
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
  1043
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
  1044
  \begin{description}
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
  1045
34929
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
  1046
  \item @{text "rule\<^sub>1 RS rule\<^sub>2"} resolves @{text "rule\<^sub>1"} with @{text
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
  1047
  "rule\<^sub>2"} according to the @{inference resolution} principle
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
  1048
  explained above.  Note that the corresponding rule attribute in the
9700a87f1cc2 misc tuning and clarification;
wenzelm
parents: 34921
diff changeset
  1049
  Isar language is called @{attribute THEN}.
29768
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
  1050
29771
aa1d3b5d1b5e improved section "Rule composition";
wenzelm
parents: 29770
diff changeset
  1051
  \item @{text "rule OF rules"} resolves a list of rules with the
29774
wenzelm
parents: 29771
diff changeset
  1052
  first rule, addressing its premises @{text "1, \<dots>, length rules"}
wenzelm
parents: 29771
diff changeset
  1053
  (operating from last to first).  This means the newly emerging
wenzelm
parents: 29771
diff changeset
  1054
  premises are all concatenated, without interfering.  Also note that
wenzelm
parents: 29771
diff changeset
  1055
  compared to @{text "RS"}, the rule argument order is swapped: @{text
wenzelm
parents: 29771
diff changeset
  1056
  "rule\<^sub>1 RS rule\<^sub>2 = rule\<^sub>2 OF [rule\<^sub>1]"}.
29768
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
  1057
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
  1058
  \end{description}
64a50ff3f308 more on object-level rules;
wenzelm
parents: 29761
diff changeset
  1059
*}
30272
2d612824e642 regenerated document;
wenzelm
parents: 30270
diff changeset
  1060
18537
2681f9e34390 "The Isabelle/Isar Implementation" manual;
wenzelm
parents:
diff changeset
  1061
end