0
|
1 |
(* Title: ZF/ex/llist-fn.ML
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1993 University of Cambridge
|
|
5 |
|
|
6 |
Functions for Lazy Lists in Zermelo-Fraenkel Set Theory
|
120
|
7 |
|
|
8 |
Examples of coinduction for type-checking and to prove llist equations
|
0
|
9 |
*)
|
|
10 |
|
|
11 |
open LListFn;
|
|
12 |
|
|
13 |
(*** lconst -- defined directly using lfp, but equivalent to a LList_corec ***)
|
|
14 |
|
|
15 |
goalw LListFn.thy LList.con_defs "bnd_mono(univ(a), %l. LCons(a,l))";
|
|
16 |
by (rtac bnd_monoI 1);
|
|
17 |
by (REPEAT (ares_tac [subset_refl, QInr_mono, QPair_mono] 2));
|
|
18 |
by (REPEAT (ares_tac [subset_refl, A_subset_univ,
|
|
19 |
QInr_subset_univ, QPair_subset_univ] 1));
|
|
20 |
val lconst_fun_bnd_mono = result();
|
|
21 |
|
|
22 |
(* lconst(a) = LCons(a,lconst(a)) *)
|
|
23 |
val lconst = standard
|
|
24 |
([lconst_def, lconst_fun_bnd_mono] MRS def_lfp_Tarski);
|
|
25 |
|
|
26 |
val lconst_subset = lconst_def RS def_lfp_subset;
|
|
27 |
|
|
28 |
val member_subset_Union_eclose = standard (arg_into_eclose RS Union_upper);
|
|
29 |
|
|
30 |
goal LListFn.thy "!!a A. a : A ==> lconst(a) : quniv(A)";
|
|
31 |
by (rtac (lconst_subset RS subset_trans RS qunivI) 1);
|
|
32 |
by (etac (arg_into_eclose RS eclose_subset RS univ_mono) 1);
|
|
33 |
val lconst_in_quniv = result();
|
|
34 |
|
|
35 |
goal LListFn.thy "!!a A. a:A ==> lconst(a): llist(A)";
|
120
|
36 |
by (rtac (singletonI RS LList.coinduct) 1);
|
0
|
37 |
by (fast_tac (ZF_cs addSIs [lconst_in_quniv]) 1);
|
|
38 |
by (fast_tac (ZF_cs addSIs [lconst]) 1);
|
|
39 |
val lconst_type = result();
|
120
|
40 |
|
|
41 |
(*** flip --- equations merely assumed; certain consequences proved ***)
|
|
42 |
|
|
43 |
val flip_ss = ZF_ss addsimps [flip_LNil, flip_LCons, not_type];
|
|
44 |
|
173
|
45 |
goal QUniv.thy "!!b. b:bool ==> b Int X <= univ(eclose(A))";
|
|
46 |
by (fast_tac (quniv_cs addSEs [boolE]) 1);
|
|
47 |
val bool_Int_subset_univ = result();
|
120
|
48 |
|
173
|
49 |
val flip_cs = quniv_cs addSIs [not_type]
|
|
50 |
addIs [bool_Int_subset_univ];
|
120
|
51 |
|
|
52 |
(*Reasoning borrowed from llist_eq.ML; a similar proof works for all
|
|
53 |
"productive" functions -- cf Coquand's "Infinite Objects in Type Theory".*)
|
|
54 |
goal LListFn.thy
|
173
|
55 |
"!!i. Ord(i) ==> ALL l: llist(bool). flip(l) Int Vset(i) <= \
|
|
56 |
\ univ(eclose(bool))";
|
120
|
57 |
by (etac trans_induct 1);
|
173
|
58 |
by (rtac ballI 1);
|
120
|
59 |
by (etac LList.elim 1);
|
|
60 |
by (asm_simp_tac flip_ss 1);
|
|
61 |
by (asm_simp_tac flip_ss 2);
|
|
62 |
by (rewrite_goals_tac ([QInl_def,QInr_def]@LList.con_defs));
|
173
|
63 |
(*LNil case*)
|
120
|
64 |
by (fast_tac flip_cs 1);
|
173
|
65 |
(*LCons case*)
|
|
66 |
by (safe_tac flip_cs);
|
|
67 |
by (ALLGOALS (fast_tac (flip_cs addSEs [Ord_trans, make_elim bspec])));
|
120
|
68 |
val flip_llist_quniv_lemma = result();
|
|
69 |
|
|
70 |
goal LListFn.thy "!!l. l: llist(bool) ==> flip(l) : quniv(bool)";
|
173
|
71 |
by (rtac (flip_llist_quniv_lemma RS bspec RS Int_Vset_subset RS qunivI) 1);
|
120
|
72 |
by (REPEAT (assume_tac 1));
|
|
73 |
val flip_in_quniv = result();
|
|
74 |
|
|
75 |
val [prem] = goal LListFn.thy "l : llist(bool) ==> flip(l): llist(bool)";
|
|
76 |
by (res_inst_tac [("X", "{flip(l) . l:llist(bool)}")]
|
|
77 |
LList.coinduct 1);
|
128
|
78 |
by (rtac (prem RS RepFunI) 1);
|
120
|
79 |
by (fast_tac (ZF_cs addSIs [flip_in_quniv]) 1);
|
128
|
80 |
by (etac RepFunE 1);
|
120
|
81 |
by (etac LList.elim 1);
|
|
82 |
by (asm_simp_tac flip_ss 1);
|
|
83 |
by (asm_simp_tac flip_ss 1);
|
|
84 |
by (fast_tac (ZF_cs addSIs [not_type]) 1);
|
|
85 |
val flip_type = result();
|
|
86 |
|
|
87 |
val [prem] = goal LListFn.thy
|
|
88 |
"l : llist(bool) ==> flip(flip(l)) = l";
|
|
89 |
by (res_inst_tac [("X1", "{<flip(flip(l)),l> . l:llist(bool)}")]
|
|
90 |
(LList_Eq.coinduct RS lleq_implies_equal) 1);
|
128
|
91 |
by (rtac (prem RS RepFunI) 1);
|
120
|
92 |
by (fast_tac (ZF_cs addSIs [flip_type]) 1);
|
128
|
93 |
by (etac RepFunE 1);
|
120
|
94 |
by (etac LList.elim 1);
|
|
95 |
by (asm_simp_tac flip_ss 1);
|
|
96 |
by (asm_simp_tac (flip_ss addsimps [flip_type, not_not]) 1);
|
|
97 |
by (fast_tac (ZF_cs addSIs [not_type]) 1);
|
|
98 |
val flip_flip = result();
|