| author | haftmann | 
| Thu, 13 Mar 2014 08:56:08 +0100 | |
| changeset 56076 | e52fc7c37ed3 | 
| parent 49756 | 28e37eab4e6f | 
| child 58889 | 5b7a9633cfa8 | 
| permissions | -rw-r--r-- | 
| 13383 | 1 | (* Title: HOL/ex/Tarski.thy | 
| 40945 | 2 | Author: Florian Kammüller, Cambridge University Computer Laboratory | 
| 13383 | 3 | *) | 
| 7112 | 4 | |
| 13585 | 5 | header {* The Full Theorem of Tarski *}
 | 
| 7112 | 6 | |
| 27681 | 7 | theory Tarski | 
| 41413 
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
 wenzelm parents: 
40945diff
changeset | 8 | imports Main "~~/src/HOL/Library/FuncSet" | 
| 27681 | 9 | begin | 
| 7112 | 10 | |
| 13383 | 11 | text {*
 | 
| 12 | Minimal version of lattice theory plus the full theorem of Tarski: | |
| 13 | The fixedpoints of a complete lattice themselves form a complete | |
| 14 | lattice. | |
| 15 | ||
| 16 | Illustrates first-class theories, using the Sigma representation of | |
| 17 | structures. Tidied and converted to Isar by lcp. | |
| 18 | *} | |
| 19 | ||
| 20 | record 'a potype = | |
| 7112 | 21 | pset :: "'a set" | 
| 22 |   order :: "('a * 'a) set"
 | |
| 23 | ||
| 19736 | 24 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21232diff
changeset | 25 |   monotone :: "['a => 'a, 'a set, ('a *'a)set] => bool" where
 | 
| 19736 | 26 | "monotone f A r = (\<forall>x\<in>A. \<forall>y\<in>A. (x, y): r --> ((f x), (f y)) : r)" | 
| 7112 | 27 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21232diff
changeset | 28 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21232diff
changeset | 29 | least :: "['a => bool, 'a potype] => 'a" where | 
| 19736 | 30 | "least P po = (SOME x. x: pset po & P x & | 
| 31 | (\<forall>y \<in> pset po. P y --> (x,y): order po))" | |
| 7112 | 32 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21232diff
changeset | 33 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21232diff
changeset | 34 | greatest :: "['a => bool, 'a potype] => 'a" where | 
| 19736 | 35 | "greatest P po = (SOME x. x: pset po & P x & | 
| 36 | (\<forall>y \<in> pset po. P y --> (y,x): order po))" | |
| 7112 | 37 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21232diff
changeset | 38 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21232diff
changeset | 39 | lub :: "['a set, 'a potype] => 'a" where | 
| 19736 | 40 | "lub S po = least (%x. \<forall>y\<in>S. (y,x): order po) po" | 
| 7112 | 41 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21232diff
changeset | 42 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21232diff
changeset | 43 | glb :: "['a set, 'a potype] => 'a" where | 
| 19736 | 44 | "glb S po = greatest (%x. \<forall>y\<in>S. (x,y): order po) po" | 
| 7112 | 45 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21232diff
changeset | 46 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21232diff
changeset | 47 | isLub :: "['a set, 'a potype, 'a] => bool" where | 
| 19736 | 48 | "isLub S po = (%L. (L: pset po & (\<forall>y\<in>S. (y,L): order po) & | 
| 49 | (\<forall>z\<in>pset po. (\<forall>y\<in>S. (y,z): order po) --> (L,z): order po)))" | |
| 7112 | 50 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21232diff
changeset | 51 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21232diff
changeset | 52 | isGlb :: "['a set, 'a potype, 'a] => bool" where | 
| 19736 | 53 | "isGlb S po = (%G. (G: pset po & (\<forall>y\<in>S. (G,y): order po) & | 
| 54 | (\<forall>z \<in> pset po. (\<forall>y\<in>S. (z,y): order po) --> (z,G): order po)))" | |
| 7112 | 55 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21232diff
changeset | 56 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21232diff
changeset | 57 |   "fix"    :: "[('a => 'a), 'a set] => 'a set" where
 | 
| 19736 | 58 |   "fix f A  = {x. x: A & f x = x}"
 | 
| 7112 | 59 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21232diff
changeset | 60 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21232diff
changeset | 61 |   interval :: "[('a*'a) set,'a, 'a ] => 'a set" where
 | 
| 19736 | 62 |   "interval r a b = {x. (a,x): r & (x,b): r}"
 | 
| 7112 | 63 | |
| 64 | ||
| 19736 | 65 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21232diff
changeset | 66 | Bot :: "'a potype => 'a" where | 
| 19736 | 67 | "Bot po = least (%x. True) po" | 
| 7112 | 68 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21232diff
changeset | 69 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21232diff
changeset | 70 | Top :: "'a potype => 'a" where | 
| 19736 | 71 | "Top po = greatest (%x. True) po" | 
| 7112 | 72 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21232diff
changeset | 73 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21232diff
changeset | 74 |   PartialOrder :: "('a potype) set" where
 | 
| 30198 | 75 |   "PartialOrder = {P. refl_on (pset P) (order P) & antisym (order P) &
 | 
| 13585 | 76 | trans (order P)}" | 
| 7112 | 77 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21232diff
changeset | 78 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21232diff
changeset | 79 |   CompleteLattice :: "('a potype) set" where
 | 
| 19736 | 80 |   "CompleteLattice = {cl. cl: PartialOrder &
 | 
| 17841 | 81 | (\<forall>S. S \<subseteq> pset cl --> (\<exists>L. isLub S cl L)) & | 
| 82 | (\<forall>S. S \<subseteq> pset cl --> (\<exists>G. isGlb S cl G))}" | |
| 7112 | 83 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21232diff
changeset | 84 | definition | 
| 27681 | 85 |   CLF_set :: "('a potype * ('a => 'a)) set" where
 | 
| 86 | "CLF_set = (SIGMA cl: CompleteLattice. | |
| 19736 | 87 |             {f. f: pset cl -> pset cl & monotone f (pset cl) (order cl)})"
 | 
| 13383 | 88 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21232diff
changeset | 89 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21232diff
changeset | 90 |   induced :: "['a set, ('a * 'a) set] => ('a *'a)set" where
 | 
| 19736 | 91 |   "induced A r = {(a,b). a : A & b: A & (a,b): r}"
 | 
| 7112 | 92 | |
| 93 | ||
| 19736 | 94 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21232diff
changeset | 95 |   sublattice :: "('a potype * 'a set)set" where
 | 
| 19736 | 96 | "sublattice = | 
| 97 | (SIGMA cl: CompleteLattice. | |
| 17841 | 98 |           {S. S \<subseteq> pset cl &
 | 
| 19736 | 99 | (| pset = S, order = induced S (order cl) |): CompleteLattice})" | 
| 7112 | 100 | |
| 19736 | 101 | abbreviation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21232diff
changeset | 102 |   sublat :: "['a set, 'a potype] => bool"  ("_ <<= _" [51,50]50) where
 | 
| 19736 | 103 |   "S <<= cl == S : sublattice `` {cl}"
 | 
| 7112 | 104 | |
| 19736 | 105 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21232diff
changeset | 106 | dual :: "'a potype => 'a potype" where | 
| 19736 | 107 | "dual po = (| pset = pset po, order = converse (order po) |)" | 
| 7112 | 108 | |
| 27681 | 109 | locale S = | 
| 13115 | 110 | fixes cl :: "'a potype" | 
| 111 | and A :: "'a set" | |
| 112 |     and r  :: "('a * 'a) set"
 | |
| 13585 | 113 | defines A_def: "A == pset cl" | 
| 114 | and r_def: "r == order cl" | |
| 7112 | 115 | |
| 27681 | 116 | locale PO = S + | 
| 117 | assumes cl_po: "cl : PartialOrder" | |
| 118 | ||
| 119 | locale CL = S + | |
| 13115 | 120 | assumes cl_co: "cl : CompleteLattice" | 
| 7112 | 121 | |
| 49756 
28e37eab4e6f
added some ad-hoc namespace prefixes to avoid duplicate facts;
 wenzelm parents: 
46752diff
changeset | 122 | sublocale CL < po: PO | 
| 27681 | 123 | apply (simp_all add: A_def r_def) | 
| 124 | apply unfold_locales | |
| 125 | using cl_co unfolding CompleteLattice_def by auto | |
| 126 | ||
| 127 | locale CLF = S + | |
| 13115 | 128 | fixes f :: "'a => 'a" | 
| 129 | and P :: "'a set" | |
| 27681 | 130 |   assumes f_cl:  "(cl,f) : CLF_set" (*was the equivalent "f : CLF_set``{cl}"*)
 | 
| 13115 | 131 | defines P_def: "P == fix f A" | 
| 7112 | 132 | |
| 49756 
28e37eab4e6f
added some ad-hoc namespace prefixes to avoid duplicate facts;
 wenzelm parents: 
46752diff
changeset | 133 | sublocale CLF < cl: CL | 
| 27681 | 134 | apply (simp_all add: A_def r_def) | 
| 135 | apply unfold_locales | |
| 136 | using f_cl unfolding CLF_set_def by auto | |
| 7112 | 137 | |
| 27681 | 138 | locale Tarski = CLF + | 
| 13115 | 139 | fixes Y :: "'a set" | 
| 140 | and intY1 :: "'a set" | |
| 141 | and v :: "'a" | |
| 142 | assumes | |
| 17841 | 143 | Y_ss: "Y \<subseteq> P" | 
| 13115 | 144 | defines | 
| 145 | intY1_def: "intY1 == interval r (lub Y cl) (Top cl)" | |
| 13383 | 146 |     and v_def: "v == glb {x. ((%x: intY1. f x) x, x): induced intY1 r &
 | 
| 13115 | 147 | x: intY1} | 
| 13383 | 148 | (| pset=intY1, order=induced intY1 r|)" | 
| 13115 | 149 | |
| 150 | ||
| 14569 | 151 | subsection {* Partial Order *}
 | 
| 13115 | 152 | |
| 27681 | 153 | lemma (in PO) dual: | 
| 154 | "PO (dual cl)" | |
| 155 | apply unfold_locales | |
| 156 | using cl_po | |
| 157 | unfolding PartialOrder_def dual_def | |
| 158 | by auto | |
| 159 | ||
| 30198 | 160 | lemma (in PO) PO_imp_refl_on [simp]: "refl_on A r" | 
| 13383 | 161 | apply (insert cl_po) | 
| 13115 | 162 | apply (simp add: PartialOrder_def A_def r_def) | 
| 163 | done | |
| 164 | ||
| 27681 | 165 | lemma (in PO) PO_imp_sym [simp]: "antisym r" | 
| 13383 | 166 | apply (insert cl_po) | 
| 19316 | 167 | apply (simp add: PartialOrder_def r_def) | 
| 13115 | 168 | done | 
| 169 | ||
| 27681 | 170 | lemma (in PO) PO_imp_trans [simp]: "trans r" | 
| 13383 | 171 | apply (insert cl_po) | 
| 19316 | 172 | apply (simp add: PartialOrder_def r_def) | 
| 13115 | 173 | done | 
| 174 | ||
| 18705 | 175 | lemma (in PO) reflE: "x \<in> A ==> (x, x) \<in> r" | 
| 13383 | 176 | apply (insert cl_po) | 
| 30198 | 177 | apply (simp add: PartialOrder_def refl_on_def A_def r_def) | 
| 13115 | 178 | done | 
| 179 | ||
| 18705 | 180 | lemma (in PO) antisymE: "[| (a, b) \<in> r; (b, a) \<in> r |] ==> a = b" | 
| 13383 | 181 | apply (insert cl_po) | 
| 19316 | 182 | apply (simp add: PartialOrder_def antisym_def r_def) | 
| 13115 | 183 | done | 
| 184 | ||
| 18705 | 185 | lemma (in PO) transE: "[| (a, b) \<in> r; (b, c) \<in> r|] ==> (a,c) \<in> r" | 
| 13383 | 186 | apply (insert cl_po) | 
| 19316 | 187 | apply (simp add: PartialOrder_def r_def) | 
| 13115 | 188 | apply (unfold trans_def, fast) | 
| 189 | done | |
| 190 | ||
| 191 | lemma (in PO) monotoneE: | |
| 192 | "[| monotone f A r; x \<in> A; y \<in> A; (x, y) \<in> r |] ==> (f x, f y) \<in> r" | |
| 193 | by (simp add: monotone_def) | |
| 194 | ||
| 195 | lemma (in PO) po_subset_po: | |
| 17841 | 196 | "S \<subseteq> A ==> (| pset = S, order = induced S r |) \<in> PartialOrder" | 
| 13115 | 197 | apply (simp (no_asm) add: PartialOrder_def) | 
| 198 | apply auto | |
| 13383 | 199 | -- {* refl *}
 | 
| 30198 | 200 | apply (simp add: refl_on_def induced_def) | 
| 18705 | 201 | apply (blast intro: reflE) | 
| 13383 | 202 | -- {* antisym *}
 | 
| 13115 | 203 | apply (simp add: antisym_def induced_def) | 
| 18705 | 204 | apply (blast intro: antisymE) | 
| 13383 | 205 | -- {* trans *}
 | 
| 13115 | 206 | apply (simp add: trans_def induced_def) | 
| 18705 | 207 | apply (blast intro: transE) | 
| 13115 | 208 | done | 
| 209 | ||
| 17841 | 210 | lemma (in PO) indE: "[| (x, y) \<in> induced S r; S \<subseteq> A |] ==> (x, y) \<in> r" | 
| 13115 | 211 | by (simp add: add: induced_def) | 
| 212 | ||
| 213 | lemma (in PO) indI: "[| (x, y) \<in> r; x \<in> S; y \<in> S |] ==> (x, y) \<in> induced S r" | |
| 214 | by (simp add: add: induced_def) | |
| 215 | ||
| 17841 | 216 | lemma (in CL) CL_imp_ex_isLub: "S \<subseteq> A ==> \<exists>L. isLub S cl L" | 
| 13383 | 217 | apply (insert cl_co) | 
| 13115 | 218 | apply (simp add: CompleteLattice_def A_def) | 
| 219 | done | |
| 220 | ||
| 221 | declare (in CL) cl_co [simp] | |
| 222 | ||
| 223 | lemma isLub_lub: "(\<exists>L. isLub S cl L) = isLub S cl (lub S cl)" | |
| 224 | by (simp add: lub_def least_def isLub_def some_eq_ex [symmetric]) | |
| 225 | ||
| 226 | lemma isGlb_glb: "(\<exists>G. isGlb S cl G) = isGlb S cl (glb S cl)" | |
| 227 | by (simp add: glb_def greatest_def isGlb_def some_eq_ex [symmetric]) | |
| 228 | ||
| 229 | lemma isGlb_dual_isLub: "isGlb S cl = isLub S (dual cl)" | |
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
41413diff
changeset | 230 | by (simp add: isLub_def isGlb_def dual_def converse_unfold) | 
| 13115 | 231 | |
| 232 | lemma isLub_dual_isGlb: "isLub S cl = isGlb S (dual cl)" | |
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
41413diff
changeset | 233 | by (simp add: isLub_def isGlb_def dual_def converse_unfold) | 
| 13115 | 234 | |
| 235 | lemma (in PO) dualPO: "dual cl \<in> PartialOrder" | |
| 13383 | 236 | apply (insert cl_po) | 
| 30198 | 237 | apply (simp add: PartialOrder_def dual_def refl_on_converse | 
| 13115 | 238 | trans_converse antisym_converse) | 
| 239 | done | |
| 240 | ||
| 241 | lemma Rdual: | |
| 17841 | 242 | "\<forall>S. (S \<subseteq> A -->( \<exists>L. isLub S (| pset = A, order = r|) L)) | 
| 243 | ==> \<forall>S. (S \<subseteq> A --> (\<exists>G. isGlb S (| pset = A, order = r|) G))" | |
| 13115 | 244 | apply safe | 
| 245 | apply (rule_tac x = "lub {y. y \<in> A & (\<forall>k \<in> S. (y, k) \<in> r)}
 | |
| 246 | (|pset = A, order = r|) " in exI) | |
| 247 | apply (drule_tac x = "{y. y \<in> A & (\<forall>k \<in> S. (y,k) \<in> r) }" in spec)
 | |
| 248 | apply (drule mp, fast) | |
| 249 | apply (simp add: isLub_lub isGlb_def) | |
| 250 | apply (simp add: isLub_def, blast) | |
| 251 | done | |
| 252 | ||
| 253 | lemma lub_dual_glb: "lub S cl = glb S (dual cl)" | |
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
41413diff
changeset | 254 | by (simp add: lub_def glb_def least_def greatest_def dual_def converse_unfold) | 
| 13115 | 255 | |
| 256 | lemma glb_dual_lub: "glb S cl = lub S (dual cl)" | |
| 46752 
e9e7209eb375
more fundamental pred-to-set conversions, particularly by means of inductive_set; associated consolidation of some theorem names (c.f. NEWS)
 haftmann parents: 
41413diff
changeset | 257 | by (simp add: lub_def glb_def least_def greatest_def dual_def converse_unfold) | 
| 13115 | 258 | |
| 17841 | 259 | lemma CL_subset_PO: "CompleteLattice \<subseteq> PartialOrder" | 
| 13115 | 260 | by (simp add: PartialOrder_def CompleteLattice_def, fast) | 
| 261 | ||
| 262 | lemmas CL_imp_PO = CL_subset_PO [THEN subsetD] | |
| 263 | ||
| 27681 | 264 | (*declare CL_imp_PO [THEN PO.PO_imp_refl, simp] | 
| 21232 | 265 | declare CL_imp_PO [THEN PO.PO_imp_sym, simp] | 
| 27681 | 266 | declare CL_imp_PO [THEN PO.PO_imp_trans, simp]*) | 
| 13115 | 267 | |
| 30198 | 268 | lemma (in CL) CO_refl_on: "refl_on A r" | 
| 269 | by (rule PO_imp_refl_on) | |
| 13115 | 270 | |
| 271 | lemma (in CL) CO_antisym: "antisym r" | |
| 272 | by (rule PO_imp_sym) | |
| 273 | ||
| 274 | lemma (in CL) CO_trans: "trans r" | |
| 275 | by (rule PO_imp_trans) | |
| 276 | ||
| 277 | lemma CompleteLatticeI: | |
| 17841 | 278 | "[| po \<in> PartialOrder; (\<forall>S. S \<subseteq> pset po --> (\<exists>L. isLub S po L)); | 
| 279 | (\<forall>S. S \<subseteq> pset po --> (\<exists>G. isGlb S po G))|] | |
| 13115 | 280 | ==> po \<in> CompleteLattice" | 
| 13383 | 281 | apply (unfold CompleteLattice_def, blast) | 
| 13115 | 282 | done | 
| 283 | ||
| 284 | lemma (in CL) CL_dualCL: "dual cl \<in> CompleteLattice" | |
| 13383 | 285 | apply (insert cl_co) | 
| 13115 | 286 | apply (simp add: CompleteLattice_def dual_def) | 
| 13383 | 287 | apply (fold dual_def) | 
| 288 | apply (simp add: isLub_dual_isGlb [symmetric] isGlb_dual_isLub [symmetric] | |
| 13115 | 289 | dualPO) | 
| 290 | done | |
| 291 | ||
| 13585 | 292 | lemma (in PO) dualA_iff: "pset (dual cl) = pset cl" | 
| 13115 | 293 | by (simp add: dual_def) | 
| 294 | ||
| 13585 | 295 | lemma (in PO) dualr_iff: "((x, y) \<in> (order(dual cl))) = ((y, x) \<in> order cl)" | 
| 13115 | 296 | by (simp add: dual_def) | 
| 297 | ||
| 298 | lemma (in PO) monotone_dual: | |
| 13585 | 299 | "monotone f (pset cl) (order cl) | 
| 300 | ==> monotone f (pset (dual cl)) (order(dual cl))" | |
| 301 | by (simp add: monotone_def dualA_iff dualr_iff) | |
| 13115 | 302 | |
| 303 | lemma (in PO) interval_dual: | |
| 13585 | 304 | "[| x \<in> A; y \<in> A|] ==> interval r x y = interval (order(dual cl)) y x" | 
| 13115 | 305 | apply (simp add: interval_def dualr_iff) | 
| 306 | apply (fold r_def, fast) | |
| 307 | done | |
| 308 | ||
| 27681 | 309 | lemma (in PO) trans: | 
| 310 | "(x, y) \<in> r \<Longrightarrow> (y, z) \<in> r \<Longrightarrow> (x, z) \<in> r" | |
| 311 | using cl_po apply (auto simp add: PartialOrder_def r_def) | |
| 312 | unfolding trans_def by blast | |
| 313 | ||
| 13115 | 314 | lemma (in PO) interval_not_empty: | 
| 27681 | 315 |   "interval r a b \<noteq> {} ==> (a, b) \<in> r"
 | 
| 13115 | 316 | apply (simp add: interval_def) | 
| 27681 | 317 | using trans by blast | 
| 13115 | 318 | |
| 319 | lemma (in PO) interval_imp_mem: "x \<in> interval r a b ==> (a, x) \<in> r" | |
| 320 | by (simp add: interval_def) | |
| 321 | ||
| 322 | lemma (in PO) left_in_interval: | |
| 323 |      "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |] ==> a \<in> interval r a b"
 | |
| 324 | apply (simp (no_asm_simp) add: interval_def) | |
| 325 | apply (simp add: PO_imp_trans interval_not_empty) | |
| 18705 | 326 | apply (simp add: reflE) | 
| 13115 | 327 | done | 
| 328 | ||
| 329 | lemma (in PO) right_in_interval: | |
| 330 |      "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |] ==> b \<in> interval r a b"
 | |
| 331 | apply (simp (no_asm_simp) add: interval_def) | |
| 332 | apply (simp add: PO_imp_trans interval_not_empty) | |
| 18705 | 333 | apply (simp add: reflE) | 
| 13115 | 334 | done | 
| 335 | ||
| 13383 | 336 | |
| 14569 | 337 | subsection {* sublattice *}
 | 
| 13383 | 338 | |
| 13115 | 339 | lemma (in PO) sublattice_imp_CL: | 
| 18750 | 340 | "S <<= cl ==> (| pset = S, order = induced S r |) \<in> CompleteLattice" | 
| 19316 | 341 | by (simp add: sublattice_def CompleteLattice_def r_def) | 
| 13115 | 342 | |
| 343 | lemma (in CL) sublatticeI: | |
| 17841 | 344 | "[| S \<subseteq> A; (| pset = S, order = induced S r |) \<in> CompleteLattice |] | 
| 18750 | 345 | ==> S <<= cl" | 
| 13115 | 346 | by (simp add: sublattice_def A_def r_def) | 
| 347 | ||
| 27681 | 348 | lemma (in CL) dual: | 
| 349 | "CL (dual cl)" | |
| 350 | apply unfold_locales | |
| 351 | using cl_co unfolding CompleteLattice_def | |
| 352 | apply (simp add: dualPO isGlb_dual_isLub [symmetric] isLub_dual_isGlb [symmetric] dualA_iff) | |
| 353 | done | |
| 354 | ||
| 13383 | 355 | |
| 14569 | 356 | subsection {* lub *}
 | 
| 13383 | 357 | |
| 17841 | 358 | lemma (in CL) lub_unique: "[| S \<subseteq> A; isLub S cl x; isLub S cl L|] ==> x = L" | 
| 13115 | 359 | apply (rule antisymE) | 
| 360 | apply (auto simp add: isLub_def r_def) | |
| 361 | done | |
| 362 | ||
| 17841 | 363 | lemma (in CL) lub_upper: "[|S \<subseteq> A; x \<in> S|] ==> (x, lub S cl) \<in> r" | 
| 13115 | 364 | apply (rule CL_imp_ex_isLub [THEN exE], assumption) | 
| 365 | apply (unfold lub_def least_def) | |
| 366 | apply (rule some_equality [THEN ssubst]) | |
| 367 | apply (simp add: isLub_def) | |
| 13383 | 368 | apply (simp add: lub_unique A_def isLub_def) | 
| 13115 | 369 | apply (simp add: isLub_def r_def) | 
| 370 | done | |
| 371 | ||
| 372 | lemma (in CL) lub_least: | |
| 17841 | 373 | "[| S \<subseteq> A; L \<in> A; \<forall>x \<in> S. (x,L) \<in> r |] ==> (lub S cl, L) \<in> r" | 
| 13115 | 374 | apply (rule CL_imp_ex_isLub [THEN exE], assumption) | 
| 375 | apply (unfold lub_def least_def) | |
| 376 | apply (rule_tac s=x in some_equality [THEN ssubst]) | |
| 377 | apply (simp add: isLub_def) | |
| 13383 | 378 | apply (simp add: lub_unique A_def isLub_def) | 
| 13115 | 379 | apply (simp add: isLub_def r_def A_def) | 
| 380 | done | |
| 381 | ||
| 17841 | 382 | lemma (in CL) lub_in_lattice: "S \<subseteq> A ==> lub S cl \<in> A" | 
| 13115 | 383 | apply (rule CL_imp_ex_isLub [THEN exE], assumption) | 
| 384 | apply (unfold lub_def least_def) | |
| 385 | apply (subst some_equality) | |
| 386 | apply (simp add: isLub_def) | |
| 387 | prefer 2 apply (simp add: isLub_def A_def) | |
| 13383 | 388 | apply (simp add: lub_unique A_def isLub_def) | 
| 13115 | 389 | done | 
| 390 | ||
| 391 | lemma (in CL) lubI: | |
| 17841 | 392 | "[| S \<subseteq> A; L \<in> A; \<forall>x \<in> S. (x,L) \<in> r; | 
| 13115 | 393 | \<forall>z \<in> A. (\<forall>y \<in> S. (y,z) \<in> r) --> (L,z) \<in> r |] ==> L = lub S cl" | 
| 394 | apply (rule lub_unique, assumption) | |
| 395 | apply (simp add: isLub_def A_def r_def) | |
| 396 | apply (unfold isLub_def) | |
| 397 | apply (rule conjI) | |
| 398 | apply (fold A_def r_def) | |
| 399 | apply (rule lub_in_lattice, assumption) | |
| 400 | apply (simp add: lub_upper lub_least) | |
| 401 | done | |
| 402 | ||
| 17841 | 403 | lemma (in CL) lubIa: "[| S \<subseteq> A; isLub S cl L |] ==> L = lub S cl" | 
| 13115 | 404 | by (simp add: lubI isLub_def A_def r_def) | 
| 405 | ||
| 406 | lemma (in CL) isLub_in_lattice: "isLub S cl L ==> L \<in> A" | |
| 407 | by (simp add: isLub_def A_def) | |
| 408 | ||
| 409 | lemma (in CL) isLub_upper: "[|isLub S cl L; y \<in> S|] ==> (y, L) \<in> r" | |
| 410 | by (simp add: isLub_def r_def) | |
| 411 | ||
| 412 | lemma (in CL) isLub_least: | |
| 413 | "[| isLub S cl L; z \<in> A; \<forall>y \<in> S. (y, z) \<in> r|] ==> (L, z) \<in> r" | |
| 414 | by (simp add: isLub_def A_def r_def) | |
| 415 | ||
| 416 | lemma (in CL) isLubI: | |
| 13383 | 417 | "[| L \<in> A; \<forall>y \<in> S. (y, L) \<in> r; | 
| 13115 | 418 | (\<forall>z \<in> A. (\<forall>y \<in> S. (y, z):r) --> (L, z) \<in> r)|] ==> isLub S cl L" | 
| 419 | by (simp add: isLub_def A_def r_def) | |
| 420 | ||
| 13383 | 421 | |
| 14569 | 422 | subsection {* glb *}
 | 
| 13383 | 423 | |
| 17841 | 424 | lemma (in CL) glb_in_lattice: "S \<subseteq> A ==> glb S cl \<in> A" | 
| 13115 | 425 | apply (subst glb_dual_lub) | 
| 426 | apply (simp add: A_def) | |
| 427 | apply (rule dualA_iff [THEN subst]) | |
| 21232 | 428 | apply (rule CL.lub_in_lattice) | 
| 27681 | 429 | apply (rule dual) | 
| 13115 | 430 | apply (simp add: dualA_iff) | 
| 431 | done | |
| 432 | ||
| 17841 | 433 | lemma (in CL) glb_lower: "[|S \<subseteq> A; x \<in> S|] ==> (glb S cl, x) \<in> r" | 
| 13115 | 434 | apply (subst glb_dual_lub) | 
| 435 | apply (simp add: r_def) | |
| 436 | apply (rule dualr_iff [THEN subst]) | |
| 21232 | 437 | apply (rule CL.lub_upper) | 
| 27681 | 438 | apply (rule dual) | 
| 13115 | 439 | apply (simp add: dualA_iff A_def, assumption) | 
| 440 | done | |
| 441 | ||
| 13383 | 442 | text {*
 | 
| 443 | Reduce the sublattice property by using substructural properties; | |
| 444 |   abandoned see @{text "Tarski_4.ML"}.
 | |
| 445 | *} | |
| 13115 | 446 | |
| 447 | lemma (in CLF) [simp]: | |
| 13585 | 448 | "f: pset cl -> pset cl & monotone f (pset cl) (order cl)" | 
| 13383 | 449 | apply (insert f_cl) | 
| 27681 | 450 | apply (simp add: CLF_set_def) | 
| 13115 | 451 | done | 
| 452 | ||
| 453 | declare (in CLF) f_cl [simp] | |
| 454 | ||
| 455 | ||
| 13585 | 456 | lemma (in CLF) f_in_funcset: "f \<in> A -> A" | 
| 13115 | 457 | by (simp add: A_def) | 
| 458 | ||
| 459 | lemma (in CLF) monotone_f: "monotone f A r" | |
| 460 | by (simp add: A_def r_def) | |
| 461 | ||
| 27681 | 462 | lemma (in CLF) CLF_dual: "(dual cl, f) \<in> CLF_set" | 
| 463 | apply (simp add: CLF_set_def CL_dualCL monotone_dual) | |
| 13115 | 464 | apply (simp add: dualA_iff) | 
| 465 | done | |
| 466 | ||
| 27681 | 467 | lemma (in CLF) dual: | 
| 468 | "CLF (dual cl) f" | |
| 469 | apply (rule CLF.intro) | |
| 470 | apply (rule CLF_dual) | |
| 471 | done | |
| 472 | ||
| 13383 | 473 | |
| 14569 | 474 | subsection {* fixed points *}
 | 
| 13383 | 475 | |
| 17841 | 476 | lemma fix_subset: "fix f A \<subseteq> A" | 
| 13115 | 477 | by (simp add: fix_def, fast) | 
| 478 | ||
| 479 | lemma fix_imp_eq: "x \<in> fix f A ==> f x = x" | |
| 480 | by (simp add: fix_def) | |
| 481 | ||
| 482 | lemma fixf_subset: | |
| 17841 | 483 | "[| A \<subseteq> B; x \<in> fix (%y: A. f y) A |] ==> x \<in> fix f B" | 
| 484 | by (simp add: fix_def, auto) | |
| 13115 | 485 | |
| 13383 | 486 | |
| 14569 | 487 | subsection {* lemmas for Tarski, lub *}
 | 
| 13115 | 488 | lemma (in CLF) lubH_le_flubH: | 
| 489 |      "H = {x. (x, f x) \<in> r & x \<in> A} ==> (lub H cl, f (lub H cl)) \<in> r"
 | |
| 490 | apply (rule lub_least, fast) | |
| 491 | apply (rule f_in_funcset [THEN funcset_mem]) | |
| 492 | apply (rule lub_in_lattice, fast) | |
| 13383 | 493 | -- {* @{text "\<forall>x:H. (x, f (lub H r)) \<in> r"} *}
 | 
| 13115 | 494 | apply (rule ballI) | 
| 495 | apply (rule transE) | |
| 13585 | 496 | -- {* instantiates @{text "(x, ???z) \<in> order cl to (x, f x)"}, *}
 | 
| 13383 | 497 | -- {* because of the def of @{text H} *}
 | 
| 13115 | 498 | apply fast | 
| 13383 | 499 | -- {* so it remains to show @{text "(f x, f (lub H cl)) \<in> r"} *}
 | 
| 13115 | 500 | apply (rule_tac f = "f" in monotoneE) | 
| 501 | apply (rule monotone_f, fast) | |
| 502 | apply (rule lub_in_lattice, fast) | |
| 503 | apply (rule lub_upper, fast) | |
| 504 | apply assumption | |
| 505 | done | |
| 506 | ||
| 507 | lemma (in CLF) flubH_le_lubH: | |
| 508 |      "[|  H = {x. (x, f x) \<in> r & x \<in> A} |] ==> (f (lub H cl), lub H cl) \<in> r"
 | |
| 509 | apply (rule lub_upper, fast) | |
| 510 | apply (rule_tac t = "H" in ssubst, assumption) | |
| 511 | apply (rule CollectI) | |
| 512 | apply (rule conjI) | |
| 513 | apply (rule_tac [2] f_in_funcset [THEN funcset_mem]) | |
| 514 | apply (rule_tac [2] lub_in_lattice) | |
| 515 | prefer 2 apply fast | |
| 516 | apply (rule_tac f = "f" in monotoneE) | |
| 517 | apply (rule monotone_f) | |
| 13383 | 518 | apply (blast intro: lub_in_lattice) | 
| 519 | apply (blast intro: lub_in_lattice f_in_funcset [THEN funcset_mem]) | |
| 13115 | 520 | apply (simp add: lubH_le_flubH) | 
| 521 | done | |
| 522 | ||
| 523 | lemma (in CLF) lubH_is_fixp: | |
| 524 |      "H = {x. (x, f x) \<in> r & x \<in> A} ==> lub H cl \<in> fix f A"
 | |
| 525 | apply (simp add: fix_def) | |
| 526 | apply (rule conjI) | |
| 527 | apply (rule lub_in_lattice, fast) | |
| 528 | apply (rule antisymE) | |
| 529 | apply (simp add: flubH_le_lubH) | |
| 530 | apply (simp add: lubH_le_flubH) | |
| 531 | done | |
| 532 | ||
| 533 | lemma (in CLF) fix_in_H: | |
| 534 |      "[| H = {x. (x, f x) \<in> r & x \<in> A};  x \<in> P |] ==> x \<in> H"
 | |
| 30198 | 535 | by (simp add: P_def fix_imp_eq [of _ f A] reflE CO_refl_on | 
| 13383 | 536 | fix_subset [of f A, THEN subsetD]) | 
| 13115 | 537 | |
| 538 | lemma (in CLF) fixf_le_lubH: | |
| 539 |      "H = {x. (x, f x) \<in> r & x \<in> A} ==> \<forall>x \<in> fix f A. (x, lub H cl) \<in> r"
 | |
| 540 | apply (rule ballI) | |
| 541 | apply (rule lub_upper, fast) | |
| 542 | apply (rule fix_in_H) | |
| 13383 | 543 | apply (simp_all add: P_def) | 
| 13115 | 544 | done | 
| 545 | ||
| 546 | lemma (in CLF) lubH_least_fixf: | |
| 13383 | 547 |      "H = {x. (x, f x) \<in> r & x \<in> A}
 | 
| 13115 | 548 | ==> \<forall>L. (\<forall>y \<in> fix f A. (y,L) \<in> r) --> (lub H cl, L) \<in> r" | 
| 549 | apply (rule allI) | |
| 550 | apply (rule impI) | |
| 551 | apply (erule bspec) | |
| 552 | apply (rule lubH_is_fixp, assumption) | |
| 553 | done | |
| 554 | ||
| 14569 | 555 | subsection {* Tarski fixpoint theorem 1, first part *}
 | 
| 13115 | 556 | lemma (in CLF) T_thm_1_lub: "lub P cl = lub {x. (x, f x) \<in> r & x \<in> A} cl"
 | 
| 557 | apply (rule sym) | |
| 13383 | 558 | apply (simp add: P_def) | 
| 13115 | 559 | apply (rule lubI) | 
| 560 | apply (rule fix_subset) | |
| 561 | apply (rule lub_in_lattice, fast) | |
| 562 | apply (simp add: fixf_le_lubH) | |
| 563 | apply (simp add: lubH_least_fixf) | |
| 564 | done | |
| 565 | ||
| 566 | lemma (in CLF) glbH_is_fixp: "H = {x. (f x, x) \<in> r & x \<in> A} ==> glb H cl \<in> P"
 | |
| 13383 | 567 |   -- {* Tarski for glb *}
 | 
| 13115 | 568 | apply (simp add: glb_dual_lub P_def A_def r_def) | 
| 569 | apply (rule dualA_iff [THEN subst]) | |
| 21232 | 570 | apply (rule CLF.lubH_is_fixp) | 
| 27681 | 571 | apply (rule dual) | 
| 13115 | 572 | apply (simp add: dualr_iff dualA_iff) | 
| 573 | done | |
| 574 | ||
| 575 | lemma (in CLF) T_thm_1_glb: "glb P cl = glb {x. (f x, x) \<in> r & x \<in> A} cl"
 | |
| 576 | apply (simp add: glb_dual_lub P_def A_def r_def) | |
| 577 | apply (rule dualA_iff [THEN subst]) | |
| 27681 | 578 | apply (simp add: CLF.T_thm_1_lub [of _ f, OF dual] | 
| 13115 | 579 | dualPO CL_dualCL CLF_dual dualr_iff) | 
| 580 | done | |
| 581 | ||
| 14569 | 582 | subsection {* interval *}
 | 
| 13383 | 583 | |
| 13115 | 584 | lemma (in CLF) rel_imp_elem: "(x, y) \<in> r ==> x \<in> A" | 
| 30198 | 585 | apply (insert CO_refl_on) | 
| 586 | apply (simp add: refl_on_def, blast) | |
| 13115 | 587 | done | 
| 588 | ||
| 17841 | 589 | lemma (in CLF) interval_subset: "[| a \<in> A; b \<in> A |] ==> interval r a b \<subseteq> A" | 
| 13115 | 590 | apply (simp add: interval_def) | 
| 591 | apply (blast intro: rel_imp_elem) | |
| 592 | done | |
| 593 | ||
| 594 | lemma (in CLF) intervalI: | |
| 595 | "[| (a, x) \<in> r; (x, b) \<in> r |] ==> x \<in> interval r a b" | |
| 17841 | 596 | by (simp add: interval_def) | 
| 13115 | 597 | |
| 598 | lemma (in CLF) interval_lemma1: | |
| 17841 | 599 | "[| S \<subseteq> interval r a b; x \<in> S |] ==> (a, x) \<in> r" | 
| 600 | by (unfold interval_def, fast) | |
| 13115 | 601 | |
| 602 | lemma (in CLF) interval_lemma2: | |
| 17841 | 603 | "[| S \<subseteq> interval r a b; x \<in> S |] ==> (x, b) \<in> r" | 
| 604 | by (unfold interval_def, fast) | |
| 13115 | 605 | |
| 606 | lemma (in CLF) a_less_lub: | |
| 17841 | 607 |      "[| S \<subseteq> A; S \<noteq> {};
 | 
| 13115 | 608 | \<forall>x \<in> S. (a,x) \<in> r; \<forall>y \<in> S. (y, L) \<in> r |] ==> (a,L) \<in> r" | 
| 18705 | 609 | by (blast intro: transE) | 
| 13115 | 610 | |
| 611 | lemma (in CLF) glb_less_b: | |
| 17841 | 612 |      "[| S \<subseteq> A; S \<noteq> {};
 | 
| 13115 | 613 | \<forall>x \<in> S. (x,b) \<in> r; \<forall>y \<in> S. (G, y) \<in> r |] ==> (G,b) \<in> r" | 
| 18705 | 614 | by (blast intro: transE) | 
| 13115 | 615 | |
| 616 | lemma (in CLF) S_intv_cl: | |
| 17841 | 617 | "[| a \<in> A; b \<in> A; S \<subseteq> interval r a b |]==> S \<subseteq> A" | 
| 13115 | 618 | by (simp add: subset_trans [OF _ interval_subset]) | 
| 619 | ||
| 620 | lemma (in CLF) L_in_interval: | |
| 17841 | 621 | "[| a \<in> A; b \<in> A; S \<subseteq> interval r a b; | 
| 13115 | 622 |          S \<noteq> {}; isLub S cl L; interval r a b \<noteq> {} |] ==> L \<in> interval r a b"
 | 
| 623 | apply (rule intervalI) | |
| 624 | apply (rule a_less_lub) | |
| 625 | prefer 2 apply assumption | |
| 626 | apply (simp add: S_intv_cl) | |
| 627 | apply (rule ballI) | |
| 628 | apply (simp add: interval_lemma1) | |
| 629 | apply (simp add: isLub_upper) | |
| 13383 | 630 | -- {* @{text "(L, b) \<in> r"} *}
 | 
| 13115 | 631 | apply (simp add: isLub_least interval_lemma2) | 
| 632 | done | |
| 633 | ||
| 634 | lemma (in CLF) G_in_interval: | |
| 17841 | 635 |      "[| a \<in> A; b \<in> A; interval r a b \<noteq> {}; S \<subseteq> interval r a b; isGlb S cl G;
 | 
| 13115 | 636 |          S \<noteq> {} |] ==> G \<in> interval r a b"
 | 
| 637 | apply (simp add: interval_dual) | |
| 27681 | 638 | apply (simp add: CLF.L_in_interval [of _ f, OF dual] | 
| 639 | dualA_iff A_def isGlb_dual_isLub) | |
| 13115 | 640 | done | 
| 641 | ||
| 642 | lemma (in CLF) intervalPO: | |
| 13383 | 643 |      "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |]
 | 
| 13115 | 644 | ==> (| pset = interval r a b, order = induced (interval r a b) r |) | 
| 645 | \<in> PartialOrder" | |
| 646 | apply (rule po_subset_po) | |
| 647 | apply (simp add: interval_subset) | |
| 648 | done | |
| 649 | ||
| 650 | lemma (in CLF) intv_CL_lub: | |
| 13383 | 651 |  "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |]
 | 
| 17841 | 652 | ==> \<forall>S. S \<subseteq> interval r a b --> | 
| 13383 | 653 | (\<exists>L. isLub S (| pset = interval r a b, | 
| 13115 | 654 | order = induced (interval r a b) r |) L)" | 
| 655 | apply (intro strip) | |
| 656 | apply (frule S_intv_cl [THEN CL_imp_ex_isLub]) | |
| 657 | prefer 2 apply assumption | |
| 658 | apply assumption | |
| 659 | apply (erule exE) | |
| 13383 | 660 | -- {* define the lub for the interval as *}
 | 
| 13115 | 661 | apply (rule_tac x = "if S = {} then a else L" in exI)
 | 
| 662 | apply (simp (no_asm_simp) add: isLub_def split del: split_if) | |
| 13383 | 663 | apply (intro impI conjI) | 
| 664 | -- {* @{text "(if S = {} then a else L) \<in> interval r a b"} *}
 | |
| 13115 | 665 | apply (simp add: CL_imp_PO L_in_interval) | 
| 666 | apply (simp add: left_in_interval) | |
| 13383 | 667 | -- {* lub prop 1 *}
 | 
| 13115 | 668 | apply (case_tac "S = {}")
 | 
| 13383 | 669 | -- {* @{text "S = {}, y \<in> S = False => everything"} *}
 | 
| 13115 | 670 | apply fast | 
| 13383 | 671 | -- {* @{text "S \<noteq> {}"} *}
 | 
| 13115 | 672 | apply simp | 
| 13383 | 673 | -- {* @{text "\<forall>y:S. (y, L) \<in> induced (interval r a b) r"} *}
 | 
| 13115 | 674 | apply (rule ballI) | 
| 675 | apply (simp add: induced_def L_in_interval) | |
| 676 | apply (rule conjI) | |
| 677 | apply (rule subsetD) | |
| 678 | apply (simp add: S_intv_cl, assumption) | |
| 679 | apply (simp add: isLub_upper) | |
| 13383 | 680 | -- {* @{text "\<forall>z:interval r a b. (\<forall>y:S. (y, z) \<in> induced (interval r a b) r \<longrightarrow> (if S = {} then a else L, z) \<in> induced (interval r a b) r"} *}
 | 
| 13115 | 681 | apply (rule ballI) | 
| 682 | apply (rule impI) | |
| 683 | apply (case_tac "S = {}")
 | |
| 13383 | 684 | -- {* @{text "S = {}"} *}
 | 
| 13115 | 685 | apply simp | 
| 686 | apply (simp add: induced_def interval_def) | |
| 687 | apply (rule conjI) | |
| 18705 | 688 | apply (rule reflE, assumption) | 
| 13115 | 689 | apply (rule interval_not_empty) | 
| 690 | apply (simp add: interval_def) | |
| 13383 | 691 | -- {* @{text "S \<noteq> {}"} *}
 | 
| 13115 | 692 | apply simp | 
| 693 | apply (simp add: induced_def L_in_interval) | |
| 694 | apply (rule isLub_least, assumption) | |
| 695 | apply (rule subsetD) | |
| 696 | prefer 2 apply assumption | |
| 697 | apply (simp add: S_intv_cl, fast) | |
| 698 | done | |
| 699 | ||
| 700 | lemmas (in CLF) intv_CL_glb = intv_CL_lub [THEN Rdual] | |
| 701 | ||
| 702 | lemma (in CLF) interval_is_sublattice: | |
| 13383 | 703 |      "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |]
 | 
| 18750 | 704 | ==> interval r a b <<= cl" | 
| 13115 | 705 | apply (rule sublatticeI) | 
| 706 | apply (simp add: interval_subset) | |
| 707 | apply (rule CompleteLatticeI) | |
| 708 | apply (simp add: intervalPO) | |
| 709 | apply (simp add: intv_CL_lub) | |
| 710 | apply (simp add: intv_CL_glb) | |
| 711 | done | |
| 712 | ||
| 13383 | 713 | lemmas (in CLF) interv_is_compl_latt = | 
| 13115 | 714 | interval_is_sublattice [THEN sublattice_imp_CL] | 
| 715 | ||
| 13383 | 716 | |
| 14569 | 717 | subsection {* Top and Bottom *}
 | 
| 13115 | 718 | lemma (in CLF) Top_dual_Bot: "Top cl = Bot (dual cl)" | 
| 719 | by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff) | |
| 720 | ||
| 721 | lemma (in CLF) Bot_dual_Top: "Bot cl = Top (dual cl)" | |
| 722 | by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff) | |
| 723 | ||
| 724 | lemma (in CLF) Bot_in_lattice: "Bot cl \<in> A" | |
| 725 | apply (simp add: Bot_def least_def) | |
| 17841 | 726 | apply (rule_tac a="glb A cl" in someI2) | 
| 727 | apply (simp_all add: glb_in_lattice glb_lower | |
| 728 | r_def [symmetric] A_def [symmetric]) | |
| 13115 | 729 | done | 
| 730 | ||
| 731 | lemma (in CLF) Top_in_lattice: "Top cl \<in> A" | |
| 732 | apply (simp add: Top_dual_Bot A_def) | |
| 13383 | 733 | apply (rule dualA_iff [THEN subst]) | 
| 27681 | 734 | apply (rule CLF.Bot_in_lattice [OF dual]) | 
| 13115 | 735 | done | 
| 736 | ||
| 737 | lemma (in CLF) Top_prop: "x \<in> A ==> (x, Top cl) \<in> r" | |
| 738 | apply (simp add: Top_def greatest_def) | |
| 17841 | 739 | apply (rule_tac a="lub A cl" in someI2) | 
| 13115 | 740 | apply (rule someI2) | 
| 17841 | 741 | apply (simp_all add: lub_in_lattice lub_upper | 
| 742 | r_def [symmetric] A_def [symmetric]) | |
| 13115 | 743 | done | 
| 744 | ||
| 745 | lemma (in CLF) Bot_prop: "x \<in> A ==> (Bot cl, x) \<in> r" | |
| 746 | apply (simp add: Bot_dual_Top r_def) | |
| 747 | apply (rule dualr_iff [THEN subst]) | |
| 27681 | 748 | apply (rule CLF.Top_prop [OF dual]) | 
| 749 | apply (simp add: dualA_iff A_def) | |
| 13115 | 750 | done | 
| 751 | ||
| 752 | lemma (in CLF) Top_intv_not_empty: "x \<in> A  ==> interval r x (Top cl) \<noteq> {}"
 | |
| 753 | apply (rule notI) | |
| 754 | apply (drule_tac a = "Top cl" in equals0D) | |
| 755 | apply (simp add: interval_def) | |
| 30198 | 756 | apply (simp add: refl_on_def Top_in_lattice Top_prop) | 
| 13115 | 757 | done | 
| 758 | ||
| 759 | lemma (in CLF) Bot_intv_not_empty: "x \<in> A ==> interval r (Bot cl) x \<noteq> {}"
 | |
| 760 | apply (simp add: Bot_dual_Top) | |
| 761 | apply (subst interval_dual) | |
| 762 | prefer 2 apply assumption | |
| 763 | apply (simp add: A_def) | |
| 764 | apply (rule dualA_iff [THEN subst]) | |
| 27681 | 765 | apply (rule CLF.Top_in_lattice [OF dual]) | 
| 766 | apply (rule CLF.Top_intv_not_empty [OF dual]) | |
| 767 | apply (simp add: dualA_iff A_def) | |
| 13115 | 768 | done | 
| 769 | ||
| 14569 | 770 | subsection {* fixed points form a partial order *}
 | 
| 13383 | 771 | |
| 13115 | 772 | lemma (in CLF) fixf_po: "(| pset = P, order = induced P r|) \<in> PartialOrder" | 
| 773 | by (simp add: P_def fix_subset po_subset_po) | |
| 774 | ||
| 17841 | 775 | lemma (in Tarski) Y_subset_A: "Y \<subseteq> A" | 
| 13115 | 776 | apply (rule subset_trans [OF _ fix_subset]) | 
| 777 | apply (rule Y_ss [simplified P_def]) | |
| 778 | done | |
| 779 | ||
| 780 | lemma (in Tarski) lubY_in_A: "lub Y cl \<in> A" | |
| 18750 | 781 | by (rule Y_subset_A [THEN lub_in_lattice]) | 
| 13115 | 782 | |
| 783 | lemma (in Tarski) lubY_le_flubY: "(lub Y cl, f (lub Y cl)) \<in> r" | |
| 784 | apply (rule lub_least) | |
| 785 | apply (rule Y_subset_A) | |
| 786 | apply (rule f_in_funcset [THEN funcset_mem]) | |
| 787 | apply (rule lubY_in_A) | |
| 17841 | 788 | -- {* @{text "Y \<subseteq> P ==> f x = x"} *}
 | 
| 13115 | 789 | apply (rule ballI) | 
| 790 | apply (rule_tac t = "x" in fix_imp_eq [THEN subst]) | |
| 791 | apply (erule Y_ss [simplified P_def, THEN subsetD]) | |
| 13383 | 792 | -- {* @{text "reduce (f x, f (lub Y cl)) \<in> r to (x, lub Y cl) \<in> r"} by monotonicity *}
 | 
| 13115 | 793 | apply (rule_tac f = "f" in monotoneE) | 
| 794 | apply (rule monotone_f) | |
| 795 | apply (simp add: Y_subset_A [THEN subsetD]) | |
| 796 | apply (rule lubY_in_A) | |
| 797 | apply (simp add: lub_upper Y_subset_A) | |
| 798 | done | |
| 799 | ||
| 17841 | 800 | lemma (in Tarski) intY1_subset: "intY1 \<subseteq> A" | 
| 13115 | 801 | apply (unfold intY1_def) | 
| 802 | apply (rule interval_subset) | |
| 803 | apply (rule lubY_in_A) | |
| 804 | apply (rule Top_in_lattice) | |
| 805 | done | |
| 806 | ||
| 807 | lemmas (in Tarski) intY1_elem = intY1_subset [THEN subsetD] | |
| 808 | ||
| 809 | lemma (in Tarski) intY1_f_closed: "x \<in> intY1 \<Longrightarrow> f x \<in> intY1" | |
| 810 | apply (simp add: intY1_def interval_def) | |
| 811 | apply (rule conjI) | |
| 812 | apply (rule transE) | |
| 813 | apply (rule lubY_le_flubY) | |
| 13383 | 814 | -- {* @{text "(f (lub Y cl), f x) \<in> r"} *}
 | 
| 13115 | 815 | apply (rule_tac f=f in monotoneE) | 
| 816 | apply (rule monotone_f) | |
| 817 | apply (rule lubY_in_A) | |
| 818 | apply (simp add: intY1_def interval_def intY1_elem) | |
| 819 | apply (simp add: intY1_def interval_def) | |
| 13383 | 820 | -- {* @{text "(f x, Top cl) \<in> r"} *}
 | 
| 13115 | 821 | apply (rule Top_prop) | 
| 822 | apply (rule f_in_funcset [THEN funcset_mem]) | |
| 823 | apply (simp add: intY1_def interval_def intY1_elem) | |
| 824 | done | |
| 825 | ||
| 826 | lemma (in Tarski) intY1_mono: | |
| 827 | "monotone (%x: intY1. f x) intY1 (induced intY1 r)" | |
| 828 | apply (auto simp add: monotone_def induced_def intY1_f_closed) | |
| 829 | apply (blast intro: intY1_elem monotone_f [THEN monotoneE]) | |
| 830 | done | |
| 831 | ||
| 13383 | 832 | lemma (in Tarski) intY1_is_cl: | 
| 13115 | 833 | "(| pset = intY1, order = induced intY1 r |) \<in> CompleteLattice" | 
| 834 | apply (unfold intY1_def) | |
| 835 | apply (rule interv_is_compl_latt) | |
| 836 | apply (rule lubY_in_A) | |
| 837 | apply (rule Top_in_lattice) | |
| 838 | apply (rule Top_intv_not_empty) | |
| 839 | apply (rule lubY_in_A) | |
| 840 | done | |
| 841 | ||
| 842 | lemma (in Tarski) v_in_P: "v \<in> P" | |
| 843 | apply (unfold P_def) | |
| 844 | apply (rule_tac A = "intY1" in fixf_subset) | |
| 845 | apply (rule intY1_subset) | |
| 27681 | 846 | unfolding v_def | 
| 847 | apply (rule CLF.glbH_is_fixp [OF CLF.intro, unfolded CLF_set_def, of "\<lparr>pset = intY1, order = induced intY1 r\<rparr>", simplified]) | |
| 848 | apply auto | |
| 849 | apply (rule intY1_is_cl) | |
| 31754 | 850 | apply (erule intY1_f_closed) | 
| 27681 | 851 | apply (rule intY1_mono) | 
| 13115 | 852 | done | 
| 853 | ||
| 13383 | 854 | lemma (in Tarski) z_in_interval: | 
| 13115 | 855 | "[| z \<in> P; \<forall>y\<in>Y. (y, z) \<in> induced P r |] ==> z \<in> intY1" | 
| 856 | apply (unfold intY1_def P_def) | |
| 857 | apply (rule intervalI) | |
| 13383 | 858 | prefer 2 | 
| 13115 | 859 | apply (erule fix_subset [THEN subsetD, THEN Top_prop]) | 
| 860 | apply (rule lub_least) | |
| 861 | apply (rule Y_subset_A) | |
| 862 | apply (fast elim!: fix_subset [THEN subsetD]) | |
| 863 | apply (simp add: induced_def) | |
| 864 | done | |
| 865 | ||
| 13383 | 866 | lemma (in Tarski) f'z_in_int_rel: "[| z \<in> P; \<forall>y\<in>Y. (y, z) \<in> induced P r |] | 
| 13115 | 867 | ==> ((%x: intY1. f x) z, z) \<in> induced intY1 r" | 
| 868 | apply (simp add: induced_def intY1_f_closed z_in_interval P_def) | |
| 13383 | 869 | apply (simp add: fix_imp_eq [of _ f A] fix_subset [of f A, THEN subsetD] | 
| 18705 | 870 | reflE) | 
| 13115 | 871 | done | 
| 872 | ||
| 873 | lemma (in Tarski) tarski_full_lemma: | |
| 874 | "\<exists>L. isLub Y (| pset = P, order = induced P r |) L" | |
| 875 | apply (rule_tac x = "v" in exI) | |
| 876 | apply (simp add: isLub_def) | |
| 13383 | 877 | -- {* @{text "v \<in> P"} *}
 | 
| 13115 | 878 | apply (simp add: v_in_P) | 
| 879 | apply (rule conjI) | |
| 13383 | 880 | -- {* @{text v} is lub *}
 | 
| 881 | -- {* @{text "1. \<forall>y:Y. (y, v) \<in> induced P r"} *}
 | |
| 13115 | 882 | apply (rule ballI) | 
| 883 | apply (simp add: induced_def subsetD v_in_P) | |
| 884 | apply (rule conjI) | |
| 885 | apply (erule Y_ss [THEN subsetD]) | |
| 886 | apply (rule_tac b = "lub Y cl" in transE) | |
| 887 | apply (rule lub_upper) | |
| 888 | apply (rule Y_subset_A, assumption) | |
| 889 | apply (rule_tac b = "Top cl" in interval_imp_mem) | |
| 890 | apply (simp add: v_def) | |
| 891 | apply (fold intY1_def) | |
| 27681 | 892 | apply (rule CL.glb_in_lattice [OF CL.intro [OF intY1_is_cl], simplified]) | 
| 893 | apply auto | |
| 13115 | 894 | apply (rule indI) | 
| 895 | prefer 3 apply assumption | |
| 896 | prefer 2 apply (simp add: v_in_P) | |
| 897 | apply (unfold v_def) | |
| 898 | apply (rule indE) | |
| 899 | apply (rule_tac [2] intY1_subset) | |
| 27681 | 900 | apply (rule CL.glb_lower [OF CL.intro [OF intY1_is_cl], simplified]) | 
| 13383 | 901 | apply (simp add: CL_imp_PO intY1_is_cl) | 
| 13115 | 902 | apply force | 
| 903 | apply (simp add: induced_def intY1_f_closed z_in_interval) | |
| 18705 | 904 | apply (simp add: P_def fix_imp_eq [of _ f A] reflE | 
| 905 | fix_subset [of f A, THEN subsetD]) | |
| 13115 | 906 | done | 
| 907 | ||
| 908 | lemma CompleteLatticeI_simp: | |
| 13383 | 909 | "[| (| pset = A, order = r |) \<in> PartialOrder; | 
| 17841 | 910 | \<forall>S. S \<subseteq> A --> (\<exists>L. isLub S (| pset = A, order = r |) L) |] | 
| 13115 | 911 | ==> (| pset = A, order = r |) \<in> CompleteLattice" | 
| 912 | by (simp add: CompleteLatticeI Rdual) | |
| 913 | ||
| 914 | theorem (in CLF) Tarski_full: | |
| 915 | "(| pset = P, order = induced P r|) \<in> CompleteLattice" | |
| 916 | apply (rule CompleteLatticeI_simp) | |
| 917 | apply (rule fixf_po, clarify) | |
| 13383 | 918 | apply (simp add: P_def A_def r_def) | 
| 27681 | 919 | apply (rule Tarski.tarski_full_lemma [OF Tarski.intro [OF _ Tarski_axioms.intro]]) | 
| 28823 | 920 | proof - show "CLF cl f" .. qed | 
| 7112 | 921 | |
| 922 | end |