author | blanchet |
Tue, 07 May 2013 11:27:29 +0200 | |
changeset 51892 | e5432ec161ff |
parent 46821 | ff6b0c1087f2 |
child 58871 | c399ae4b836f |
permissions | -rw-r--r-- |
6093 | 1 |
(* Title: ZF/QUniv.thy |
1478 | 2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
0 | 3 |
Copyright 1993 University of Cambridge |
4 |
*) |
|
5 |
||
13356 | 6 |
header{*A Small Universe for Lazy Recursive Types*} |
13285 | 7 |
|
16417 | 8 |
theory QUniv imports Univ QPair begin |
3923 | 9 |
|
6112 | 10 |
(*Disjoint sums as a datatype*) |
46820 | 11 |
rep_datatype |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
24893
diff
changeset
|
12 |
elimination sumE |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
24893
diff
changeset
|
13 |
induction TrueI |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
24893
diff
changeset
|
14 |
case_eqns case_Inl case_Inr |
6112 | 15 |
|
16 |
(*Variant disjoint sums as a datatype*) |
|
46820 | 17 |
rep_datatype |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
24893
diff
changeset
|
18 |
elimination qsumE |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
24893
diff
changeset
|
19 |
induction TrueI |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
24893
diff
changeset
|
20 |
case_eqns qcase_QInl qcase_QInr |
6112 | 21 |
|
24893 | 22 |
definition |
23 |
quniv :: "i => i" where |
|
6112 | 24 |
"quniv(A) == Pow(univ(eclose(A)))" |
0 | 25 |
|
13285 | 26 |
|
13356 | 27 |
subsection{*Properties involving Transset and Sum*} |
28 |
||
13285 | 29 |
lemma Transset_includes_summands: |
46820 | 30 |
"[| Transset(C); A+B \<subseteq> C |] ==> A \<subseteq> C & B \<subseteq> C" |
31 |
apply (simp add: sum_def Un_subset_iff) |
|
13285 | 32 |
apply (blast dest: Transset_includes_range) |
33 |
done |
|
34 |
||
35 |
lemma Transset_sum_Int_subset: |
|
46820 | 36 |
"Transset(C) ==> (A+B) \<inter> C \<subseteq> (A \<inter> C) + (B \<inter> C)" |
37 |
apply (simp add: sum_def Int_Un_distrib2) |
|
13285 | 38 |
apply (blast dest: Transset_Pair_D) |
39 |
done |
|
40 |
||
13356 | 41 |
subsection{*Introduction and Elimination Rules*} |
13285 | 42 |
|
46820 | 43 |
lemma qunivI: "X \<subseteq> univ(eclose(A)) ==> X \<in> quniv(A)" |
13285 | 44 |
by (simp add: quniv_def) |
45 |
||
46820 | 46 |
lemma qunivD: "X \<in> quniv(A) ==> X \<subseteq> univ(eclose(A))" |
13285 | 47 |
by (simp add: quniv_def) |
48 |
||
46820 | 49 |
lemma quniv_mono: "A<=B ==> quniv(A) \<subseteq> quniv(B)" |
13285 | 50 |
apply (unfold quniv_def) |
51 |
apply (erule eclose_mono [THEN univ_mono, THEN Pow_mono]) |
|
52 |
done |
|
53 |
||
13356 | 54 |
subsection{*Closure Properties*} |
13285 | 55 |
|
46820 | 56 |
lemma univ_eclose_subset_quniv: "univ(eclose(A)) \<subseteq> quniv(A)" |
57 |
apply (simp add: quniv_def Transset_iff_Pow [symmetric]) |
|
13285 | 58 |
apply (rule Transset_eclose [THEN Transset_univ]) |
59 |
done |
|
60 |
||
61 |
(*Key property for proving A_subset_quniv; requires eclose in def of quniv*) |
|
46820 | 62 |
lemma univ_subset_quniv: "univ(A) \<subseteq> quniv(A)" |
13285 | 63 |
apply (rule arg_subset_eclose [THEN univ_mono, THEN subset_trans]) |
64 |
apply (rule univ_eclose_subset_quniv) |
|
65 |
done |
|
66 |
||
45602 | 67 |
lemmas univ_into_quniv = univ_subset_quniv [THEN subsetD] |
13285 | 68 |
|
46820 | 69 |
lemma Pow_univ_subset_quniv: "Pow(univ(A)) \<subseteq> quniv(A)" |
13285 | 70 |
apply (unfold quniv_def) |
71 |
apply (rule arg_subset_eclose [THEN univ_mono, THEN Pow_mono]) |
|
72 |
done |
|
73 |
||
74 |
lemmas univ_subset_into_quniv = |
|
45602 | 75 |
PowI [THEN Pow_univ_subset_quniv [THEN subsetD]] |
13285 | 76 |
|
45602 | 77 |
lemmas zero_in_quniv = zero_in_univ [THEN univ_into_quniv] |
78 |
lemmas one_in_quniv = one_in_univ [THEN univ_into_quniv] |
|
79 |
lemmas two_in_quniv = two_in_univ [THEN univ_into_quniv] |
|
13285 | 80 |
|
81 |
lemmas A_subset_quniv = subset_trans [OF A_subset_univ univ_subset_quniv] |
|
82 |
||
45602 | 83 |
lemmas A_into_quniv = A_subset_quniv [THEN subsetD] |
13285 | 84 |
|
85 |
(*** univ(A) closure for Quine-inspired pairs and injections ***) |
|
86 |
||
87 |
(*Quine ordered pairs*) |
|
46820 | 88 |
lemma QPair_subset_univ: |
89 |
"[| a \<subseteq> univ(A); b \<subseteq> univ(A) |] ==> <a;b> \<subseteq> univ(A)" |
|
13285 | 90 |
by (simp add: QPair_def sum_subset_univ) |
91 |
||
13356 | 92 |
subsection{*Quine Disjoint Sum*} |
13285 | 93 |
|
46820 | 94 |
lemma QInl_subset_univ: "a \<subseteq> univ(A) ==> QInl(a) \<subseteq> univ(A)" |
13285 | 95 |
apply (unfold QInl_def) |
96 |
apply (erule empty_subsetI [THEN QPair_subset_univ]) |
|
97 |
done |
|
98 |
||
46820 | 99 |
lemmas naturals_subset_nat = |
45602 | 100 |
Ord_nat [THEN Ord_is_Transset, unfolded Transset_def, THEN bspec] |
13285 | 101 |
|
102 |
lemmas naturals_subset_univ = |
|
103 |
subset_trans [OF naturals_subset_nat nat_subset_univ] |
|
104 |
||
46820 | 105 |
lemma QInr_subset_univ: "a \<subseteq> univ(A) ==> QInr(a) \<subseteq> univ(A)" |
13285 | 106 |
apply (unfold QInr_def) |
107 |
apply (erule nat_1I [THEN naturals_subset_univ, THEN QPair_subset_univ]) |
|
108 |
done |
|
109 |
||
13356 | 110 |
subsection{*Closure for Quine-Inspired Products and Sums*} |
13285 | 111 |
|
112 |
(*Quine ordered pairs*) |
|
46820 | 113 |
lemma QPair_in_quniv: |
114 |
"[| a: quniv(A); b: quniv(A) |] ==> <a;b> \<in> quniv(A)" |
|
115 |
by (simp add: quniv_def QPair_def sum_subset_univ) |
|
13285 | 116 |
|
46820 | 117 |
lemma QSigma_quniv: "quniv(A) <*> quniv(A) \<subseteq> quniv(A)" |
13285 | 118 |
by (blast intro: QPair_in_quniv) |
119 |
||
120 |
lemmas QSigma_subset_quniv = subset_trans [OF QSigma_mono QSigma_quniv] |
|
121 |
||
122 |
(*The opposite inclusion*) |
|
46820 | 123 |
lemma quniv_QPair_D: |
124 |
"<a;b> \<in> quniv(A) ==> a: quniv(A) & b: quniv(A)" |
|
13285 | 125 |
apply (unfold quniv_def QPair_def) |
46820 | 126 |
apply (rule Transset_includes_summands [THEN conjE]) |
13285 | 127 |
apply (rule Transset_eclose [THEN Transset_univ]) |
46820 | 128 |
apply (erule PowD, blast) |
13285 | 129 |
done |
130 |
||
45602 | 131 |
lemmas quniv_QPair_E = quniv_QPair_D [THEN conjE] |
13285 | 132 |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
133 |
lemma quniv_QPair_iff: "<a;b> \<in> quniv(A) \<longleftrightarrow> a: quniv(A) & b: quniv(A)" |
13285 | 134 |
by (blast intro: QPair_in_quniv dest: quniv_QPair_D) |
135 |
||
136 |
||
13356 | 137 |
subsection{*Quine Disjoint Sum*} |
13285 | 138 |
|
46820 | 139 |
lemma QInl_in_quniv: "a: quniv(A) ==> QInl(a) \<in> quniv(A)" |
13285 | 140 |
by (simp add: QInl_def zero_in_quniv QPair_in_quniv) |
141 |
||
46820 | 142 |
lemma QInr_in_quniv: "b: quniv(A) ==> QInr(b) \<in> quniv(A)" |
13285 | 143 |
by (simp add: QInr_def one_in_quniv QPair_in_quniv) |
144 |
||
46820 | 145 |
lemma qsum_quniv: "quniv(C) <+> quniv(C) \<subseteq> quniv(C)" |
13285 | 146 |
by (blast intro: QInl_in_quniv QInr_in_quniv) |
147 |
||
148 |
lemmas qsum_subset_quniv = subset_trans [OF qsum_mono qsum_quniv] |
|
149 |
||
150 |
||
13356 | 151 |
subsection{*The Natural Numbers*} |
13285 | 152 |
|
153 |
lemmas nat_subset_quniv = subset_trans [OF nat_subset_univ univ_subset_quniv] |
|
154 |
||
155 |
(* n:nat ==> n:quniv(A) *) |
|
45602 | 156 |
lemmas nat_into_quniv = nat_subset_quniv [THEN subsetD] |
13285 | 157 |
|
158 |
lemmas bool_subset_quniv = subset_trans [OF bool_subset_univ univ_subset_quniv] |
|
159 |
||
45602 | 160 |
lemmas bool_into_quniv = bool_subset_quniv [THEN subsetD] |
13285 | 161 |
|
162 |
||
13356 | 163 |
(*Intersecting <a;b> with Vfrom...*) |
13285 | 164 |
|
46820 | 165 |
lemma QPair_Int_Vfrom_succ_subset: |
166 |
"Transset(X) ==> |
|
167 |
<a;b> \<inter> Vfrom(X, succ(i)) \<subseteq> <a \<inter> Vfrom(X,i); b \<inter> Vfrom(X,i)>" |
|
13285 | 168 |
by (simp add: QPair_def sum_def Int_Un_distrib2 Un_mono |
169 |
product_Int_Vfrom_subset [THEN subset_trans] |
|
170 |
Sigma_mono [OF Int_lower1 subset_refl]) |
|
171 |
||
13356 | 172 |
subsection{*"Take-Lemma" Rules*} |
173 |
||
174 |
(*for proving a=b by coinduction and c: quniv(A)*) |
|
13285 | 175 |
|
176 |
(*Rule for level i -- preserving the level, not decreasing it*) |
|
177 |
||
46820 | 178 |
lemma QPair_Int_Vfrom_subset: |
179 |
"Transset(X) ==> |
|
180 |
<a;b> \<inter> Vfrom(X,i) \<subseteq> <a \<inter> Vfrom(X,i); b \<inter> Vfrom(X,i)>" |
|
13285 | 181 |
apply (unfold QPair_def) |
182 |
apply (erule Transset_Vfrom [THEN Transset_sum_Int_subset]) |
|
183 |
done |
|
184 |
||
46820 | 185 |
(*@{term"[| a \<inter> Vset(i) \<subseteq> c; b \<inter> Vset(i) \<subseteq> d |] ==> <a;b> \<inter> Vset(i) \<subseteq> <c;d>"}*) |
13285 | 186 |
lemmas QPair_Int_Vset_subset_trans = |
187 |
subset_trans [OF Transset_0 [THEN QPair_Int_Vfrom_subset] QPair_mono] |
|
188 |
||
189 |
lemma QPair_Int_Vset_subset_UN: |
|
46820 | 190 |
"Ord(i) ==> <a;b> \<inter> Vset(i) \<subseteq> (\<Union>j\<in>i. <a \<inter> Vset(j); b \<inter> Vset(j)>)" |
13285 | 191 |
apply (erule Ord_cases) |
192 |
(*0 case*) |
|
193 |
apply (simp add: Vfrom_0) |
|
194 |
(*succ(j) case*) |
|
46820 | 195 |
apply (erule ssubst) |
13285 | 196 |
apply (rule Transset_0 [THEN QPair_Int_Vfrom_succ_subset, THEN subset_trans]) |
197 |
apply (rule succI1 [THEN UN_upper]) |
|
198 |
(*Limit(i) case*) |
|
46820 | 199 |
apply (simp del: UN_simps |
13285 | 200 |
add: Limit_Vfrom_eq Int_UN_distrib UN_mono QPair_Int_Vset_subset_trans) |
201 |
done |
|
202 |
||
0 | 203 |
end |