| author | wenzelm | 
| Sat, 30 Sep 2017 20:06:26 +0200 | |
| changeset 66732 | e566fb4d43d4 | 
| parent 66292 | 9930f4cf6c7a | 
| child 67091 | 1393c2340eec | 
| permissions | -rw-r--r-- | 
| 53953 | 1 | (* Title: HOL/Library/FSet.thy | 
| 2 | Author: Ondrej Kuncar, TU Muenchen | |
| 3 | Author: Cezary Kaliszyk and Christian Urban | |
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 4 | Author: Andrei Popescu, TU Muenchen | 
| 53953 | 5 | *) | 
| 6 | ||
| 60500 | 7 | section \<open>Type of finite sets defined as a subtype of sets\<close> | 
| 53953 | 8 | |
| 9 | theory FSet | |
| 66262 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 10 | imports Main Countable | 
| 53953 | 11 | begin | 
| 12 | ||
| 60500 | 13 | subsection \<open>Definition of the type\<close> | 
| 53953 | 14 | |
| 15 | typedef 'a fset = "{A :: 'a set. finite A}"  morphisms fset Abs_fset
 | |
| 16 | by auto | |
| 17 | ||
| 18 | setup_lifting type_definition_fset | |
| 19 | ||
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 20 | |
| 60500 | 21 | subsection \<open>Basic operations and type class instantiations\<close> | 
| 53953 | 22 | |
| 23 | (* FIXME transfer and right_total vs. bi_total *) | |
| 24 | instantiation fset :: (finite) finite | |
| 25 | begin | |
| 60679 | 26 | instance by (standard; transfer; simp) | 
| 53953 | 27 | end | 
| 28 | ||
| 29 | instantiation fset :: (type) "{bounded_lattice_bot, distrib_lattice, minus}"
 | |
| 30 | begin | |
| 31 | ||
| 63331 | 32 | lift_definition bot_fset :: "'a fset" is "{}" parametric empty_transfer by simp
 | 
| 53953 | 33 | |
| 63331 | 34 | lift_definition less_eq_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> bool" is subset_eq parametric subset_transfer | 
| 55565 
f663fc1e653b
simplify proofs because of the stronger reflexivity prover
 kuncar parents: 
55414diff
changeset | 35 | . | 
| 53953 | 36 | |
| 37 | definition less_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> bool" where "xs < ys \<equiv> xs \<le> ys \<and> xs \<noteq> (ys::'a fset)" | |
| 38 | ||
| 39 | lemma less_fset_transfer[transfer_rule]: | |
| 63343 | 40 | includes lifting_syntax | 
| 63331 | 41 | assumes [transfer_rule]: "bi_unique A" | 
| 53953 | 42 | shows "((pcr_fset A) ===> (pcr_fset A) ===> op =) op \<subset> op <" | 
| 43 | unfolding less_fset_def[abs_def] psubset_eq[abs_def] by transfer_prover | |
| 63331 | 44 | |
| 53953 | 45 | |
| 46 | lift_definition sup_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" is union parametric union_transfer | |
| 47 | by simp | |
| 48 | ||
| 49 | lift_definition inf_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" is inter parametric inter_transfer | |
| 50 | by simp | |
| 51 | ||
| 52 | lift_definition minus_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" is minus parametric Diff_transfer | |
| 53 | by simp | |
| 54 | ||
| 55 | instance | |
| 60679 | 56 | by (standard; transfer; auto)+ | 
| 53953 | 57 | |
| 58 | end | |
| 59 | ||
| 60 | abbreviation fempty :: "'a fset" ("{||}") where "{||} \<equiv> bot"
 | |
| 61 | abbreviation fsubset_eq :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> bool" (infix "|\<subseteq>|" 50) where "xs |\<subseteq>| ys \<equiv> xs \<le> ys" | |
| 62 | abbreviation fsubset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> bool" (infix "|\<subset>|" 50) where "xs |\<subset>| ys \<equiv> xs < ys" | |
| 63 | abbreviation funion :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" (infixl "|\<union>|" 65) where "xs |\<union>| ys \<equiv> sup xs ys" | |
| 64 | abbreviation finter :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" (infixl "|\<inter>|" 65) where "xs |\<inter>| ys \<equiv> inf xs ys" | |
| 65 | abbreviation fminus :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" (infixl "|-|" 65) where "xs |-| ys \<equiv> minus xs ys" | |
| 66 | ||
| 54014 | 67 | instantiation fset :: (equal) equal | 
| 68 | begin | |
| 69 | definition "HOL.equal A B \<longleftrightarrow> A |\<subseteq>| B \<and> B |\<subseteq>| A" | |
| 70 | instance by intro_classes (auto simp add: equal_fset_def) | |
| 63331 | 71 | end | 
| 54014 | 72 | |
| 53953 | 73 | instantiation fset :: (type) conditionally_complete_lattice | 
| 74 | begin | |
| 75 | ||
| 63343 | 76 | context includes lifting_syntax | 
| 77 | begin | |
| 53953 | 78 | |
| 79 | lemma right_total_Inf_fset_transfer: | |
| 80 | assumes [transfer_rule]: "bi_unique A" and [transfer_rule]: "right_total A" | |
| 63331 | 81 | shows "(rel_set (rel_set A) ===> rel_set A) | 
| 82 |     (\<lambda>S. if finite (\<Inter>S \<inter> Collect (Domainp A)) then \<Inter>S \<inter> Collect (Domainp A) else {})
 | |
| 53953 | 83 |       (\<lambda>S. if finite (Inf S) then Inf S else {})"
 | 
| 84 | by transfer_prover | |
| 85 | ||
| 86 | lemma Inf_fset_transfer: | |
| 87 | assumes [transfer_rule]: "bi_unique A" and [transfer_rule]: "bi_total A" | |
| 63331 | 88 |   shows "(rel_set (rel_set A) ===> rel_set A) (\<lambda>A. if finite (Inf A) then Inf A else {})
 | 
| 53953 | 89 |     (\<lambda>A. if finite (Inf A) then Inf A else {})"
 | 
| 90 | by transfer_prover | |
| 91 | ||
| 63331 | 92 | lift_definition Inf_fset :: "'a fset set \<Rightarrow> 'a fset" is "\<lambda>A. if finite (Inf A) then Inf A else {}"
 | 
| 53953 | 93 | parametric right_total_Inf_fset_transfer Inf_fset_transfer by simp | 
| 94 | ||
| 95 | lemma Sup_fset_transfer: | |
| 96 | assumes [transfer_rule]: "bi_unique A" | |
| 55938 | 97 |   shows "(rel_set (rel_set A) ===> rel_set A) (\<lambda>A. if finite (Sup A) then Sup A else {})
 | 
| 53953 | 98 |   (\<lambda>A. if finite (Sup A) then Sup A else {})" by transfer_prover
 | 
| 99 | ||
| 100 | lift_definition Sup_fset :: "'a fset set \<Rightarrow> 'a fset" is "\<lambda>A. if finite (Sup A) then Sup A else {}"
 | |
| 101 | parametric Sup_fset_transfer by simp | |
| 102 | ||
| 103 | lemma finite_Sup: "\<exists>z. finite z \<and> (\<forall>a. a \<in> X \<longrightarrow> a \<le> z) \<Longrightarrow> finite (Sup X)" | |
| 104 | by (auto intro: finite_subset) | |
| 105 | ||
| 55938 | 106 | lemma transfer_bdd_below[transfer_rule]: "(rel_set (pcr_fset op =) ===> op =) bdd_below bdd_below" | 
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54014diff
changeset | 107 | by auto | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54014diff
changeset | 108 | |
| 63343 | 109 | end | 
| 110 | ||
| 53953 | 111 | instance | 
| 63331 | 112 | proof | 
| 53953 | 113 | fix x z :: "'a fset" | 
| 114 | fix X :: "'a fset set" | |
| 115 |   {
 | |
| 63331 | 116 | assume "x \<in> X" "bdd_below X" | 
| 56646 | 117 | then show "Inf X |\<subseteq>| x" by transfer auto | 
| 53953 | 118 | next | 
| 119 |     assume "X \<noteq> {}" "(\<And>x. x \<in> X \<Longrightarrow> z |\<subseteq>| x)"
 | |
| 120 | then show "z |\<subseteq>| Inf X" by transfer (clarsimp, blast) | |
| 121 | next | |
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54014diff
changeset | 122 | assume "x \<in> X" "bdd_above X" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54014diff
changeset | 123 | then obtain z where "x \<in> X" "(\<And>x. x \<in> X \<Longrightarrow> x |\<subseteq>| z)" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54014diff
changeset | 124 | by (auto simp: bdd_above_def) | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54014diff
changeset | 125 | then show "x |\<subseteq>| Sup X" | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54014diff
changeset | 126 | by transfer (auto intro!: finite_Sup) | 
| 53953 | 127 | next | 
| 128 |     assume "X \<noteq> {}" "(\<And>x. x \<in> X \<Longrightarrow> x |\<subseteq>| z)"
 | |
| 129 | then show "Sup X |\<subseteq>| z" by transfer (clarsimp, blast) | |
| 130 | } | |
| 131 | qed | |
| 132 | end | |
| 133 | ||
| 63331 | 134 | instantiation fset :: (finite) complete_lattice | 
| 53953 | 135 | begin | 
| 136 | ||
| 60679 | 137 | lift_definition top_fset :: "'a fset" is UNIV parametric right_total_UNIV_transfer UNIV_transfer | 
| 138 | by simp | |
| 53953 | 139 | |
| 60679 | 140 | instance | 
| 141 | by (standard; transfer; auto) | |
| 142 | ||
| 53953 | 143 | end | 
| 144 | ||
| 145 | instantiation fset :: (finite) complete_boolean_algebra | |
| 146 | begin | |
| 147 | ||
| 63331 | 148 | lift_definition uminus_fset :: "'a fset \<Rightarrow> 'a fset" is uminus | 
| 53953 | 149 | parametric right_total_Compl_transfer Compl_transfer by simp | 
| 150 | ||
| 60679 | 151 | instance | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62324diff
changeset | 152 | by (standard; transfer) (simp_all add: Diff_eq) | 
| 53953 | 153 | |
| 154 | end | |
| 155 | ||
| 156 | abbreviation fUNIV :: "'a::finite fset" where "fUNIV \<equiv> top" | |
| 157 | abbreviation fuminus :: "'a::finite fset \<Rightarrow> 'a fset" ("|-| _" [81] 80) where "|-| x \<equiv> uminus x"
 | |
| 158 | ||
| 56646 | 159 | declare top_fset.rep_eq[simp] | 
| 160 | ||
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 161 | |
| 60500 | 162 | subsection \<open>Other operations\<close> | 
| 53953 | 163 | |
| 164 | lift_definition finsert :: "'a \<Rightarrow> 'a fset \<Rightarrow> 'a fset" is insert parametric Lifting_Set.insert_transfer | |
| 165 | by simp | |
| 166 | ||
| 167 | syntax | |
| 168 |   "_insert_fset"     :: "args => 'a fset"  ("{|(_)|}")
 | |
| 169 | ||
| 170 | translations | |
| 171 |   "{|x, xs|}" == "CONST finsert x {|xs|}"
 | |
| 172 |   "{|x|}"     == "CONST finsert x {||}"
 | |
| 173 | ||
| 63331 | 174 | lift_definition fmember :: "'a \<Rightarrow> 'a fset \<Rightarrow> bool" (infix "|\<in>|" 50) is Set.member | 
| 55565 
f663fc1e653b
simplify proofs because of the stronger reflexivity prover
 kuncar parents: 
55414diff
changeset | 175 | parametric member_transfer . | 
| 53953 | 176 | |
| 177 | abbreviation notin_fset :: "'a \<Rightarrow> 'a fset \<Rightarrow> bool" (infix "|\<notin>|" 50) where "x |\<notin>| S \<equiv> \<not> (x |\<in>| S)" | |
| 178 | ||
| 63343 | 179 | context includes lifting_syntax | 
| 53953 | 180 | begin | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 181 | |
| 63331 | 182 | lift_definition ffilter :: "('a \<Rightarrow> bool) \<Rightarrow> 'a fset \<Rightarrow> 'a fset" is Set.filter
 | 
| 53953 | 183 | parametric Lifting_Set.filter_transfer unfolding Set.filter_def by simp | 
| 184 | ||
| 63331 | 185 | lift_definition fPow :: "'a fset \<Rightarrow> 'a fset fset" is Pow parametric Pow_transfer | 
| 55732 | 186 | by (simp add: finite_subset) | 
| 53953 | 187 | |
| 55565 
f663fc1e653b
simplify proofs because of the stronger reflexivity prover
 kuncar parents: 
55414diff
changeset | 188 | lift_definition fcard :: "'a fset \<Rightarrow> nat" is card parametric card_transfer . | 
| 53953 | 189 | |
| 63331 | 190 | lift_definition fimage :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a fset \<Rightarrow> 'b fset" (infixr "|`|" 90) is image
 | 
| 53953 | 191 | parametric image_transfer by simp | 
| 192 | ||
| 55565 
f663fc1e653b
simplify proofs because of the stronger reflexivity prover
 kuncar parents: 
55414diff
changeset | 193 | lift_definition fthe_elem :: "'a fset \<Rightarrow> 'a" is the_elem . | 
| 53953 | 194 | |
| 63331 | 195 | lift_definition fbind :: "'a fset \<Rightarrow> ('a \<Rightarrow> 'b fset) \<Rightarrow> 'b fset" is Set.bind parametric bind_transfer
 | 
| 55738 | 196 | by (simp add: Set.bind_def) | 
| 53953 | 197 | |
| 55732 | 198 | lift_definition ffUnion :: "'a fset fset \<Rightarrow> 'a fset" is Union parametric Union_transfer by simp | 
| 53953 | 199 | |
| 55565 
f663fc1e653b
simplify proofs because of the stronger reflexivity prover
 kuncar parents: 
55414diff
changeset | 200 | lift_definition fBall :: "'a fset \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" is Ball parametric Ball_transfer .
 | 
| 
f663fc1e653b
simplify proofs because of the stronger reflexivity prover
 kuncar parents: 
55414diff
changeset | 201 | lift_definition fBex :: "'a fset \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" is Bex parametric Bex_transfer .
 | 
| 53953 | 202 | |
| 55565 
f663fc1e653b
simplify proofs because of the stronger reflexivity prover
 kuncar parents: 
55414diff
changeset | 203 | lift_definition ffold :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a fset \<Rightarrow> 'b" is Finite_Set.fold .
 | 
| 53963 | 204 | |
| 63622 | 205 | lift_definition fset_of_list :: "'a list \<Rightarrow> 'a fset" is set by (rule finite_set) | 
| 206 | ||
| 60500 | 207 | subsection \<open>Transferred lemmas from Set.thy\<close> | 
| 53953 | 208 | |
| 209 | lemmas fset_eqI = set_eqI[Transfer.transferred] | |
| 210 | lemmas fset_eq_iff[no_atp] = set_eq_iff[Transfer.transferred] | |
| 211 | lemmas fBallI[intro!] = ballI[Transfer.transferred] | |
| 212 | lemmas fbspec[dest?] = bspec[Transfer.transferred] | |
| 213 | lemmas fBallE[elim] = ballE[Transfer.transferred] | |
| 214 | lemmas fBexI[intro] = bexI[Transfer.transferred] | |
| 215 | lemmas rev_fBexI[intro?] = rev_bexI[Transfer.transferred] | |
| 216 | lemmas fBexCI = bexCI[Transfer.transferred] | |
| 217 | lemmas fBexE[elim!] = bexE[Transfer.transferred] | |
| 218 | lemmas fBall_triv[simp] = ball_triv[Transfer.transferred] | |
| 219 | lemmas fBex_triv[simp] = bex_triv[Transfer.transferred] | |
| 220 | lemmas fBex_triv_one_point1[simp] = bex_triv_one_point1[Transfer.transferred] | |
| 221 | lemmas fBex_triv_one_point2[simp] = bex_triv_one_point2[Transfer.transferred] | |
| 222 | lemmas fBex_one_point1[simp] = bex_one_point1[Transfer.transferred] | |
| 223 | lemmas fBex_one_point2[simp] = bex_one_point2[Transfer.transferred] | |
| 224 | lemmas fBall_one_point1[simp] = ball_one_point1[Transfer.transferred] | |
| 225 | lemmas fBall_one_point2[simp] = ball_one_point2[Transfer.transferred] | |
| 226 | lemmas fBall_conj_distrib = ball_conj_distrib[Transfer.transferred] | |
| 227 | lemmas fBex_disj_distrib = bex_disj_distrib[Transfer.transferred] | |
| 66264 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 228 | lemmas fBall_cong[fundef_cong] = ball_cong[Transfer.transferred] | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 229 | lemmas fBex_cong[fundef_cong] = bex_cong[Transfer.transferred] | 
| 53964 | 230 | lemmas fsubsetI[intro!] = subsetI[Transfer.transferred] | 
| 231 | lemmas fsubsetD[elim, intro?] = subsetD[Transfer.transferred] | |
| 232 | lemmas rev_fsubsetD[no_atp,intro?] = rev_subsetD[Transfer.transferred] | |
| 233 | lemmas fsubsetCE[no_atp,elim] = subsetCE[Transfer.transferred] | |
| 234 | lemmas fsubset_eq[no_atp] = subset_eq[Transfer.transferred] | |
| 235 | lemmas contra_fsubsetD[no_atp] = contra_subsetD[Transfer.transferred] | |
| 236 | lemmas fsubset_refl = subset_refl[Transfer.transferred] | |
| 237 | lemmas fsubset_trans = subset_trans[Transfer.transferred] | |
| 53953 | 238 | lemmas fset_rev_mp = set_rev_mp[Transfer.transferred] | 
| 239 | lemmas fset_mp = set_mp[Transfer.transferred] | |
| 53964 | 240 | lemmas fsubset_not_fsubset_eq[code] = subset_not_subset_eq[Transfer.transferred] | 
| 53953 | 241 | lemmas eq_fmem_trans = eq_mem_trans[Transfer.transferred] | 
| 53964 | 242 | lemmas fsubset_antisym[intro!] = subset_antisym[Transfer.transferred] | 
| 53953 | 243 | lemmas fequalityD1 = equalityD1[Transfer.transferred] | 
| 244 | lemmas fequalityD2 = equalityD2[Transfer.transferred] | |
| 245 | lemmas fequalityE = equalityE[Transfer.transferred] | |
| 246 | lemmas fequalityCE[elim] = equalityCE[Transfer.transferred] | |
| 247 | lemmas eqfset_imp_iff = eqset_imp_iff[Transfer.transferred] | |
| 248 | lemmas eqfelem_imp_iff = eqelem_imp_iff[Transfer.transferred] | |
| 249 | lemmas fempty_iff[simp] = empty_iff[Transfer.transferred] | |
| 53964 | 250 | lemmas fempty_fsubsetI[iff] = empty_subsetI[Transfer.transferred] | 
| 53953 | 251 | lemmas equalsffemptyI = equals0I[Transfer.transferred] | 
| 252 | lemmas equalsffemptyD = equals0D[Transfer.transferred] | |
| 253 | lemmas fBall_fempty[simp] = ball_empty[Transfer.transferred] | |
| 254 | lemmas fBex_fempty[simp] = bex_empty[Transfer.transferred] | |
| 255 | lemmas fPow_iff[iff] = Pow_iff[Transfer.transferred] | |
| 256 | lemmas fPowI = PowI[Transfer.transferred] | |
| 257 | lemmas fPowD = PowD[Transfer.transferred] | |
| 258 | lemmas fPow_bottom = Pow_bottom[Transfer.transferred] | |
| 259 | lemmas fPow_top = Pow_top[Transfer.transferred] | |
| 260 | lemmas fPow_not_fempty = Pow_not_empty[Transfer.transferred] | |
| 261 | lemmas finter_iff[simp] = Int_iff[Transfer.transferred] | |
| 262 | lemmas finterI[intro!] = IntI[Transfer.transferred] | |
| 263 | lemmas finterD1 = IntD1[Transfer.transferred] | |
| 264 | lemmas finterD2 = IntD2[Transfer.transferred] | |
| 265 | lemmas finterE[elim!] = IntE[Transfer.transferred] | |
| 266 | lemmas funion_iff[simp] = Un_iff[Transfer.transferred] | |
| 267 | lemmas funionI1[elim?] = UnI1[Transfer.transferred] | |
| 268 | lemmas funionI2[elim?] = UnI2[Transfer.transferred] | |
| 269 | lemmas funionCI[intro!] = UnCI[Transfer.transferred] | |
| 270 | lemmas funionE[elim!] = UnE[Transfer.transferred] | |
| 271 | lemmas fminus_iff[simp] = Diff_iff[Transfer.transferred] | |
| 272 | lemmas fminusI[intro!] = DiffI[Transfer.transferred] | |
| 273 | lemmas fminusD1 = DiffD1[Transfer.transferred] | |
| 274 | lemmas fminusD2 = DiffD2[Transfer.transferred] | |
| 275 | lemmas fminusE[elim!] = DiffE[Transfer.transferred] | |
| 276 | lemmas finsert_iff[simp] = insert_iff[Transfer.transferred] | |
| 277 | lemmas finsertI1 = insertI1[Transfer.transferred] | |
| 278 | lemmas finsertI2 = insertI2[Transfer.transferred] | |
| 279 | lemmas finsertE[elim!] = insertE[Transfer.transferred] | |
| 280 | lemmas finsertCI[intro!] = insertCI[Transfer.transferred] | |
| 53964 | 281 | lemmas fsubset_finsert_iff = subset_insert_iff[Transfer.transferred] | 
| 53953 | 282 | lemmas finsert_ident = insert_ident[Transfer.transferred] | 
| 283 | lemmas fsingletonI[intro!,no_atp] = singletonI[Transfer.transferred] | |
| 284 | lemmas fsingletonD[dest!,no_atp] = singletonD[Transfer.transferred] | |
| 285 | lemmas fsingleton_iff = singleton_iff[Transfer.transferred] | |
| 286 | lemmas fsingleton_inject[dest!] = singleton_inject[Transfer.transferred] | |
| 287 | lemmas fsingleton_finsert_inj_eq[iff,no_atp] = singleton_insert_inj_eq[Transfer.transferred] | |
| 288 | lemmas fsingleton_finsert_inj_eq'[iff,no_atp] = singleton_insert_inj_eq'[Transfer.transferred] | |
| 53964 | 289 | lemmas fsubset_fsingletonD = subset_singletonD[Transfer.transferred] | 
| 62087 
44841d07ef1d
revisions to limits and derivatives, plus new lemmas
 paulson parents: 
62082diff
changeset | 290 | lemmas fminus_single_finsert = Diff_single_insert[Transfer.transferred] | 
| 53953 | 291 | lemmas fdoubleton_eq_iff = doubleton_eq_iff[Transfer.transferred] | 
| 292 | lemmas funion_fsingleton_iff = Un_singleton_iff[Transfer.transferred] | |
| 293 | lemmas fsingleton_funion_iff = singleton_Un_iff[Transfer.transferred] | |
| 294 | lemmas fimage_eqI[simp, intro] = image_eqI[Transfer.transferred] | |
| 295 | lemmas fimageI = imageI[Transfer.transferred] | |
| 296 | lemmas rev_fimage_eqI = rev_image_eqI[Transfer.transferred] | |
| 297 | lemmas fimageE[elim!] = imageE[Transfer.transferred] | |
| 298 | lemmas Compr_fimage_eq = Compr_image_eq[Transfer.transferred] | |
| 299 | lemmas fimage_funion = image_Un[Transfer.transferred] | |
| 300 | lemmas fimage_iff = image_iff[Transfer.transferred] | |
| 53964 | 301 | lemmas fimage_fsubset_iff[no_atp] = image_subset_iff[Transfer.transferred] | 
| 302 | lemmas fimage_fsubsetI = image_subsetI[Transfer.transferred] | |
| 53953 | 303 | lemmas fimage_ident[simp] = image_ident[Transfer.transferred] | 
| 62390 | 304 | lemmas if_split_fmem1 = if_split_mem1[Transfer.transferred] | 
| 305 | lemmas if_split_fmem2 = if_split_mem2[Transfer.transferred] | |
| 53964 | 306 | lemmas pfsubsetI[intro!,no_atp] = psubsetI[Transfer.transferred] | 
| 307 | lemmas pfsubsetE[elim!,no_atp] = psubsetE[Transfer.transferred] | |
| 308 | lemmas pfsubset_finsert_iff = psubset_insert_iff[Transfer.transferred] | |
| 309 | lemmas pfsubset_eq = psubset_eq[Transfer.transferred] | |
| 310 | lemmas pfsubset_imp_fsubset = psubset_imp_subset[Transfer.transferred] | |
| 311 | lemmas pfsubset_trans = psubset_trans[Transfer.transferred] | |
| 312 | lemmas pfsubsetD = psubsetD[Transfer.transferred] | |
| 313 | lemmas pfsubset_fsubset_trans = psubset_subset_trans[Transfer.transferred] | |
| 314 | lemmas fsubset_pfsubset_trans = subset_psubset_trans[Transfer.transferred] | |
| 315 | lemmas pfsubset_imp_ex_fmem = psubset_imp_ex_mem[Transfer.transferred] | |
| 53953 | 316 | lemmas fimage_fPow_mono = image_Pow_mono[Transfer.transferred] | 
| 317 | lemmas fimage_fPow_surj = image_Pow_surj[Transfer.transferred] | |
| 53964 | 318 | lemmas fsubset_finsertI = subset_insertI[Transfer.transferred] | 
| 319 | lemmas fsubset_finsertI2 = subset_insertI2[Transfer.transferred] | |
| 320 | lemmas fsubset_finsert = subset_insert[Transfer.transferred] | |
| 53953 | 321 | lemmas funion_upper1 = Un_upper1[Transfer.transferred] | 
| 322 | lemmas funion_upper2 = Un_upper2[Transfer.transferred] | |
| 323 | lemmas funion_least = Un_least[Transfer.transferred] | |
| 324 | lemmas finter_lower1 = Int_lower1[Transfer.transferred] | |
| 325 | lemmas finter_lower2 = Int_lower2[Transfer.transferred] | |
| 326 | lemmas finter_greatest = Int_greatest[Transfer.transferred] | |
| 53964 | 327 | lemmas fminus_fsubset = Diff_subset[Transfer.transferred] | 
| 328 | lemmas fminus_fsubset_conv = Diff_subset_conv[Transfer.transferred] | |
| 329 | lemmas fsubset_fempty[simp] = subset_empty[Transfer.transferred] | |
| 330 | lemmas not_pfsubset_fempty[iff] = not_psubset_empty[Transfer.transferred] | |
| 53953 | 331 | lemmas finsert_is_funion = insert_is_Un[Transfer.transferred] | 
| 332 | lemmas finsert_not_fempty[simp] = insert_not_empty[Transfer.transferred] | |
| 333 | lemmas fempty_not_finsert = empty_not_insert[Transfer.transferred] | |
| 334 | lemmas finsert_absorb = insert_absorb[Transfer.transferred] | |
| 335 | lemmas finsert_absorb2[simp] = insert_absorb2[Transfer.transferred] | |
| 336 | lemmas finsert_commute = insert_commute[Transfer.transferred] | |
| 53964 | 337 | lemmas finsert_fsubset[simp] = insert_subset[Transfer.transferred] | 
| 53953 | 338 | lemmas finsert_inter_finsert[simp] = insert_inter_insert[Transfer.transferred] | 
| 339 | lemmas finsert_disjoint[simp,no_atp] = insert_disjoint[Transfer.transferred] | |
| 340 | lemmas disjoint_finsert[simp,no_atp] = disjoint_insert[Transfer.transferred] | |
| 341 | lemmas fimage_fempty[simp] = image_empty[Transfer.transferred] | |
| 342 | lemmas fimage_finsert[simp] = image_insert[Transfer.transferred] | |
| 343 | lemmas fimage_constant = image_constant[Transfer.transferred] | |
| 344 | lemmas fimage_constant_conv = image_constant_conv[Transfer.transferred] | |
| 345 | lemmas fimage_fimage = image_image[Transfer.transferred] | |
| 346 | lemmas finsert_fimage[simp] = insert_image[Transfer.transferred] | |
| 347 | lemmas fimage_is_fempty[iff] = image_is_empty[Transfer.transferred] | |
| 348 | lemmas fempty_is_fimage[iff] = empty_is_image[Transfer.transferred] | |
| 349 | lemmas fimage_cong = image_cong[Transfer.transferred] | |
| 53964 | 350 | lemmas fimage_finter_fsubset = image_Int_subset[Transfer.transferred] | 
| 351 | lemmas fimage_fminus_fsubset = image_diff_subset[Transfer.transferred] | |
| 53953 | 352 | lemmas finter_absorb = Int_absorb[Transfer.transferred] | 
| 353 | lemmas finter_left_absorb = Int_left_absorb[Transfer.transferred] | |
| 354 | lemmas finter_commute = Int_commute[Transfer.transferred] | |
| 355 | lemmas finter_left_commute = Int_left_commute[Transfer.transferred] | |
| 356 | lemmas finter_assoc = Int_assoc[Transfer.transferred] | |
| 357 | lemmas finter_ac = Int_ac[Transfer.transferred] | |
| 358 | lemmas finter_absorb1 = Int_absorb1[Transfer.transferred] | |
| 359 | lemmas finter_absorb2 = Int_absorb2[Transfer.transferred] | |
| 360 | lemmas finter_fempty_left = Int_empty_left[Transfer.transferred] | |
| 361 | lemmas finter_fempty_right = Int_empty_right[Transfer.transferred] | |
| 362 | lemmas disjoint_iff_fnot_equal = disjoint_iff_not_equal[Transfer.transferred] | |
| 363 | lemmas finter_funion_distrib = Int_Un_distrib[Transfer.transferred] | |
| 364 | lemmas finter_funion_distrib2 = Int_Un_distrib2[Transfer.transferred] | |
| 53964 | 365 | lemmas finter_fsubset_iff[no_atp, simp] = Int_subset_iff[Transfer.transferred] | 
| 53953 | 366 | lemmas funion_absorb = Un_absorb[Transfer.transferred] | 
| 367 | lemmas funion_left_absorb = Un_left_absorb[Transfer.transferred] | |
| 368 | lemmas funion_commute = Un_commute[Transfer.transferred] | |
| 369 | lemmas funion_left_commute = Un_left_commute[Transfer.transferred] | |
| 370 | lemmas funion_assoc = Un_assoc[Transfer.transferred] | |
| 371 | lemmas funion_ac = Un_ac[Transfer.transferred] | |
| 372 | lemmas funion_absorb1 = Un_absorb1[Transfer.transferred] | |
| 373 | lemmas funion_absorb2 = Un_absorb2[Transfer.transferred] | |
| 374 | lemmas funion_fempty_left = Un_empty_left[Transfer.transferred] | |
| 375 | lemmas funion_fempty_right = Un_empty_right[Transfer.transferred] | |
| 376 | lemmas funion_finsert_left[simp] = Un_insert_left[Transfer.transferred] | |
| 377 | lemmas funion_finsert_right[simp] = Un_insert_right[Transfer.transferred] | |
| 378 | lemmas finter_finsert_left = Int_insert_left[Transfer.transferred] | |
| 379 | lemmas finter_finsert_left_ifffempty[simp] = Int_insert_left_if0[Transfer.transferred] | |
| 380 | lemmas finter_finsert_left_if1[simp] = Int_insert_left_if1[Transfer.transferred] | |
| 381 | lemmas finter_finsert_right = Int_insert_right[Transfer.transferred] | |
| 382 | lemmas finter_finsert_right_ifffempty[simp] = Int_insert_right_if0[Transfer.transferred] | |
| 383 | lemmas finter_finsert_right_if1[simp] = Int_insert_right_if1[Transfer.transferred] | |
| 384 | lemmas funion_finter_distrib = Un_Int_distrib[Transfer.transferred] | |
| 385 | lemmas funion_finter_distrib2 = Un_Int_distrib2[Transfer.transferred] | |
| 386 | lemmas funion_finter_crazy = Un_Int_crazy[Transfer.transferred] | |
| 53964 | 387 | lemmas fsubset_funion_eq = subset_Un_eq[Transfer.transferred] | 
| 53953 | 388 | lemmas funion_fempty[iff] = Un_empty[Transfer.transferred] | 
| 53964 | 389 | lemmas funion_fsubset_iff[no_atp, simp] = Un_subset_iff[Transfer.transferred] | 
| 53953 | 390 | lemmas funion_fminus_finter = Un_Diff_Int[Transfer.transferred] | 
| 391 | lemmas fminus_finter2 = Diff_Int2[Transfer.transferred] | |
| 392 | lemmas funion_finter_assoc_eq = Un_Int_assoc_eq[Transfer.transferred] | |
| 393 | lemmas fBall_funion = ball_Un[Transfer.transferred] | |
| 394 | lemmas fBex_funion = bex_Un[Transfer.transferred] | |
| 395 | lemmas fminus_eq_fempty_iff[simp,no_atp] = Diff_eq_empty_iff[Transfer.transferred] | |
| 396 | lemmas fminus_cancel[simp] = Diff_cancel[Transfer.transferred] | |
| 397 | lemmas fminus_idemp[simp] = Diff_idemp[Transfer.transferred] | |
| 398 | lemmas fminus_triv = Diff_triv[Transfer.transferred] | |
| 399 | lemmas fempty_fminus[simp] = empty_Diff[Transfer.transferred] | |
| 400 | lemmas fminus_fempty[simp] = Diff_empty[Transfer.transferred] | |
| 401 | lemmas fminus_finsertffempty[simp,no_atp] = Diff_insert0[Transfer.transferred] | |
| 402 | lemmas fminus_finsert = Diff_insert[Transfer.transferred] | |
| 403 | lemmas fminus_finsert2 = Diff_insert2[Transfer.transferred] | |
| 404 | lemmas finsert_fminus_if = insert_Diff_if[Transfer.transferred] | |
| 405 | lemmas finsert_fminus1[simp] = insert_Diff1[Transfer.transferred] | |
| 406 | lemmas finsert_fminus_single[simp] = insert_Diff_single[Transfer.transferred] | |
| 407 | lemmas finsert_fminus = insert_Diff[Transfer.transferred] | |
| 408 | lemmas fminus_finsert_absorb = Diff_insert_absorb[Transfer.transferred] | |
| 409 | lemmas fminus_disjoint[simp] = Diff_disjoint[Transfer.transferred] | |
| 410 | lemmas fminus_partition = Diff_partition[Transfer.transferred] | |
| 411 | lemmas double_fminus = double_diff[Transfer.transferred] | |
| 412 | lemmas funion_fminus_cancel[simp] = Un_Diff_cancel[Transfer.transferred] | |
| 413 | lemmas funion_fminus_cancel2[simp] = Un_Diff_cancel2[Transfer.transferred] | |
| 414 | lemmas fminus_funion = Diff_Un[Transfer.transferred] | |
| 415 | lemmas fminus_finter = Diff_Int[Transfer.transferred] | |
| 416 | lemmas funion_fminus = Un_Diff[Transfer.transferred] | |
| 417 | lemmas finter_fminus = Int_Diff[Transfer.transferred] | |
| 418 | lemmas fminus_finter_distrib = Diff_Int_distrib[Transfer.transferred] | |
| 419 | lemmas fminus_finter_distrib2 = Diff_Int_distrib2[Transfer.transferred] | |
| 420 | lemmas fUNIV_bool[no_atp] = UNIV_bool[Transfer.transferred] | |
| 421 | lemmas fPow_fempty[simp] = Pow_empty[Transfer.transferred] | |
| 422 | lemmas fPow_finsert = Pow_insert[Transfer.transferred] | |
| 53964 | 423 | lemmas funion_fPow_fsubset = Un_Pow_subset[Transfer.transferred] | 
| 53953 | 424 | lemmas fPow_finter_eq[simp] = Pow_Int_eq[Transfer.transferred] | 
| 53964 | 425 | lemmas fset_eq_fsubset = set_eq_subset[Transfer.transferred] | 
| 426 | lemmas fsubset_iff[no_atp] = subset_iff[Transfer.transferred] | |
| 427 | lemmas fsubset_iff_pfsubset_eq = subset_iff_psubset_eq[Transfer.transferred] | |
| 53953 | 428 | lemmas all_not_fin_conv[simp] = all_not_in_conv[Transfer.transferred] | 
| 429 | lemmas ex_fin_conv = ex_in_conv[Transfer.transferred] | |
| 430 | lemmas fimage_mono = image_mono[Transfer.transferred] | |
| 431 | lemmas fPow_mono = Pow_mono[Transfer.transferred] | |
| 432 | lemmas finsert_mono = insert_mono[Transfer.transferred] | |
| 433 | lemmas funion_mono = Un_mono[Transfer.transferred] | |
| 434 | lemmas finter_mono = Int_mono[Transfer.transferred] | |
| 435 | lemmas fminus_mono = Diff_mono[Transfer.transferred] | |
| 436 | lemmas fin_mono = in_mono[Transfer.transferred] | |
| 437 | lemmas fthe_felem_eq[simp] = the_elem_eq[Transfer.transferred] | |
| 438 | lemmas fLeast_mono = Least_mono[Transfer.transferred] | |
| 439 | lemmas fbind_fbind = bind_bind[Transfer.transferred] | |
| 440 | lemmas fempty_fbind[simp] = empty_bind[Transfer.transferred] | |
| 441 | lemmas nonfempty_fbind_const = nonempty_bind_const[Transfer.transferred] | |
| 442 | lemmas fbind_const = bind_const[Transfer.transferred] | |
| 443 | lemmas ffmember_filter[simp] = member_filter[Transfer.transferred] | |
| 444 | lemmas fequalityI = equalityI[Transfer.transferred] | |
| 63622 | 445 | lemmas fset_of_list_simps[simp] = set_simps[Transfer.transferred] | 
| 446 | lemmas fset_of_list_append[simp] = set_append[Transfer.transferred] | |
| 447 | lemmas fset_of_list_rev[simp] = set_rev[Transfer.transferred] | |
| 448 | lemmas fset_of_list_map[simp] = set_map[Transfer.transferred] | |
| 53953 | 449 | |
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 450 | |
| 60500 | 451 | subsection \<open>Additional lemmas\<close> | 
| 53953 | 452 | |
| 66264 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 453 | subsubsection \<open>\<open>ffUnion\<close>\<close> | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 454 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 455 | lemmas ffUnion_funion_distrib[simp] = Union_Un_distrib[Transfer.transferred] | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 456 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 457 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 458 | subsubsection \<open>\<open>fbind\<close>\<close> | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 459 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 460 | lemma fbind_cong[fundef_cong]: "A = B \<Longrightarrow> (\<And>x. x |\<in>| B \<Longrightarrow> f x = g x) \<Longrightarrow> fbind A f = fbind B g" | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 461 | by transfer force | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 462 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 463 | |
| 61585 | 464 | subsubsection \<open>\<open>fsingleton\<close>\<close> | 
| 53953 | 465 | |
| 466 | lemmas fsingletonE = fsingletonD [elim_format] | |
| 467 | ||
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 468 | |
| 61585 | 469 | subsubsection \<open>\<open>femepty\<close>\<close> | 
| 53953 | 470 | |
| 471 | lemma fempty_ffilter[simp]: "ffilter (\<lambda>_. False) A = {||}"
 | |
| 472 | by transfer auto | |
| 473 | ||
| 474 | (* FIXME, transferred doesn't work here *) | |
| 475 | lemma femptyE [elim!]: "a |\<in>| {||} \<Longrightarrow> P"
 | |
| 476 | by simp | |
| 477 | ||
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 478 | |
| 61585 | 479 | subsubsection \<open>\<open>fset\<close>\<close> | 
| 53953 | 480 | |
| 53963 | 481 | lemmas fset_simps[simp] = bot_fset.rep_eq finsert.rep_eq | 
| 53953 | 482 | |
| 63331 | 483 | lemma finite_fset [simp]: | 
| 53953 | 484 | shows "finite (fset S)" | 
| 485 | by transfer simp | |
| 486 | ||
| 53963 | 487 | lemmas fset_cong = fset_inject | 
| 53953 | 488 | |
| 489 | lemma filter_fset [simp]: | |
| 490 | shows "fset (ffilter P xs) = Collect P \<inter> fset xs" | |
| 491 | by transfer auto | |
| 492 | ||
| 53963 | 493 | lemma notin_fset: "x |\<notin>| S \<longleftrightarrow> x \<notin> fset S" by (simp add: fmember.rep_eq) | 
| 494 | ||
| 495 | lemmas inter_fset[simp] = inf_fset.rep_eq | |
| 53953 | 496 | |
| 53963 | 497 | lemmas union_fset[simp] = sup_fset.rep_eq | 
| 53953 | 498 | |
| 53963 | 499 | lemmas minus_fset[simp] = minus_fset.rep_eq | 
| 53953 | 500 | |
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 501 | |
| 63622 | 502 | subsubsection \<open>\<open>ffilter\<close>\<close> | 
| 53953 | 503 | |
| 63331 | 504 | lemma subset_ffilter: | 
| 53953 | 505 | "ffilter P A |\<subseteq>| ffilter Q A = (\<forall> x. x |\<in>| A \<longrightarrow> P x \<longrightarrow> Q x)" | 
| 506 | by transfer auto | |
| 507 | ||
| 63331 | 508 | lemma eq_ffilter: | 
| 53953 | 509 | "(ffilter P A = ffilter Q A) = (\<forall>x. x |\<in>| A \<longrightarrow> P x = Q x)" | 
| 510 | by transfer auto | |
| 511 | ||
| 53964 | 512 | lemma pfsubset_ffilter: | 
| 63331 | 513 | "(\<And>x. x |\<in>| A \<Longrightarrow> P x \<Longrightarrow> Q x) \<Longrightarrow> (x |\<in>| A & \<not> P x & Q x) \<Longrightarrow> | 
| 53953 | 514 | ffilter P A |\<subset>| ffilter Q A" | 
| 515 | unfolding less_fset_def by (auto simp add: subset_ffilter eq_ffilter) | |
| 516 | ||
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 517 | |
| 63622 | 518 | subsubsection \<open>\<open>fset_of_list\<close>\<close> | 
| 519 | ||
| 520 | lemma fset_of_list_filter[simp]: | |
| 521 | "fset_of_list (filter P xs) = ffilter P (fset_of_list xs)" | |
| 522 | by transfer (auto simp: Set.filter_def) | |
| 523 | ||
| 524 | lemma fset_of_list_subset[intro]: | |
| 525 | "set xs \<subseteq> set ys \<Longrightarrow> fset_of_list xs |\<subseteq>| fset_of_list ys" | |
| 526 | by transfer simp | |
| 527 | ||
| 528 | lemma fset_of_list_elem: "(x |\<in>| fset_of_list xs) \<longleftrightarrow> (x \<in> set xs)" | |
| 529 | by transfer simp | |
| 530 | ||
| 531 | ||
| 61585 | 532 | subsubsection \<open>\<open>finsert\<close>\<close> | 
| 53953 | 533 | |
| 534 | (* FIXME, transferred doesn't work here *) | |
| 535 | lemma set_finsert: | |
| 536 | assumes "x |\<in>| A" | |
| 537 | obtains B where "A = finsert x B" and "x |\<notin>| B" | |
| 538 | using assms by transfer (metis Set.set_insert finite_insert) | |
| 539 | ||
| 540 | lemma mk_disjoint_finsert: "a |\<in>| A \<Longrightarrow> \<exists>B. A = finsert a B \<and> a |\<notin>| B" | |
| 63649 | 541 |   by (rule exI [where x = "A |-| {|a|}"]) blast
 | 
| 53953 | 542 | |
| 66264 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 543 | lemma finsert_eq_iff: | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 544 | assumes "a |\<notin>| A" and "b |\<notin>| B" | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 545 | shows "(finsert a A = finsert b B) = | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 546 | (if a = b then A = B else \<exists>C. A = finsert b C \<and> b |\<notin>| C \<and> B = finsert a C \<and> a |\<notin>| C)" | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 547 | using assms by transfer (force simp: insert_eq_iff) | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 548 | |
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 549 | |
| 61585 | 550 | subsubsection \<open>\<open>fimage\<close>\<close> | 
| 53953 | 551 | |
| 552 | lemma subset_fimage_iff: "(B |\<subseteq>| f|`|A) = (\<exists> AA. AA |\<subseteq>| A \<and> B = f|`|AA)" | |
| 553 | by transfer (metis mem_Collect_eq rev_finite_subset subset_image_iff) | |
| 554 | ||
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 555 | |
| 60500 | 556 | subsubsection \<open>bounded quantification\<close> | 
| 53953 | 557 | |
| 558 | lemma bex_simps [simp, no_atp]: | |
| 63331 | 559 | "\<And>A P Q. fBex A (\<lambda>x. P x \<and> Q) = (fBex A P \<and> Q)" | 
| 53953 | 560 | "\<And>A P Q. fBex A (\<lambda>x. P \<and> Q x) = (P \<and> fBex A Q)" | 
| 63331 | 561 |   "\<And>P. fBex {||} P = False"
 | 
| 53953 | 562 | "\<And>a B P. fBex (finsert a B) P = (P a \<or> fBex B P)" | 
| 563 | "\<And>A P f. fBex (f |`| A) P = fBex A (\<lambda>x. P (f x))" | |
| 564 | "\<And>A P. (\<not> fBex A P) = fBall A (\<lambda>x. \<not> P x)" | |
| 565 | by auto | |
| 566 | ||
| 567 | lemma ball_simps [simp, no_atp]: | |
| 568 | "\<And>A P Q. fBall A (\<lambda>x. P x \<or> Q) = (fBall A P \<or> Q)" | |
| 569 | "\<And>A P Q. fBall A (\<lambda>x. P \<or> Q x) = (P \<or> fBall A Q)" | |
| 570 | "\<And>A P Q. fBall A (\<lambda>x. P \<longrightarrow> Q x) = (P \<longrightarrow> fBall A Q)" | |
| 571 | "\<And>A P Q. fBall A (\<lambda>x. P x \<longrightarrow> Q) = (fBex A P \<longrightarrow> Q)" | |
| 572 |   "\<And>P. fBall {||} P = True"
 | |
| 573 | "\<And>a B P. fBall (finsert a B) P = (P a \<and> fBall B P)" | |
| 574 | "\<And>A P f. fBall (f |`| A) P = fBall A (\<lambda>x. P (f x))" | |
| 575 | "\<And>A P. (\<not> fBall A P) = fBex A (\<lambda>x. \<not> P x)" | |
| 576 | by auto | |
| 577 | ||
| 578 | lemma atomize_fBall: | |
| 579 | "(\<And>x. x |\<in>| A ==> P x) == Trueprop (fBall A (\<lambda>x. P x))" | |
| 580 | apply (simp only: atomize_all atomize_imp) | |
| 581 | apply (rule equal_intr_rule) | |
| 63622 | 582 | by (transfer, simp)+ | 
| 583 | ||
| 584 | lemma fBall_mono[mono]: "P \<le> Q \<Longrightarrow> fBall S P \<le> fBall S Q" | |
| 585 | by auto | |
| 586 | ||
| 53953 | 587 | |
| 53963 | 588 | end | 
| 589 | ||
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 590 | |
| 61585 | 591 | subsubsection \<open>\<open>fcard\<close>\<close> | 
| 53963 | 592 | |
| 53964 | 593 | (* FIXME: improve transferred to handle bounded meta quantification *) | 
| 594 | ||
| 53963 | 595 | lemma fcard_fempty: | 
| 596 |   "fcard {||} = 0"
 | |
| 597 | by transfer (rule card_empty) | |
| 598 | ||
| 599 | lemma fcard_finsert_disjoint: | |
| 600 | "x |\<notin>| A \<Longrightarrow> fcard (finsert x A) = Suc (fcard A)" | |
| 601 | by transfer (rule card_insert_disjoint) | |
| 602 | ||
| 603 | lemma fcard_finsert_if: | |
| 604 | "fcard (finsert x A) = (if x |\<in>| A then fcard A else Suc (fcard A))" | |
| 605 | by transfer (rule card_insert_if) | |
| 606 | ||
| 66265 | 607 | lemma fcard_0_eq [simp, no_atp]: | 
| 53963 | 608 |   "fcard A = 0 \<longleftrightarrow> A = {||}"
 | 
| 609 | by transfer (rule card_0_eq) | |
| 610 | ||
| 611 | lemma fcard_Suc_fminus1: | |
| 612 |   "x |\<in>| A \<Longrightarrow> Suc (fcard (A |-| {|x|})) = fcard A"
 | |
| 613 | by transfer (rule card_Suc_Diff1) | |
| 614 | ||
| 615 | lemma fcard_fminus_fsingleton: | |
| 616 |   "x |\<in>| A \<Longrightarrow> fcard (A |-| {|x|}) = fcard A - 1"
 | |
| 617 | by transfer (rule card_Diff_singleton) | |
| 618 | ||
| 619 | lemma fcard_fminus_fsingleton_if: | |
| 620 |   "fcard (A |-| {|x|}) = (if x |\<in>| A then fcard A - 1 else fcard A)"
 | |
| 621 | by transfer (rule card_Diff_singleton_if) | |
| 622 | ||
| 623 | lemma fcard_fminus_finsert[simp]: | |
| 624 | assumes "a |\<in>| A" and "a |\<notin>| B" | |
| 625 | shows "fcard (A |-| finsert a B) = fcard (A |-| B) - 1" | |
| 626 | using assms by transfer (rule card_Diff_insert) | |
| 627 | ||
| 628 | lemma fcard_finsert: "fcard (finsert x A) = Suc (fcard (A |-| {|x|}))"
 | |
| 629 | by transfer (rule card_insert) | |
| 630 | ||
| 631 | lemma fcard_finsert_le: "fcard A \<le> fcard (finsert x A)" | |
| 632 | by transfer (rule card_insert_le) | |
| 633 | ||
| 634 | lemma fcard_mono: | |
| 635 | "A |\<subseteq>| B \<Longrightarrow> fcard A \<le> fcard B" | |
| 636 | by transfer (rule card_mono) | |
| 637 | ||
| 638 | lemma fcard_seteq: "A |\<subseteq>| B \<Longrightarrow> fcard B \<le> fcard A \<Longrightarrow> A = B" | |
| 639 | by transfer (rule card_seteq) | |
| 640 | ||
| 641 | lemma pfsubset_fcard_mono: "A |\<subset>| B \<Longrightarrow> fcard A < fcard B" | |
| 642 | by transfer (rule psubset_card_mono) | |
| 643 | ||
| 63331 | 644 | lemma fcard_funion_finter: | 
| 53963 | 645 | "fcard A + fcard B = fcard (A |\<union>| B) + fcard (A |\<inter>| B)" | 
| 646 | by transfer (rule card_Un_Int) | |
| 647 | ||
| 648 | lemma fcard_funion_disjoint: | |
| 649 |   "A |\<inter>| B = {||} \<Longrightarrow> fcard (A |\<union>| B) = fcard A + fcard B"
 | |
| 650 | by transfer (rule card_Un_disjoint) | |
| 651 | ||
| 652 | lemma fcard_funion_fsubset: | |
| 653 | "B |\<subseteq>| A \<Longrightarrow> fcard (A |-| B) = fcard A - fcard B" | |
| 654 | by transfer (rule card_Diff_subset) | |
| 655 | ||
| 656 | lemma diff_fcard_le_fcard_fminus: | |
| 657 | "fcard A - fcard B \<le> fcard(A |-| B)" | |
| 658 | by transfer (rule diff_card_le_card_Diff) | |
| 659 | ||
| 660 | lemma fcard_fminus1_less: "x |\<in>| A \<Longrightarrow> fcard (A |-| {|x|}) < fcard A"
 | |
| 661 | by transfer (rule card_Diff1_less) | |
| 662 | ||
| 663 | lemma fcard_fminus2_less: | |
| 664 |   "x |\<in>| A \<Longrightarrow> y |\<in>| A \<Longrightarrow> fcard (A |-| {|x|} |-| {|y|}) < fcard A"
 | |
| 665 | by transfer (rule card_Diff2_less) | |
| 666 | ||
| 667 | lemma fcard_fminus1_le: "fcard (A |-| {|x|}) \<le> fcard A"
 | |
| 668 | by transfer (rule card_Diff1_le) | |
| 669 | ||
| 670 | lemma fcard_pfsubset: "A |\<subseteq>| B \<Longrightarrow> fcard A < fcard B \<Longrightarrow> A < B" | |
| 671 | by transfer (rule card_psubset) | |
| 672 | ||
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 673 | |
| 61585 | 674 | subsubsection \<open>\<open>ffold\<close>\<close> | 
| 53963 | 675 | |
| 676 | (* FIXME: improve transferred to handle bounded meta quantification *) | |
| 677 | ||
| 678 | context comp_fun_commute | |
| 679 | begin | |
| 680 | lemmas ffold_empty[simp] = fold_empty[Transfer.transferred] | |
| 681 | ||
| 682 | lemma ffold_finsert [simp]: | |
| 683 | assumes "x |\<notin>| A" | |
| 684 | shows "ffold f z (finsert x A) = f x (ffold f z A)" | |
| 685 | using assms by (transfer fixing: f) (rule fold_insert) | |
| 686 | ||
| 687 | lemma ffold_fun_left_comm: | |
| 688 | "f x (ffold f z A) = ffold f (f x z) A" | |
| 689 | by (transfer fixing: f) (rule fold_fun_left_comm) | |
| 690 | ||
| 691 | lemma ffold_finsert2: | |
| 56646 | 692 | "x |\<notin>| A \<Longrightarrow> ffold f z (finsert x A) = ffold f (f x z) A" | 
| 53963 | 693 | by (transfer fixing: f) (rule fold_insert2) | 
| 694 | ||
| 695 | lemma ffold_rec: | |
| 696 | assumes "x |\<in>| A" | |
| 697 |     shows "ffold f z A = f x (ffold f z (A |-| {|x|}))"
 | |
| 698 | using assms by (transfer fixing: f) (rule fold_rec) | |
| 63331 | 699 | |
| 53963 | 700 | lemma ffold_finsert_fremove: | 
| 701 |     "ffold f z (finsert x A) = f x (ffold f z (A |-| {|x|}))"
 | |
| 702 | by (transfer fixing: f) (rule fold_insert_remove) | |
| 703 | end | |
| 704 | ||
| 705 | lemma ffold_fimage: | |
| 706 | assumes "inj_on g (fset A)" | |
| 707 | shows "ffold f z (g |`| A) = ffold (f \<circ> g) z A" | |
| 708 | using assms by transfer' (rule fold_image) | |
| 709 | ||
| 710 | lemma ffold_cong: | |
| 711 | assumes "comp_fun_commute f" "comp_fun_commute g" | |
| 712 | "\<And>x. x |\<in>| A \<Longrightarrow> f x = g x" | |
| 713 | and "s = t" and "A = B" | |
| 714 | shows "ffold f s A = ffold g t B" | |
| 715 | using assms by transfer (metis Finite_Set.fold_cong) | |
| 716 | ||
| 717 | context comp_fun_idem | |
| 718 | begin | |
| 719 | ||
| 720 | lemma ffold_finsert_idem: | |
| 56646 | 721 | "ffold f z (finsert x A) = f x (ffold f z A)" | 
| 53963 | 722 | by (transfer fixing: f) (rule fold_insert_idem) | 
| 63331 | 723 | |
| 53963 | 724 | declare ffold_finsert [simp del] ffold_finsert_idem [simp] | 
| 63331 | 725 | |
| 53963 | 726 | lemma ffold_finsert_idem2: | 
| 727 | "ffold f z (finsert x A) = ffold f (f x z) A" | |
| 728 | by (transfer fixing: f) (rule fold_insert_idem2) | |
| 729 | ||
| 730 | end | |
| 731 | ||
| 66292 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 732 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 733 | subsubsection \<open>Group operations\<close> | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 734 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 735 | locale comm_monoid_fset = comm_monoid | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 736 | begin | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 737 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 738 | sublocale set: comm_monoid_set .. | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 739 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 740 | lift_definition F :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b fset \<Rightarrow> 'a" is set.F .
 | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 741 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 742 | lemmas cong[fundef_cong] = set.cong[Transfer.transferred] | 
| 66261 | 743 | |
| 66292 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 744 | lemma strong_cong[cong]: | 
| 66261 | 745 | assumes "A = B" "\<And>x. x |\<in>| B =simp=> g x = h x" | 
| 66292 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 746 | shows "F g A = F h B" | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 747 | using assms unfolding simp_implies_def by (auto cong: cong) | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 748 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 749 | end | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 750 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 751 | context comm_monoid_add begin | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 752 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 753 | sublocale fsum: comm_monoid_fset plus 0 | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 754 | defines fsum = fsum.F | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 755 | rewrites "comm_monoid_set.F plus 0 = sum" | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 756 | proof - | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 757 | show "comm_monoid_fset op + 0" by standard | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 758 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 759 | show "comm_monoid_set.F op + 0 = sum" unfolding sum_def .. | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 760 | qed | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 761 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 762 | end | 
| 66261 | 763 | |
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 764 | |
| 66264 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 765 | subsubsection \<open>Semilattice operations\<close> | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 766 | |
| 66292 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 767 | locale semilattice_fset = semilattice | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 768 | begin | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 769 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 770 | sublocale set: semilattice_set .. | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 771 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 772 | lift_definition F :: "'a fset \<Rightarrow> 'a" is set.F . | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 773 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 774 | lemma eq_fold: "F (finsert x A) = ffold f x A" | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 775 | by transfer (rule set.eq_fold) | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 776 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 777 | lemma singleton [simp]: "F {|x|} = x"
 | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 778 | by transfer (rule set.singleton) | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 779 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 780 | lemma insert_not_elem: "x |\<notin>| A \<Longrightarrow> A \<noteq> {||} \<Longrightarrow> F (finsert x A) = x \<^bold>* F A"
 | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 781 | by transfer (rule set.insert_not_elem) | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 782 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 783 | lemma in_idem: "x |\<in>| A \<Longrightarrow> x \<^bold>* F A = F A" | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 784 | by transfer (rule set.in_idem) | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 785 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 786 | lemma insert [simp]: "A \<noteq> {||} \<Longrightarrow> F (finsert x A) = x \<^bold>* F A"
 | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 787 | by transfer (rule set.insert) | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 788 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 789 | end | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 790 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 791 | locale semilattice_order_fset = binary?: semilattice_order + semilattice_fset | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 792 | begin | 
| 66264 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 793 | |
| 66292 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 794 | end | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 795 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 796 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 797 | context linorder begin | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 798 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 799 | sublocale fMin: semilattice_order_fset min less_eq less | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 800 | defines fMin = fMin.F | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 801 | rewrites "semilattice_set.F min = Min" | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 802 | proof - | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 803 | show "semilattice_order_fset min op \<le> op <" by standard | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 804 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 805 | show "semilattice_set.F min = Min" unfolding Min_def .. | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 806 | qed | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 807 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 808 | sublocale fMax: semilattice_order_fset max greater_eq greater | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 809 | defines fMax = fMax.F | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 810 | rewrites "semilattice_set.F max = Max" | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 811 | proof - | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 812 | show "semilattice_order_fset max op \<ge> op >" | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 813 | by standard | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 814 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 815 | show "semilattice_set.F max = Max" | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 816 | unfolding Max_def .. | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 817 | qed | 
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 818 | |
| 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 819 | end | 
| 66264 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 820 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 821 | lemma mono_fMax_commute: "mono f \<Longrightarrow> A \<noteq> {||} \<Longrightarrow> f (fMax A) = fMax (f |`| A)"
 | 
| 66292 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 822 | by transfer (rule mono_Max_commute) | 
| 66264 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 823 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 824 | lemma mono_fMin_commute: "mono f \<Longrightarrow> A \<noteq> {||} \<Longrightarrow> f (fMin A) = fMin (f |`| A)"
 | 
| 66292 
9930f4cf6c7a
improve setup for fMin/fMax/fsum; courtesy of Ondřej Kunčar & Florian Haftmann
 Lars Hupel <lars.hupel@mytum.de> parents: 
66265diff
changeset | 825 | by transfer (rule mono_Min_commute) | 
| 66264 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 826 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 827 | lemma fMax_in[simp]: "A \<noteq> {||} \<Longrightarrow> fMax A |\<in>| A"
 | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 828 | by transfer (rule Max_in) | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 829 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 830 | lemma fMin_in[simp]: "A \<noteq> {||} \<Longrightarrow> fMin A |\<in>| A"
 | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 831 | by transfer (rule Min_in) | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 832 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 833 | lemma fMax_ge[simp]: "x |\<in>| A \<Longrightarrow> x \<le> fMax A" | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 834 | by transfer (rule Max_ge) | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 835 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 836 | lemma fMin_le[simp]: "x |\<in>| A \<Longrightarrow> fMin A \<le> x" | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 837 | by transfer (rule Min_le) | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 838 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 839 | lemma fMax_eqI: "(\<And>y. y |\<in>| A \<Longrightarrow> y \<le> x) \<Longrightarrow> x |\<in>| A \<Longrightarrow> fMax A = x" | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 840 | by transfer (rule Max_eqI) | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 841 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 842 | lemma fMin_eqI: "(\<And>y. y |\<in>| A \<Longrightarrow> x \<le> y) \<Longrightarrow> x |\<in>| A \<Longrightarrow> fMin A = x" | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 843 | by transfer (rule Min_eqI) | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 844 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 845 | lemma fMax_finsert[simp]: "fMax (finsert x A) = (if A = {||} then x else max x (fMax A))"
 | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 846 | by transfer simp | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 847 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 848 | lemma fMin_finsert[simp]: "fMin (finsert x A) = (if A = {||} then x else min x (fMin A))"
 | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 849 | by transfer simp | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 850 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 851 | context linorder begin | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 852 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 853 | lemma fset_linorder_max_induct[case_names fempty finsert]: | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 854 |   assumes "P {||}"
 | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 855 | and "\<And>x S. \<lbrakk>\<forall>y. y |\<in>| S \<longrightarrow> y < x; P S\<rbrakk> \<Longrightarrow> P (finsert x S)" | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 856 | shows "P S" | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 857 | proof - | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 858 | (* FIXME transfer and right_total vs. bi_total *) | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 859 | note Domainp_forall_transfer[transfer_rule] | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 860 | show ?thesis | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 861 | using assms by (transfer fixing: less) (auto intro: finite_linorder_max_induct) | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 862 | qed | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 863 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 864 | lemma fset_linorder_min_induct[case_names fempty finsert]: | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 865 |   assumes "P {||}"
 | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 866 | and "\<And>x S. \<lbrakk>\<forall>y. y |\<in>| S \<longrightarrow> y > x; P S\<rbrakk> \<Longrightarrow> P (finsert x S)" | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 867 | shows "P S" | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 868 | proof - | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 869 | (* FIXME transfer and right_total vs. bi_total *) | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 870 | note Domainp_forall_transfer[transfer_rule] | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 871 | show ?thesis | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 872 | using assms by (transfer fixing: less) (auto intro: finite_linorder_min_induct) | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 873 | qed | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 874 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 875 | end | 
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 876 | |
| 
d516da3e7c42
material from $AFP/Formula_Derivatives/FSet_More
 Lars Hupel <lars.hupel@mytum.de> parents: 
66262diff
changeset | 877 | |
| 60500 | 878 | subsection \<open>Choice in fsets\<close> | 
| 53953 | 879 | |
| 63331 | 880 | lemma fset_choice: | 
| 53953 | 881 | assumes "\<forall>x. x |\<in>| A \<longrightarrow> (\<exists>y. P x y)" | 
| 882 | shows "\<exists>f. \<forall>x. x |\<in>| A \<longrightarrow> P x (f x)" | |
| 883 | using assms by transfer metis | |
| 884 | ||
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 885 | |
| 60500 | 886 | subsection \<open>Induction and Cases rules for fsets\<close> | 
| 53953 | 887 | |
| 888 | lemma fset_exhaust [case_names empty insert, cases type: fset]: | |
| 63331 | 889 |   assumes fempty_case: "S = {||} \<Longrightarrow> P"
 | 
| 53953 | 890 | and finsert_case: "\<And>x S'. S = finsert x S' \<Longrightarrow> P" | 
| 891 | shows "P" | |
| 892 | using assms by transfer blast | |
| 893 | ||
| 894 | lemma fset_induct [case_names empty insert]: | |
| 895 |   assumes fempty_case: "P {||}"
 | |
| 896 | and finsert_case: "\<And>x S. P S \<Longrightarrow> P (finsert x S)" | |
| 897 | shows "P S" | |
| 898 | proof - | |
| 899 | (* FIXME transfer and right_total vs. bi_total *) | |
| 900 | note Domainp_forall_transfer[transfer_rule] | |
| 901 | show ?thesis | |
| 902 | using assms by transfer (auto intro: finite_induct) | |
| 903 | qed | |
| 904 | ||
| 905 | lemma fset_induct_stronger [case_names empty insert, induct type: fset]: | |
| 906 |   assumes empty_fset_case: "P {||}"
 | |
| 907 | and insert_fset_case: "\<And>x S. \<lbrakk>x |\<notin>| S; P S\<rbrakk> \<Longrightarrow> P (finsert x S)" | |
| 908 | shows "P S" | |
| 909 | proof - | |
| 910 | (* FIXME transfer and right_total vs. bi_total *) | |
| 911 | note Domainp_forall_transfer[transfer_rule] | |
| 912 | show ?thesis | |
| 913 | using assms by transfer (auto intro: finite_induct) | |
| 914 | qed | |
| 915 | ||
| 916 | lemma fset_card_induct: | |
| 917 |   assumes empty_fset_case: "P {||}"
 | |
| 918 | and card_fset_Suc_case: "\<And>S T. Suc (fcard S) = (fcard T) \<Longrightarrow> P S \<Longrightarrow> P T" | |
| 919 | shows "P S" | |
| 920 | proof (induct S) | |
| 921 | case empty | |
| 922 |   show "P {||}" by (rule empty_fset_case)
 | |
| 923 | next | |
| 924 | case (insert x S) | |
| 925 | have h: "P S" by fact | |
| 926 | have "x |\<notin>| S" by fact | |
| 63331 | 927 | then have "Suc (fcard S) = fcard (finsert x S)" | 
| 53953 | 928 | by transfer auto | 
| 63331 | 929 | then show "P (finsert x S)" | 
| 53953 | 930 | using h card_fset_Suc_case by simp | 
| 931 | qed | |
| 932 | ||
| 933 | lemma fset_strong_cases: | |
| 934 |   obtains "xs = {||}"
 | |
| 935 | | ys x where "x |\<notin>| ys" and "xs = finsert x ys" | |
| 936 | by transfer blast | |
| 937 | ||
| 938 | lemma fset_induct2: | |
| 939 |   "P {||} {||} \<Longrightarrow>
 | |
| 940 |   (\<And>x xs. x |\<notin>| xs \<Longrightarrow> P (finsert x xs) {||}) \<Longrightarrow>
 | |
| 941 |   (\<And>y ys. y |\<notin>| ys \<Longrightarrow> P {||} (finsert y ys)) \<Longrightarrow>
 | |
| 942 | (\<And>x xs y ys. \<lbrakk>P xs ys; x |\<notin>| xs; y |\<notin>| ys\<rbrakk> \<Longrightarrow> P (finsert x xs) (finsert y ys)) \<Longrightarrow> | |
| 943 | P xsa ysa" | |
| 944 | apply (induct xsa arbitrary: ysa) | |
| 945 | apply (induct_tac x rule: fset_induct_stronger) | |
| 946 | apply simp_all | |
| 947 | apply (induct_tac xa rule: fset_induct_stronger) | |
| 948 | apply simp_all | |
| 949 | done | |
| 950 | ||
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 951 | |
| 60500 | 952 | subsection \<open>Setup for Lifting/Transfer\<close> | 
| 53953 | 953 | |
| 60500 | 954 | subsubsection \<open>Relator and predicator properties\<close> | 
| 53953 | 955 | |
| 55938 | 956 | lift_definition rel_fset :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a fset \<Rightarrow> 'b fset \<Rightarrow> bool" is rel_set
 | 
| 957 | parametric rel_set_transfer . | |
| 53953 | 958 | |
| 63331 | 959 | lemma rel_fset_alt_def: "rel_fset R = (\<lambda>A B. (\<forall>x.\<exists>y. x|\<in>|A \<longrightarrow> y|\<in>|B \<and> R x y) | 
| 53953 | 960 | \<and> (\<forall>y. \<exists>x. y|\<in>|B \<longrightarrow> x|\<in>|A \<and> R x y))" | 
| 961 | apply (rule ext)+ | |
| 962 | apply transfer' | |
| 63331 | 963 | apply (subst rel_set_def[unfolded fun_eq_iff]) | 
| 53953 | 964 | by blast | 
| 965 | ||
| 55938 | 966 | lemma finite_rel_set: | 
| 53953 | 967 | assumes fin: "finite X" "finite Z" | 
| 55938 | 968 | assumes R_S: "rel_set (R OO S) X Z" | 
| 969 | shows "\<exists>Y. finite Y \<and> rel_set R X Y \<and> rel_set S Y Z" | |
| 53953 | 970 | proof - | 
| 971 | obtain f where f: "\<forall>x\<in>X. R x (f x) \<and> (\<exists>z\<in>Z. S (f x) z)" | |
| 972 | apply atomize_elim | |
| 973 | apply (subst bchoice_iff[symmetric]) | |
| 55938 | 974 | using R_S[unfolded rel_set_def OO_def] by blast | 
| 63331 | 975 | |
| 56646 | 976 | obtain g where g: "\<forall>z\<in>Z. S (g z) z \<and> (\<exists>x\<in>X. R x (g z))" | 
| 53953 | 977 | apply atomize_elim | 
| 978 | apply (subst bchoice_iff[symmetric]) | |
| 55938 | 979 | using R_S[unfolded rel_set_def OO_def] by blast | 
| 63331 | 980 | |
| 53953 | 981 | let ?Y = "f ` X \<union> g ` Z" | 
| 982 | have "finite ?Y" by (simp add: fin) | |
| 55938 | 983 | moreover have "rel_set R X ?Y" | 
| 984 | unfolding rel_set_def | |
| 53953 | 985 | using f g by clarsimp blast | 
| 55938 | 986 | moreover have "rel_set S ?Y Z" | 
| 987 | unfolding rel_set_def | |
| 53953 | 988 | using f g by clarsimp blast | 
| 989 | ultimately show ?thesis by metis | |
| 990 | qed | |
| 991 | ||
| 60500 | 992 | subsubsection \<open>Transfer rules for the Transfer package\<close> | 
| 53953 | 993 | |
| 60500 | 994 | text \<open>Unconditional transfer rules\<close> | 
| 53953 | 995 | |
| 63343 | 996 | context includes lifting_syntax | 
| 53963 | 997 | begin | 
| 998 | ||
| 53953 | 999 | lemmas fempty_transfer [transfer_rule] = empty_transfer[Transfer.transferred] | 
| 1000 | ||
| 1001 | lemma finsert_transfer [transfer_rule]: | |
| 55933 | 1002 | "(A ===> rel_fset A ===> rel_fset A) finsert finsert" | 
| 55945 | 1003 | unfolding rel_fun_def rel_fset_alt_def by blast | 
| 53953 | 1004 | |
| 1005 | lemma funion_transfer [transfer_rule]: | |
| 55933 | 1006 | "(rel_fset A ===> rel_fset A ===> rel_fset A) funion funion" | 
| 55945 | 1007 | unfolding rel_fun_def rel_fset_alt_def by blast | 
| 53953 | 1008 | |
| 1009 | lemma ffUnion_transfer [transfer_rule]: | |
| 55933 | 1010 | "(rel_fset (rel_fset A) ===> rel_fset A) ffUnion ffUnion" | 
| 55945 | 1011 | unfolding rel_fun_def rel_fset_alt_def by transfer (simp, fast) | 
| 53953 | 1012 | |
| 1013 | lemma fimage_transfer [transfer_rule]: | |
| 55933 | 1014 | "((A ===> B) ===> rel_fset A ===> rel_fset B) fimage fimage" | 
| 55945 | 1015 | unfolding rel_fun_def rel_fset_alt_def by simp blast | 
| 53953 | 1016 | |
| 1017 | lemma fBall_transfer [transfer_rule]: | |
| 55933 | 1018 | "(rel_fset A ===> (A ===> op =) ===> op =) fBall fBall" | 
| 55945 | 1019 | unfolding rel_fset_alt_def rel_fun_def by blast | 
| 53953 | 1020 | |
| 1021 | lemma fBex_transfer [transfer_rule]: | |
| 55933 | 1022 | "(rel_fset A ===> (A ===> op =) ===> op =) fBex fBex" | 
| 55945 | 1023 | unfolding rel_fset_alt_def rel_fun_def by blast | 
| 53953 | 1024 | |
| 1025 | (* FIXME transfer doesn't work here *) | |
| 1026 | lemma fPow_transfer [transfer_rule]: | |
| 55933 | 1027 | "(rel_fset A ===> rel_fset (rel_fset A)) fPow fPow" | 
| 55945 | 1028 | unfolding rel_fun_def | 
| 1029 | using Pow_transfer[unfolded rel_fun_def, rule_format, Transfer.transferred] | |
| 53953 | 1030 | by blast | 
| 1031 | ||
| 55933 | 1032 | lemma rel_fset_transfer [transfer_rule]: | 
| 1033 | "((A ===> B ===> op =) ===> rel_fset A ===> rel_fset B ===> op =) | |
| 1034 | rel_fset rel_fset" | |
| 55945 | 1035 | unfolding rel_fun_def | 
| 1036 | using rel_set_transfer[unfolded rel_fun_def,rule_format, Transfer.transferred, where A = A and B = B] | |
| 53953 | 1037 | by simp | 
| 1038 | ||
| 1039 | lemma bind_transfer [transfer_rule]: | |
| 55933 | 1040 | "(rel_fset A ===> (A ===> rel_fset B) ===> rel_fset B) fbind fbind" | 
| 63092 | 1041 | unfolding rel_fun_def | 
| 55945 | 1042 | using bind_transfer[unfolded rel_fun_def, rule_format, Transfer.transferred] by blast | 
| 53953 | 1043 | |
| 60500 | 1044 | text \<open>Rules requiring bi-unique, bi-total or right-total relations\<close> | 
| 53953 | 1045 | |
| 1046 | lemma fmember_transfer [transfer_rule]: | |
| 1047 | assumes "bi_unique A" | |
| 55933 | 1048 | shows "(A ===> rel_fset A ===> op =) (op |\<in>|) (op |\<in>|)" | 
| 55945 | 1049 | using assms unfolding rel_fun_def rel_fset_alt_def bi_unique_def by metis | 
| 53953 | 1050 | |
| 1051 | lemma finter_transfer [transfer_rule]: | |
| 1052 | assumes "bi_unique A" | |
| 55933 | 1053 | shows "(rel_fset A ===> rel_fset A ===> rel_fset A) finter finter" | 
| 55945 | 1054 | using assms unfolding rel_fun_def | 
| 1055 | using inter_transfer[unfolded rel_fun_def, rule_format, Transfer.transferred] by blast | |
| 53953 | 1056 | |
| 53963 | 1057 | lemma fminus_transfer [transfer_rule]: | 
| 53953 | 1058 | assumes "bi_unique A" | 
| 55933 | 1059 | shows "(rel_fset A ===> rel_fset A ===> rel_fset A) (op |-|) (op |-|)" | 
| 55945 | 1060 | using assms unfolding rel_fun_def | 
| 1061 | using Diff_transfer[unfolded rel_fun_def, rule_format, Transfer.transferred] by blast | |
| 53953 | 1062 | |
| 1063 | lemma fsubset_transfer [transfer_rule]: | |
| 1064 | assumes "bi_unique A" | |
| 55933 | 1065 | shows "(rel_fset A ===> rel_fset A ===> op =) (op |\<subseteq>|) (op |\<subseteq>|)" | 
| 55945 | 1066 | using assms unfolding rel_fun_def | 
| 1067 | using subset_transfer[unfolded rel_fun_def, rule_format, Transfer.transferred] by blast | |
| 53953 | 1068 | |
| 1069 | lemma fSup_transfer [transfer_rule]: | |
| 55938 | 1070 | "bi_unique A \<Longrightarrow> (rel_set (rel_fset A) ===> rel_fset A) Sup Sup" | 
| 63092 | 1071 | unfolding rel_fun_def | 
| 53953 | 1072 | apply clarify | 
| 1073 | apply transfer' | |
| 55945 | 1074 | using Sup_fset_transfer[unfolded rel_fun_def] by blast | 
| 53953 | 1075 | |
| 1076 | (* FIXME: add right_total_fInf_transfer *) | |
| 1077 | ||
| 1078 | lemma fInf_transfer [transfer_rule]: | |
| 1079 | assumes "bi_unique A" and "bi_total A" | |
| 55938 | 1080 | shows "(rel_set (rel_fset A) ===> rel_fset A) Inf Inf" | 
| 55945 | 1081 | using assms unfolding rel_fun_def | 
| 53953 | 1082 | apply clarify | 
| 1083 | apply transfer' | |
| 55945 | 1084 | using Inf_fset_transfer[unfolded rel_fun_def] by blast | 
| 53953 | 1085 | |
| 1086 | lemma ffilter_transfer [transfer_rule]: | |
| 1087 | assumes "bi_unique A" | |
| 55933 | 1088 | shows "((A ===> op=) ===> rel_fset A ===> rel_fset A) ffilter ffilter" | 
| 55945 | 1089 | using assms unfolding rel_fun_def | 
| 1090 | using Lifting_Set.filter_transfer[unfolded rel_fun_def, rule_format, Transfer.transferred] by blast | |
| 53953 | 1091 | |
| 1092 | lemma card_transfer [transfer_rule]: | |
| 55933 | 1093 | "bi_unique A \<Longrightarrow> (rel_fset A ===> op =) fcard fcard" | 
| 63092 | 1094 | unfolding rel_fun_def | 
| 55945 | 1095 | using card_transfer[unfolded rel_fun_def, rule_format, Transfer.transferred] by blast | 
| 53953 | 1096 | |
| 1097 | end | |
| 1098 | ||
| 1099 | lifting_update fset.lifting | |
| 1100 | lifting_forget fset.lifting | |
| 1101 | ||
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1102 | |
| 60500 | 1103 | subsection \<open>BNF setup\<close> | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1104 | |
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1105 | context | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1106 | includes fset.lifting | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1107 | begin | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1108 | |
| 55933 | 1109 | lemma rel_fset_alt: | 
| 1110 | "rel_fset R a b \<longleftrightarrow> (\<forall>t \<in> fset a. \<exists>u \<in> fset b. R t u) \<and> (\<forall>t \<in> fset b. \<exists>u \<in> fset a. R u t)" | |
| 55938 | 1111 | by transfer (simp add: rel_set_def) | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1112 | |
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1113 | lemma fset_to_fset: "finite A \<Longrightarrow> fset (the_inv fset A) = A" | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1114 | apply (rule f_the_inv_into_f[unfolded inj_on_def]) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1115 | apply (simp add: fset_inject) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1116 | apply (rule range_eqI Abs_fset_inverse[symmetric] CollectI)+ | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1117 | . | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1118 | |
| 55933 | 1119 | lemma rel_fset_aux: | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1120 | "(\<forall>t \<in> fset a. \<exists>u \<in> fset b. R t u) \<and> (\<forall>u \<in> fset b. \<exists>t \<in> fset a. R t u) \<longleftrightarrow> | 
| 57398 | 1121 |  ((BNF_Def.Grp {a. fset a \<subseteq> {(a, b). R a b}} (fimage fst))\<inverse>\<inverse> OO
 | 
| 1122 |   BNF_Def.Grp {a. fset a \<subseteq> {(a, b). R a b}} (fimage snd)) a b" (is "?L = ?R")
 | |
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1123 | proof | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1124 | assume ?L | 
| 63040 | 1125 | define R' where "R' = | 
| 1126 | the_inv fset (Collect (case_prod R) \<inter> (fset a \<times> fset b))" (is "_ = the_inv fset ?L'") | |
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1127 | have "finite ?L'" by (intro finite_Int[OF disjI2] finite_cartesian_product) (transfer, simp)+ | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1128 | hence *: "fset R' = ?L'" unfolding R'_def by (intro fset_to_fset) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1129 | show ?R unfolding Grp_def relcompp.simps conversep.simps | 
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
55129diff
changeset | 1130 | proof (intro CollectI case_prodI exI[of _ a] exI[of _ b] exI[of _ R'] conjI refl) | 
| 60500 | 1131 | from * show "a = fimage fst R'" using conjunct1[OF \<open>?L\<close>] | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1132 | by (transfer, auto simp add: image_def Int_def split: prod.splits) | 
| 60500 | 1133 | from * show "b = fimage snd R'" using conjunct2[OF \<open>?L\<close>] | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1134 | by (transfer, auto simp add: image_def Int_def split: prod.splits) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1135 | qed (auto simp add: *) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1136 | next | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1137 | assume ?R thus ?L unfolding Grp_def relcompp.simps conversep.simps | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1138 | apply (simp add: subset_eq Ball_def) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1139 | apply (rule conjI) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1140 | apply (transfer, clarsimp, metis snd_conv) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1141 | by (transfer, clarsimp, metis fst_conv) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1142 | qed | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1143 | |
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1144 | bnf "'a fset" | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1145 | map: fimage | 
| 63331 | 1146 | sets: fset | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1147 | bd: natLeq | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1148 |   wits: "{||}"
 | 
| 55933 | 1149 | rel: rel_fset | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1150 | apply - | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1151 | apply transfer' apply simp | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1152 | apply transfer' apply force | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1153 | apply transfer apply force | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1154 | apply transfer' apply force | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1155 | apply (rule natLeq_card_order) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1156 | apply (rule natLeq_cinfinite) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1157 | apply transfer apply (metis ordLess_imp_ordLeq finite_iff_ordLess_natLeq) | 
| 55933 | 1158 | apply (fastforce simp: rel_fset_alt) | 
| 62324 | 1159 | apply (simp add: Grp_def relcompp.simps conversep.simps fun_eq_iff rel_fset_alt | 
| 63331 | 1160 | rel_fset_aux[unfolded OO_Grp_alt]) | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1161 | apply transfer apply simp | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1162 | done | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1163 | |
| 55938 | 1164 | lemma rel_fset_fset: "rel_set \<chi> (fset A1) (fset A2) = rel_fset \<chi> A1 A2" | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1165 | by transfer (rule refl) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1166 | |
| 53953 | 1167 | end | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1168 | |
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1169 | lemmas [simp] = fset.map_comp fset.map_id fset.set_map | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1170 | |
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1171 | |
| 60500 | 1172 | subsection \<open>Size setup\<close> | 
| 56646 | 1173 | |
| 1174 | context includes fset.lifting begin | |
| 64267 | 1175 | lift_definition size_fset :: "('a \<Rightarrow> nat) \<Rightarrow> 'a fset \<Rightarrow> nat" is "\<lambda>f. sum (Suc \<circ> f)" .
 | 
| 56646 | 1176 | end | 
| 1177 | ||
| 1178 | instantiation fset :: (type) size begin | |
| 1179 | definition size_fset where | |
| 1180 | size_fset_overloaded_def: "size_fset = FSet.size_fset (\<lambda>_. 0)" | |
| 1181 | instance .. | |
| 1182 | end | |
| 1183 | ||
| 1184 | lemmas size_fset_simps[simp] = | |
| 1185 | size_fset_def[THEN meta_eq_to_obj_eq, THEN fun_cong, THEN fun_cong, | |
| 1186 | unfolded map_fun_def comp_def id_apply] | |
| 1187 | ||
| 1188 | lemmas size_fset_overloaded_simps[simp] = | |
| 1189 | size_fset_simps[of "\<lambda>_. 0", unfolded add_0_left add_0_right, | |
| 1190 | folded size_fset_overloaded_def] | |
| 1191 | ||
| 1192 | lemma fset_size_o_map: "inj f \<Longrightarrow> size_fset g \<circ> fimage f = size_fset (g \<circ> f)" | |
| 60228 
32dd7adba5a4
tuned proof; forget the transfer rule for size_fset
 kuncar parents: 
58881diff
changeset | 1193 | apply (subst fun_eq_iff) | 
| 64267 | 1194 | including fset.lifting by transfer (auto intro: sum.reindex_cong subset_inj_on) | 
| 63331 | 1195 | |
| 60500 | 1196 | setup \<open> | 
| 56651 | 1197 | BNF_LFP_Size.register_size_global @{type_name fset} @{const_name size_fset}
 | 
| 62082 | 1198 |   @{thm size_fset_overloaded_def} @{thms size_fset_simps size_fset_overloaded_simps}
 | 
| 1199 |   @{thms fset_size_o_map}
 | |
| 60500 | 1200 | \<close> | 
| 56646 | 1201 | |
| 60228 
32dd7adba5a4
tuned proof; forget the transfer rule for size_fset
 kuncar parents: 
58881diff
changeset | 1202 | lifting_update fset.lifting | 
| 
32dd7adba5a4
tuned proof; forget the transfer rule for size_fset
 kuncar parents: 
58881diff
changeset | 1203 | lifting_forget fset.lifting | 
| 56646 | 1204 | |
| 60500 | 1205 | subsection \<open>Advanced relator customization\<close> | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1206 | |
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1207 | (* Set vs. sum relators: *) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1208 | |
| 63331 | 1209 | lemma rel_set_rel_sum[simp]: | 
| 1210 | "rel_set (rel_sum \<chi> \<phi>) A1 A2 \<longleftrightarrow> | |
| 55938 | 1211 | rel_set \<chi> (Inl -` A1) (Inl -` A2) \<and> rel_set \<phi> (Inr -` A1) (Inr -` A2)" | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1212 | (is "?L \<longleftrightarrow> ?Rl \<and> ?Rr") | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1213 | proof safe | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1214 | assume L: "?L" | 
| 55938 | 1215 | show ?Rl unfolding rel_set_def Bex_def vimage_eq proof safe | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1216 | fix l1 assume "Inl l1 \<in> A1" | 
| 55943 | 1217 | then obtain a2 where a2: "a2 \<in> A2" and "rel_sum \<chi> \<phi> (Inl l1) a2" | 
| 55938 | 1218 | using L unfolding rel_set_def by auto | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1219 | then obtain l2 where "a2 = Inl l2 \<and> \<chi> l1 l2" by (cases a2, auto) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1220 | thus "\<exists> l2. Inl l2 \<in> A2 \<and> \<chi> l1 l2" using a2 by auto | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1221 | next | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1222 | fix l2 assume "Inl l2 \<in> A2" | 
| 55943 | 1223 | then obtain a1 where a1: "a1 \<in> A1" and "rel_sum \<chi> \<phi> a1 (Inl l2)" | 
| 55938 | 1224 | using L unfolding rel_set_def by auto | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1225 | then obtain l1 where "a1 = Inl l1 \<and> \<chi> l1 l2" by (cases a1, auto) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1226 | thus "\<exists> l1. Inl l1 \<in> A1 \<and> \<chi> l1 l2" using a1 by auto | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1227 | qed | 
| 55938 | 1228 | show ?Rr unfolding rel_set_def Bex_def vimage_eq proof safe | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1229 | fix r1 assume "Inr r1 \<in> A1" | 
| 55943 | 1230 | then obtain a2 where a2: "a2 \<in> A2" and "rel_sum \<chi> \<phi> (Inr r1) a2" | 
| 55938 | 1231 | using L unfolding rel_set_def by auto | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1232 | then obtain r2 where "a2 = Inr r2 \<and> \<phi> r1 r2" by (cases a2, auto) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1233 | thus "\<exists> r2. Inr r2 \<in> A2 \<and> \<phi> r1 r2" using a2 by auto | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1234 | next | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1235 | fix r2 assume "Inr r2 \<in> A2" | 
| 55943 | 1236 | then obtain a1 where a1: "a1 \<in> A1" and "rel_sum \<chi> \<phi> a1 (Inr r2)" | 
| 55938 | 1237 | using L unfolding rel_set_def by auto | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1238 | then obtain r1 where "a1 = Inr r1 \<and> \<phi> r1 r2" by (cases a1, auto) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1239 | thus "\<exists> r1. Inr r1 \<in> A1 \<and> \<phi> r1 r2" using a1 by auto | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1240 | qed | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1241 | next | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1242 | assume Rl: "?Rl" and Rr: "?Rr" | 
| 55938 | 1243 | show ?L unfolding rel_set_def Bex_def vimage_eq proof safe | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1244 | fix a1 assume a1: "a1 \<in> A1" | 
| 55943 | 1245 | show "\<exists> a2. a2 \<in> A2 \<and> rel_sum \<chi> \<phi> a1 a2" | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1246 | proof(cases a1) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1247 | case (Inl l1) then obtain l2 where "Inl l2 \<in> A2 \<and> \<chi> l1 l2" | 
| 55938 | 1248 | using Rl a1 unfolding rel_set_def by blast | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1249 | thus ?thesis unfolding Inl by auto | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1250 | next | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1251 | case (Inr r1) then obtain r2 where "Inr r2 \<in> A2 \<and> \<phi> r1 r2" | 
| 55938 | 1252 | using Rr a1 unfolding rel_set_def by blast | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1253 | thus ?thesis unfolding Inr by auto | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1254 | qed | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1255 | next | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1256 | fix a2 assume a2: "a2 \<in> A2" | 
| 55943 | 1257 | show "\<exists> a1. a1 \<in> A1 \<and> rel_sum \<chi> \<phi> a1 a2" | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1258 | proof(cases a2) | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1259 | case (Inl l2) then obtain l1 where "Inl l1 \<in> A1 \<and> \<chi> l1 l2" | 
| 55938 | 1260 | using Rl a2 unfolding rel_set_def by blast | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1261 | thus ?thesis unfolding Inl by auto | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1262 | next | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1263 | case (Inr r2) then obtain r1 where "Inr r1 \<in> A1 \<and> \<phi> r1 r2" | 
| 55938 | 1264 | using Rr a2 unfolding rel_set_def by blast | 
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1265 | thus ?thesis unfolding Inr by auto | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1266 | qed | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1267 | qed | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1268 | qed | 
| 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1269 | |
| 60712 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1270 | |
| 66262 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1271 | subsubsection \<open>Countability\<close> | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1272 | |
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1273 | lemma exists_fset_of_list: "\<exists>xs. fset_of_list xs = S" | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1274 | including fset.lifting | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1275 | by transfer (rule finite_list) | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1276 | |
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1277 | lemma fset_of_list_surj[simp, intro]: "surj fset_of_list" | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1278 | proof - | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1279 | have "x \<in> range fset_of_list" for x :: "'a fset" | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1280 | unfolding image_iff | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1281 | using exists_fset_of_list by fastforce | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1282 | thus ?thesis by auto | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1283 | qed | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1284 | |
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1285 | instance fset :: (countable) countable | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1286 | proof | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1287 | obtain to_nat :: "'a list \<Rightarrow> nat" where "inj to_nat" | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1288 | by (metis ex_inj) | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1289 | moreover have "inj (inv fset_of_list)" | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1290 | using fset_of_list_surj by (rule surj_imp_inj_inv) | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1291 | ultimately have "inj (to_nat \<circ> inv fset_of_list)" | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1292 | by (rule inj_comp) | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1293 | thus "\<exists>to_nat::'a fset \<Rightarrow> nat. inj to_nat" | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1294 | by auto | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1295 | qed | 
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1296 | |
| 
4a2c9d32e7aa
finite sets are countable
 Lars Hupel <lars.hupel@mytum.de> parents: 
66261diff
changeset | 1297 | |
| 60712 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1298 | subsection \<open>Quickcheck setup\<close> | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1299 | |
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1300 | text \<open>Setup adapted from sets.\<close> | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1301 | |
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1302 | notation Quickcheck_Exhaustive.orelse (infixr "orelse" 55) | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1303 | |
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1304 | definition (in term_syntax) [code_unfold]: | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1305 | "valterm_femptyset = Code_Evaluation.valtermify ({||} :: ('a :: typerep) fset)"
 | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1306 | |
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1307 | definition (in term_syntax) [code_unfold]: | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1308 | "valtermify_finsert x s = Code_Evaluation.valtermify finsert {\<cdot>} (x :: ('a :: typerep * _)) {\<cdot>} s"
 | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1309 | |
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1310 | instantiation fset :: (exhaustive) exhaustive | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1311 | begin | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1312 | |
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1313 | fun exhaustive_fset where | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1314 | "exhaustive_fset f i = (if i = 0 then None else (f {||} orelse exhaustive_fset (\<lambda>A. f A orelse Quickcheck_Exhaustive.exhaustive (\<lambda>x. if x |\<in>| A then None else f (finsert x A)) (i - 1)) (i - 1)))"
 | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1315 | |
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1316 | instance .. | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1317 | |
| 55129 
26bd1cba3ab5
killed 'More_BNFs' by moving its various bits where they (now) belong
 blanchet parents: 
54258diff
changeset | 1318 | end | 
| 60712 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1319 | |
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1320 | instantiation fset :: (full_exhaustive) full_exhaustive | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1321 | begin | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1322 | |
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1323 | fun full_exhaustive_fset where | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1324 | "full_exhaustive_fset f i = (if i = 0 then None else (f valterm_femptyset orelse full_exhaustive_fset (\<lambda>A. f A orelse Quickcheck_Exhaustive.full_exhaustive (\<lambda>x. if fst x |\<in>| fst A then None else f (valtermify_finsert x A)) (i - 1)) (i - 1)))" | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1325 | |
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1326 | instance .. | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1327 | |
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1328 | end | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1329 | |
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1330 | no_notation Quickcheck_Exhaustive.orelse (infixr "orelse" 55) | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1331 | |
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1332 | notation scomp (infixl "\<circ>\<rightarrow>" 60) | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1333 | |
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1334 | instantiation fset :: (random) random | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1335 | begin | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1336 | |
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1337 | fun random_aux_fset :: "natural \<Rightarrow> natural \<Rightarrow> natural \<times> natural \<Rightarrow> ('a fset \<times> (unit \<Rightarrow> term)) \<times> natural \<times> natural" where
 | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1338 | "random_aux_fset 0 j = Quickcheck_Random.collapse (Random.select_weight [(1, Pair valterm_femptyset)])" | | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1339 | "random_aux_fset (Code_Numeral.Suc i) j = | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1340 | Quickcheck_Random.collapse (Random.select_weight | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1341 | [(1, Pair valterm_femptyset), | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1342 | (Code_Numeral.Suc i, | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1343 | Quickcheck_Random.random j \<circ>\<rightarrow> (\<lambda>x. random_aux_fset i j \<circ>\<rightarrow> (\<lambda>s. Pair (valtermify_finsert x s))))])" | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1344 | |
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1345 | lemma [code]: | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1346 | "random_aux_fset i j = | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1347 | Quickcheck_Random.collapse (Random.select_weight [(1, Pair valterm_femptyset), | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1348 | (i, Quickcheck_Random.random j \<circ>\<rightarrow> (\<lambda>x. random_aux_fset (i - 1) j \<circ>\<rightarrow> (\<lambda>s. Pair (valtermify_finsert x s))))])" | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1349 | proof (induct i rule: natural.induct) | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1350 | case zero | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1351 | show ?case by (subst select_weight_drop_zero[symmetric]) (simp add: less_natural_def) | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1352 | next | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1353 | case (Suc i) | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1354 | show ?case by (simp only: random_aux_fset.simps Suc_natural_minus_one) | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1355 | qed | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1356 | |
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1357 | definition "random_fset i = random_aux_fset i i" | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1358 | |
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1359 | instance .. | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1360 | |
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1361 | end | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1362 | |
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1363 | no_notation scomp (infixl "\<circ>\<rightarrow>" 60) | 
| 
3ba16d28449d
Quickcheck setup for finite sets
 Lars Hupel <lars.hupel@mytum.de> parents: 
60679diff
changeset | 1364 | |
| 66261 | 1365 | end |