| 66510 |      1 | (* Author: Tobias Nipkow *)
 | 
|  |      2 | 
 | 
|  |      3 | theory Tree_Real
 | 
|  |      4 | imports
 | 
|  |      5 |   Complex_Main
 | 
|  |      6 |   Tree
 | 
|  |      7 | begin
 | 
|  |      8 | 
 | 
|  |      9 | text \<open>This theory is separate from @{theory Tree} because the former is discrete and builds on
 | 
|  |     10 | @{theory Main} whereas this theory builds on @{theory Complex_Main}.\<close>
 | 
|  |     11 | 
 | 
|  |     12 | 
 | 
|  |     13 | lemma size1_height_log: "log 2 (size1 t) \<le> height t"
 | 
|  |     14 | by (simp add: log2_of_power_le size1_height)
 | 
|  |     15 | 
 | 
|  |     16 | lemma min_height_size1_log: "min_height t \<le> log 2 (size1 t)"
 | 
|  |     17 | by (simp add: le_log2_of_power min_height_size1)
 | 
|  |     18 | 
 | 
|  |     19 | lemma size1_log_if_complete: "complete t \<Longrightarrow> height t = log 2 (size1 t)"
 | 
|  |     20 | by (simp add: log2_of_power_eq size1_if_complete)
 | 
|  |     21 | 
 | 
|  |     22 | lemma min_height_size1_log_if_incomplete:
 | 
|  |     23 |   "\<not> complete t \<Longrightarrow> min_height t < log 2 (size1 t)"
 | 
|  |     24 | by (simp add: less_log2_of_power min_height_size1_if_incomplete)
 | 
|  |     25 | 
 | 
|  |     26 | 
 | 
|  |     27 | lemma min_height_balanced: assumes "balanced t"
 | 
|  |     28 | shows "min_height t = nat(floor(log 2 (size1 t)))"
 | 
|  |     29 | proof cases
 | 
|  |     30 |   assume *: "complete t"
 | 
|  |     31 |   hence "size1 t = 2 ^ min_height t"
 | 
|  |     32 |     by (simp add: complete_iff_height size1_if_complete)
 | 
|  |     33 |   from log2_of_power_eq[OF this] show ?thesis by linarith
 | 
|  |     34 | next
 | 
|  |     35 |   assume *: "\<not> complete t"
 | 
|  |     36 |   hence "height t = min_height t + 1"
 | 
|  |     37 |     using assms min_height_le_height[of t]
 | 
|  |     38 |     by(auto simp add: balanced_def complete_iff_height)
 | 
|  |     39 |   hence "size1 t < 2 ^ (min_height t + 1)"
 | 
|  |     40 |     by (metis * size1_height_if_incomplete)
 | 
|  |     41 |   hence "log 2 (size1 t) < min_height t + 1"
 | 
|  |     42 |     using log2_of_power_less size1_ge0 by blast
 | 
|  |     43 |   thus ?thesis using min_height_size1_log[of t] by linarith
 | 
|  |     44 | qed
 | 
|  |     45 | 
 | 
|  |     46 | lemma height_balanced: assumes "balanced t"
 | 
|  |     47 | shows "height t = nat(ceiling(log 2 (size1 t)))"
 | 
|  |     48 | proof cases
 | 
|  |     49 |   assume *: "complete t"
 | 
|  |     50 |   hence "size1 t = 2 ^ height t"
 | 
|  |     51 |     by (simp add: size1_if_complete)
 | 
|  |     52 |   from log2_of_power_eq[OF this] show ?thesis
 | 
|  |     53 |     by linarith
 | 
|  |     54 | next
 | 
|  |     55 |   assume *: "\<not> complete t"
 | 
|  |     56 |   hence **: "height t = min_height t + 1"
 | 
|  |     57 |     using assms min_height_le_height[of t]
 | 
|  |     58 |     by(auto simp add: balanced_def complete_iff_height)
 | 
|  |     59 |   hence "size1 t \<le> 2 ^ (min_height t + 1)" by (metis size1_height)
 | 
|  |     60 |   from  log2_of_power_le[OF this size1_ge0] min_height_size1_log_if_incomplete[OF *] **
 | 
|  |     61 |   show ?thesis by linarith
 | 
|  |     62 | qed
 | 
|  |     63 | 
 | 
| 66515 |     64 | lemma balanced_Node_if_wbal1:
 | 
|  |     65 | assumes "balanced l" "balanced r" "size l = size r + 1"
 | 
|  |     66 | shows "balanced \<langle>l, x, r\<rangle>"
 | 
|  |     67 | proof -
 | 
|  |     68 |   from assms(3) have [simp]: "size1 l = size1 r + 1" by(simp add: size1_def)
 | 
|  |     69 |   have "nat \<lceil>log 2 (1 + size1 r)\<rceil> \<ge> nat \<lceil>log 2 (size1 r)\<rceil>"
 | 
|  |     70 |     by(rule nat_mono[OF ceiling_mono]) simp
 | 
|  |     71 |   hence 1: "height(Node l x r) = nat \<lceil>log 2 (1 + size1 r)\<rceil> + 1"
 | 
|  |     72 |     using height_balanced[OF assms(1)] height_balanced[OF assms(2)]
 | 
|  |     73 |     by (simp del: nat_ceiling_le_eq add: max_def)
 | 
|  |     74 |   have "nat \<lfloor>log 2 (1 + size1 r)\<rfloor> \<ge> nat \<lfloor>log 2 (size1 r)\<rfloor>"
 | 
|  |     75 |     by(rule nat_mono[OF floor_mono]) simp
 | 
|  |     76 |   hence 2: "min_height(Node l x r) = nat \<lfloor>log 2 (size1 r)\<rfloor> + 1"
 | 
|  |     77 |     using min_height_balanced[OF assms(1)] min_height_balanced[OF assms(2)]
 | 
|  |     78 |     by (simp)
 | 
|  |     79 |   have "size1 r \<ge> 1" by(simp add: size1_def)
 | 
|  |     80 |   then obtain i where i: "2 ^ i \<le> size1 r" "size1 r < 2 ^ (i + 1)"
 | 
|  |     81 |     using ex_power_ivl1[of 2 "size1 r"] by auto
 | 
|  |     82 |   hence i1: "2 ^ i < size1 r + 1" "size1 r + 1 \<le> 2 ^ (i + 1)" by auto
 | 
|  |     83 |   from 1 2 floor_log_nat_eq_if[OF i] ceiling_log_nat_eq_if[OF i1]
 | 
|  |     84 |   show ?thesis by(simp add:balanced_def)
 | 
|  |     85 | qed
 | 
|  |     86 | 
 | 
|  |     87 | lemma balanced_sym: "balanced \<langle>l, x, r\<rangle> \<Longrightarrow> balanced \<langle>r, y, l\<rangle>"
 | 
|  |     88 | by(auto simp: balanced_def)
 | 
|  |     89 | 
 | 
|  |     90 | lemma balanced_Node_if_wbal2:
 | 
|  |     91 | assumes "balanced l" "balanced r" "abs(int(size l) - int(size r)) \<le> 1"
 | 
|  |     92 | shows "balanced \<langle>l, x, r\<rangle>"
 | 
|  |     93 | proof -
 | 
|  |     94 |   have "size l = size r \<or> (size l = size r + 1 \<or> size r = size l + 1)" (is "?A \<or> ?B")
 | 
|  |     95 |     using assms(3) by linarith
 | 
|  |     96 |   thus ?thesis
 | 
|  |     97 |   proof
 | 
|  |     98 |     assume "?A"
 | 
|  |     99 |     thus ?thesis using assms(1,2)
 | 
|  |    100 |       apply(simp add: balanced_def min_def max_def)
 | 
|  |    101 |       by (metis assms(1,2) balanced_optimal le_antisym le_less)
 | 
|  |    102 |   next
 | 
|  |    103 |     assume "?B"
 | 
|  |    104 |     thus ?thesis
 | 
|  |    105 |       by (meson assms(1,2) balanced_sym balanced_Node_if_wbal1)
 | 
|  |    106 |   qed
 | 
|  |    107 | qed
 | 
|  |    108 | 
 | 
|  |    109 | lemma balanced_if_wbalanced: "wbalanced t \<Longrightarrow> balanced t"
 | 
|  |    110 | proof(induction t)
 | 
|  |    111 |   case Leaf show ?case by (simp add: balanced_def)
 | 
|  |    112 | next
 | 
|  |    113 |   case (Node l x r)
 | 
|  |    114 |   thus ?case by(simp add: balanced_Node_if_wbal2)
 | 
|  |    115 | qed
 | 
|  |    116 | 
 | 
| 66510 |    117 | end |