| author | haftmann | 
| Tue, 17 Dec 2013 20:21:22 +0100 | |
| changeset 54795 | e58623a33ba5 | 
| parent 37885 | c43805c80eb6 | 
| child 58776 | 95e58e04e534 | 
| permissions | -rw-r--r-- | 
| 11375 | 1 | (* Title: HOL/ex/Lagrange.thy | 
| 5078 | 2 | Author: Tobias Nipkow | 
| 3 | Copyright 1996 TU Muenchen | |
| 4 | *) | |
| 5 | ||
| 17388 | 6 | header {* A lemma for Lagrange's theorem *}
 | 
| 7 | ||
| 16417 | 8 | theory Lagrange imports Main begin | 
| 14603 | 9 | |
| 17388 | 10 | text {* This theory only contains a single theorem, which is a lemma
 | 
| 11 | in Lagrange's proof that every natural number is the sum of 4 squares. | |
| 12 | Its sole purpose is to demonstrate ordered rewriting for commutative | |
| 13 | rings. | |
| 14 | ||
| 15 | The enterprising reader might consider proving all of Lagrange's | |
| 16 | theorem. *} | |
| 17 | ||
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
22173diff
changeset | 18 | definition sq :: "'a::times => 'a" where "sq x == x*x" | 
| 5078 | 19 | |
| 17388 | 20 | text {* The following lemma essentially shows that every natural
 | 
| 21 | number is the sum of four squares, provided all prime numbers are. | |
| 22 | However, this is an abstract theorem about commutative rings. It has, | |
| 23 | a priori, nothing to do with nat. *} | |
| 14603 | 24 | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
22173diff
changeset | 25 | lemma Lagrange_lemma: fixes x1 :: "'a::comm_ring" shows | 
| 20807 | 26 | "(sq x1 + sq x2 + sq x3 + sq x4) * (sq y1 + sq y2 + sq y3 + sq y4) = | 
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
22173diff
changeset | 27 | sq (x1*y1 - x2*y2 - x3*y3 - x4*y4) + | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
22173diff
changeset | 28 | sq (x1*y2 + x2*y1 + x3*y4 - x4*y3) + | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
22173diff
changeset | 29 | sq (x1*y3 - x2*y4 + x3*y1 + x4*y2) + | 
| 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
22173diff
changeset | 30 | sq (x1*y4 + x2*y3 - x3*y2 + x4*y1)" | 
| 36350 | 31 | by (simp only: sq_def field_simps) | 
| 14603 | 32 | |
| 33 | ||
| 25475 
d5a382ccb5cc
challenge by John Harrison: down to 12s (was 17s, was 75s);
 wenzelm parents: 
23477diff
changeset | 34 | text {* A challenge by John Harrison. Takes about 12s on a 1.6GHz machine. *}
 | 
| 14603 | 35 | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
22173diff
changeset | 36 | lemma fixes p1 :: "'a::comm_ring" shows | 
| 20807 | 37 | "(sq p1 + sq q1 + sq r1 + sq s1 + sq t1 + sq u1 + sq v1 + sq w1) * | 
| 38 | (sq p2 + sq q2 + sq r2 + sq s2 + sq t2 + sq u2 + sq v2 + sq w2) | |
| 39 | = sq (p1*p2 - q1*q2 - r1*r2 - s1*s2 - t1*t2 - u1*u2 - v1*v2 - w1*w2) + | |
| 40 | sq (p1*q2 + q1*p2 + r1*s2 - s1*r2 + t1*u2 - u1*t2 - v1*w2 + w1*v2) + | |
| 41 | sq (p1*r2 - q1*s2 + r1*p2 + s1*q2 + t1*v2 + u1*w2 - v1*t2 - w1*u2) + | |
| 42 | sq (p1*s2 + q1*r2 - r1*q2 + s1*p2 + t1*w2 - u1*v2 + v1*u2 - w1*t2) + | |
| 43 | sq (p1*t2 - q1*u2 - r1*v2 - s1*w2 + t1*p2 + u1*q2 + v1*r2 + w1*s2) + | |
| 44 | sq (p1*u2 + q1*t2 - r1*w2 + s1*v2 - t1*q2 + u1*p2 - v1*s2 + w1*r2) + | |
| 45 | sq (p1*v2 + q1*w2 + r1*t2 - s1*u2 - t1*r2 + u1*s2 + v1*p2 - w1*q2) + | |
| 46 | sq (p1*w2 - q1*v2 + r1*u2 + s1*t2 - t1*s2 - u1*r2 + v1*q2 + w1*p2)" | |
| 36350 | 47 | by (simp only: sq_def field_simps) | 
| 14603 | 48 | |
| 5078 | 49 | end |