author | chaieb |
Sun, 22 Jul 2007 17:53:54 +0200 | |
changeset 23906 | e61361aa23b2 |
parent 23573 | d85a277f90fd |
child 25250 | b3a485b98963 |
permissions | -rw-r--r-- |
23252 | 1 |
(* Title: HOL/Groebner_Basis.thy |
2 |
ID: $Id$ |
|
3 |
Author: Amine Chaieb, TU Muenchen |
|
4 |
*) |
|
5 |
||
6 |
header {* Semiring normalization and Groebner Bases *} |
|
7 |
theory Groebner_Basis |
|
8 |
imports NatBin |
|
9 |
uses |
|
10 |
"Tools/Groebner_Basis/misc.ML" |
|
11 |
"Tools/Groebner_Basis/normalizer_data.ML" |
|
12 |
("Tools/Groebner_Basis/normalizer.ML") |
|
23312 | 13 |
("Tools/Groebner_Basis/groebner.ML") |
23252 | 14 |
begin |
15 |
||
23332
b91295432e6d
algebra_tac moved to file Tools/Groebner_Basis/groebner.ML; Method now takes theorems to be added or deleted from a simpset for simplificatio *before* the core method starts
chaieb
parents:
23330
diff
changeset
|
16 |
|
23252 | 17 |
subsection {* Semiring normalization *} |
18 |
||
19 |
setup NormalizerData.setup |
|
20 |
||
21 |
||
23258
9062e98fdab1
renamed locale ring/semiring to gb_ring/gb_semiring to avoid clash with Ring_and_Field versions;
wenzelm
parents:
23252
diff
changeset
|
22 |
locale gb_semiring = |
23252 | 23 |
fixes add mul pwr r0 r1 |
24 |
assumes add_a:"(add x (add y z) = add (add x y) z)" |
|
25 |
and add_c: "add x y = add y x" and add_0:"add r0 x = x" |
|
26 |
and mul_a:"mul x (mul y z) = mul (mul x y) z" and mul_c:"mul x y = mul y x" |
|
27 |
and mul_1:"mul r1 x = x" and mul_0:"mul r0 x = r0" |
|
28 |
and mul_d:"mul x (add y z) = add (mul x y) (mul x z)" |
|
29 |
and pwr_0:"pwr x 0 = r1" and pwr_Suc:"pwr x (Suc n) = mul x (pwr x n)" |
|
30 |
begin |
|
31 |
||
32 |
lemma mul_pwr:"mul (pwr x p) (pwr x q) = pwr x (p + q)" |
|
33 |
proof (induct p) |
|
34 |
case 0 |
|
35 |
then show ?case by (auto simp add: pwr_0 mul_1) |
|
36 |
next |
|
37 |
case Suc |
|
38 |
from this [symmetric] show ?case |
|
39 |
by (auto simp add: pwr_Suc mul_1 mul_a) |
|
40 |
qed |
|
41 |
||
42 |
lemma pwr_mul: "pwr (mul x y) q = mul (pwr x q) (pwr y q)" |
|
43 |
proof (induct q arbitrary: x y, auto simp add:pwr_0 pwr_Suc mul_1) |
|
44 |
fix q x y |
|
45 |
assume "\<And>x y. pwr (mul x y) q = mul (pwr x q) (pwr y q)" |
|
46 |
have "mul (mul x y) (mul (pwr x q) (pwr y q)) = mul x (mul y (mul (pwr x q) (pwr y q)))" |
|
47 |
by (simp add: mul_a) |
|
48 |
also have "\<dots> = (mul (mul y (mul (pwr y q) (pwr x q))) x)" by (simp add: mul_c) |
|
49 |
also have "\<dots> = (mul (mul y (pwr y q)) (mul (pwr x q) x))" by (simp add: mul_a) |
|
50 |
finally show "mul (mul x y) (mul (pwr x q) (pwr y q)) = |
|
51 |
mul (mul x (pwr x q)) (mul y (pwr y q))" by (simp add: mul_c) |
|
52 |
qed |
|
53 |
||
54 |
lemma pwr_pwr: "pwr (pwr x p) q = pwr x (p * q)" |
|
55 |
proof (induct p arbitrary: q) |
|
56 |
case 0 |
|
57 |
show ?case using pwr_Suc mul_1 pwr_0 by (induct q) auto |
|
58 |
next |
|
59 |
case Suc |
|
60 |
thus ?case by (auto simp add: mul_pwr [symmetric] pwr_mul pwr_Suc) |
|
61 |
qed |
|
62 |
||
63 |
||
64 |
subsubsection {* Declaring the abstract theory *} |
|
65 |
||
66 |
lemma semiring_ops: |
|
67 |
includes meta_term_syntax |
|
68 |
shows "TERM (add x y)" and "TERM (mul x y)" and "TERM (pwr x n)" |
|
69 |
and "TERM r0" and "TERM r1" |
|
70 |
by rule+ |
|
71 |
||
72 |
lemma semiring_rules: |
|
73 |
"add (mul a m) (mul b m) = mul (add a b) m" |
|
74 |
"add (mul a m) m = mul (add a r1) m" |
|
75 |
"add m (mul a m) = mul (add a r1) m" |
|
76 |
"add m m = mul (add r1 r1) m" |
|
77 |
"add r0 a = a" |
|
78 |
"add a r0 = a" |
|
79 |
"mul a b = mul b a" |
|
80 |
"mul (add a b) c = add (mul a c) (mul b c)" |
|
81 |
"mul r0 a = r0" |
|
82 |
"mul a r0 = r0" |
|
83 |
"mul r1 a = a" |
|
84 |
"mul a r1 = a" |
|
85 |
"mul (mul lx ly) (mul rx ry) = mul (mul lx rx) (mul ly ry)" |
|
86 |
"mul (mul lx ly) (mul rx ry) = mul lx (mul ly (mul rx ry))" |
|
87 |
"mul (mul lx ly) (mul rx ry) = mul rx (mul (mul lx ly) ry)" |
|
88 |
"mul (mul lx ly) rx = mul (mul lx rx) ly" |
|
89 |
"mul (mul lx ly) rx = mul lx (mul ly rx)" |
|
90 |
"mul lx (mul rx ry) = mul (mul lx rx) ry" |
|
91 |
"mul lx (mul rx ry) = mul rx (mul lx ry)" |
|
92 |
"add (add a b) (add c d) = add (add a c) (add b d)" |
|
93 |
"add (add a b) c = add a (add b c)" |
|
94 |
"add a (add c d) = add c (add a d)" |
|
95 |
"add (add a b) c = add (add a c) b" |
|
96 |
"add a c = add c a" |
|
97 |
"add a (add c d) = add (add a c) d" |
|
98 |
"mul (pwr x p) (pwr x q) = pwr x (p + q)" |
|
99 |
"mul x (pwr x q) = pwr x (Suc q)" |
|
100 |
"mul (pwr x q) x = pwr x (Suc q)" |
|
101 |
"mul x x = pwr x 2" |
|
102 |
"pwr (mul x y) q = mul (pwr x q) (pwr y q)" |
|
103 |
"pwr (pwr x p) q = pwr x (p * q)" |
|
104 |
"pwr x 0 = r1" |
|
105 |
"pwr x 1 = x" |
|
106 |
"mul x (add y z) = add (mul x y) (mul x z)" |
|
107 |
"pwr x (Suc q) = mul x (pwr x q)" |
|
108 |
"pwr x (2*n) = mul (pwr x n) (pwr x n)" |
|
109 |
"pwr x (Suc (2*n)) = mul x (mul (pwr x n) (pwr x n))" |
|
110 |
proof - |
|
111 |
show "add (mul a m) (mul b m) = mul (add a b) m" using mul_d mul_c by simp |
|
112 |
next show"add (mul a m) m = mul (add a r1) m" using mul_d mul_c mul_1 by simp |
|
113 |
next show "add m (mul a m) = mul (add a r1) m" using mul_c mul_d mul_1 add_c by simp |
|
114 |
next show "add m m = mul (add r1 r1) m" using mul_c mul_d mul_1 by simp |
|
115 |
next show "add r0 a = a" using add_0 by simp |
|
116 |
next show "add a r0 = a" using add_0 add_c by simp |
|
117 |
next show "mul a b = mul b a" using mul_c by simp |
|
118 |
next show "mul (add a b) c = add (mul a c) (mul b c)" using mul_c mul_d by simp |
|
119 |
next show "mul r0 a = r0" using mul_0 by simp |
|
120 |
next show "mul a r0 = r0" using mul_0 mul_c by simp |
|
121 |
next show "mul r1 a = a" using mul_1 by simp |
|
122 |
next show "mul a r1 = a" using mul_1 mul_c by simp |
|
123 |
next show "mul (mul lx ly) (mul rx ry) = mul (mul lx rx) (mul ly ry)" |
|
124 |
using mul_c mul_a by simp |
|
125 |
next show "mul (mul lx ly) (mul rx ry) = mul lx (mul ly (mul rx ry))" |
|
126 |
using mul_a by simp |
|
127 |
next |
|
128 |
have "mul (mul lx ly) (mul rx ry) = mul (mul rx ry) (mul lx ly)" by (rule mul_c) |
|
129 |
also have "\<dots> = mul rx (mul ry (mul lx ly))" using mul_a by simp |
|
130 |
finally |
|
131 |
show "mul (mul lx ly) (mul rx ry) = mul rx (mul (mul lx ly) ry)" |
|
132 |
using mul_c by simp |
|
133 |
next show "mul (mul lx ly) rx = mul (mul lx rx) ly" using mul_c mul_a by simp |
|
134 |
next |
|
135 |
show "mul (mul lx ly) rx = mul lx (mul ly rx)" by (simp add: mul_a) |
|
136 |
next show "mul lx (mul rx ry) = mul (mul lx rx) ry" by (simp add: mul_a ) |
|
137 |
next show "mul lx (mul rx ry) = mul rx (mul lx ry)" by (simp add: mul_a,simp add: mul_c) |
|
138 |
next show "add (add a b) (add c d) = add (add a c) (add b d)" |
|
139 |
using add_c add_a by simp |
|
140 |
next show "add (add a b) c = add a (add b c)" using add_a by simp |
|
141 |
next show "add a (add c d) = add c (add a d)" |
|
142 |
apply (simp add: add_a) by (simp only: add_c) |
|
143 |
next show "add (add a b) c = add (add a c) b" using add_a add_c by simp |
|
144 |
next show "add a c = add c a" by (rule add_c) |
|
145 |
next show "add a (add c d) = add (add a c) d" using add_a by simp |
|
146 |
next show "mul (pwr x p) (pwr x q) = pwr x (p + q)" by (rule mul_pwr) |
|
147 |
next show "mul x (pwr x q) = pwr x (Suc q)" using pwr_Suc by simp |
|
148 |
next show "mul (pwr x q) x = pwr x (Suc q)" using pwr_Suc mul_c by simp |
|
149 |
next show "mul x x = pwr x 2" by (simp add: nat_number pwr_Suc pwr_0 mul_1 mul_c) |
|
150 |
next show "pwr (mul x y) q = mul (pwr x q) (pwr y q)" by (rule pwr_mul) |
|
151 |
next show "pwr (pwr x p) q = pwr x (p * q)" by (rule pwr_pwr) |
|
152 |
next show "pwr x 0 = r1" using pwr_0 . |
|
153 |
next show "pwr x 1 = x" by (simp add: nat_number pwr_Suc pwr_0 mul_1 mul_c) |
|
154 |
next show "mul x (add y z) = add (mul x y) (mul x z)" using mul_d by simp |
|
155 |
next show "pwr x (Suc q) = mul x (pwr x q)" using pwr_Suc by simp |
|
156 |
next show "pwr x (2 * n) = mul (pwr x n) (pwr x n)" by (simp add: nat_number mul_pwr) |
|
157 |
next show "pwr x (Suc (2 * n)) = mul x (mul (pwr x n) (pwr x n))" |
|
158 |
by (simp add: nat_number pwr_Suc mul_pwr) |
|
159 |
qed |
|
160 |
||
161 |
||
162 |
lemma "axioms" [normalizer |
|
163 |
semiring ops: semiring_ops |
|
164 |
semiring rules: semiring_rules]: |
|
23389 | 165 |
"gb_semiring add mul pwr r0 r1" by fact |
23252 | 166 |
|
167 |
end |
|
168 |
||
23258
9062e98fdab1
renamed locale ring/semiring to gb_ring/gb_semiring to avoid clash with Ring_and_Field versions;
wenzelm
parents:
23252
diff
changeset
|
169 |
interpretation class_semiring: gb_semiring |
23252 | 170 |
["op +" "op *" "op ^" "0::'a::{comm_semiring_1, recpower}" "1"] |
23477
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents:
23458
diff
changeset
|
171 |
by unfold_locales (auto simp add: ring_simps power_Suc) |
23252 | 172 |
|
173 |
lemmas nat_arith = |
|
174 |
add_nat_number_of diff_nat_number_of mult_nat_number_of eq_nat_number_of less_nat_number_of |
|
175 |
||
176 |
lemma not_iszero_Numeral1: "\<not> iszero (Numeral1::'a::number_ring)" |
|
177 |
by (simp add: numeral_1_eq_1) |
|
178 |
lemmas comp_arith = Let_def arith_simps nat_arith rel_simps if_False |
|
179 |
if_True add_0 add_Suc add_number_of_left mult_number_of_left |
|
180 |
numeral_1_eq_1[symmetric] Suc_eq_add_numeral_1 |
|
181 |
numeral_0_eq_0[symmetric] numerals[symmetric] not_iszero_1 |
|
182 |
iszero_number_of_1 iszero_number_of_0 nonzero_number_of_Min |
|
183 |
iszero_number_of_Pls iszero_0 not_iszero_Numeral1 |
|
184 |
||
185 |
lemmas semiring_norm = comp_arith |
|
186 |
||
187 |
ML {* |
|
23573 | 188 |
local |
23252 | 189 |
|
23573 | 190 |
open Conv; |
191 |
||
192 |
fun numeral_is_const ct = |
|
193 |
can HOLogic.dest_number (Thm.term_of ct); |
|
23252 | 194 |
|
23573 | 195 |
fun int_of_rat x = |
196 |
(case Rat.quotient_of_rat x of (i, 1) => i |
|
197 |
| _ => error "int_of_rat: bad int"); |
|
23252 | 198 |
|
23573 | 199 |
val numeral_conv = |
200 |
Simplifier.rewrite (HOL_basic_ss addsimps @{thms semiring_norm}) then_conv |
|
201 |
Simplifier.rewrite (HOL_basic_ss addsimps |
|
202 |
(@{thms numeral_1_eq_1} @ @{thms numeral_0_eq_0} @ @{thms numerals(1-2)})); |
|
203 |
||
204 |
in |
|
205 |
||
206 |
fun normalizer_funs key = |
|
207 |
NormalizerData.funs key |
|
23252 | 208 |
{is_const = fn phi => numeral_is_const, |
209 |
dest_const = fn phi => fn ct => |
|
210 |
Rat.rat_of_int (snd |
|
211 |
(HOLogic.dest_number (Thm.term_of ct) |
|
212 |
handle TERM _ => error "ring_dest_const")), |
|
23573 | 213 |
mk_const = fn phi => fn cT => fn x => Numeral.mk_cnumber cT (int_of_rat x), |
23330
01c09922ce59
Conversion for computation on constants now depends on the context
chaieb
parents:
23327
diff
changeset
|
214 |
conv = fn phi => K numeral_conv} |
23573 | 215 |
|
216 |
end |
|
23252 | 217 |
*} |
218 |
||
23573 | 219 |
declaration {* normalizer_funs @{thm class_semiring.axioms} *} |
220 |
||
23252 | 221 |
|
23258
9062e98fdab1
renamed locale ring/semiring to gb_ring/gb_semiring to avoid clash with Ring_and_Field versions;
wenzelm
parents:
23252
diff
changeset
|
222 |
locale gb_ring = gb_semiring + |
23252 | 223 |
fixes sub :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" |
224 |
and neg :: "'a \<Rightarrow> 'a" |
|
225 |
assumes neg_mul: "neg x = mul (neg r1) x" |
|
226 |
and sub_add: "sub x y = add x (neg y)" |
|
227 |
begin |
|
228 |
||
229 |
lemma ring_ops: |
|
230 |
includes meta_term_syntax |
|
231 |
shows "TERM (sub x y)" and "TERM (neg x)" . |
|
232 |
||
233 |
lemmas ring_rules = neg_mul sub_add |
|
234 |
||
235 |
lemma "axioms" [normalizer |
|
236 |
semiring ops: semiring_ops |
|
237 |
semiring rules: semiring_rules |
|
238 |
ring ops: ring_ops |
|
239 |
ring rules: ring_rules]: |
|
23389 | 240 |
"gb_ring add mul pwr r0 r1 sub neg" by fact |
23252 | 241 |
|
242 |
end |
|
243 |
||
244 |
||
23258
9062e98fdab1
renamed locale ring/semiring to gb_ring/gb_semiring to avoid clash with Ring_and_Field versions;
wenzelm
parents:
23252
diff
changeset
|
245 |
interpretation class_ring: gb_ring ["op +" "op *" "op ^" |
23252 | 246 |
"0::'a::{comm_semiring_1,recpower,number_ring}" 1 "op -" "uminus"] |
247 |
by unfold_locales simp_all |
|
248 |
||
249 |
||
23573 | 250 |
declaration {* normalizer_funs @{thm class_ring.axioms} *} |
23252 | 251 |
|
252 |
use "Tools/Groebner_Basis/normalizer.ML" |
|
253 |
||
254 |
method_setup sring_norm = {* |
|
255 |
Method.ctxt_args (fn ctxt => Method.SIMPLE_METHOD' (Normalizer.semiring_normalize_tac ctxt)) |
|
23458 | 256 |
*} "semiring normalizer" |
23252 | 257 |
|
258 |
||
23327 | 259 |
locale gb_field = gb_ring + |
260 |
fixes divide :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" |
|
261 |
and inverse:: "'a \<Rightarrow> 'a" |
|
262 |
assumes divide: "divide x y = mul x (inverse y)" |
|
263 |
and inverse: "inverse x = divide r1 x" |
|
264 |
begin |
|
265 |
||
266 |
lemma "axioms" [normalizer |
|
267 |
semiring ops: semiring_ops |
|
268 |
semiring rules: semiring_rules |
|
269 |
ring ops: ring_ops |
|
270 |
ring rules: ring_rules]: |
|
23389 | 271 |
"gb_field add mul pwr r0 r1 sub neg divide inverse" by fact |
23327 | 272 |
|
273 |
end |
|
274 |
||
23458 | 275 |
|
23266 | 276 |
subsection {* Groebner Bases *} |
23252 | 277 |
|
23258
9062e98fdab1
renamed locale ring/semiring to gb_ring/gb_semiring to avoid clash with Ring_and_Field versions;
wenzelm
parents:
23252
diff
changeset
|
278 |
locale semiringb = gb_semiring + |
23252 | 279 |
assumes add_cancel: "add (x::'a) y = add x z \<longleftrightarrow> y = z" |
280 |
and add_mul_solve: "add (mul w y) (mul x z) = |
|
281 |
add (mul w z) (mul x y) \<longleftrightarrow> w = x \<or> y = z" |
|
282 |
begin |
|
283 |
||
284 |
lemma noteq_reduce: "a \<noteq> b \<and> c \<noteq> d \<longleftrightarrow> add (mul a c) (mul b d) \<noteq> add (mul a d) (mul b c)" |
|
285 |
proof- |
|
286 |
have "a \<noteq> b \<and> c \<noteq> d \<longleftrightarrow> \<not> (a = b \<or> c = d)" by simp |
|
287 |
also have "\<dots> \<longleftrightarrow> add (mul a c) (mul b d) \<noteq> add (mul a d) (mul b c)" |
|
288 |
using add_mul_solve by blast |
|
289 |
finally show "a \<noteq> b \<and> c \<noteq> d \<longleftrightarrow> add (mul a c) (mul b d) \<noteq> add (mul a d) (mul b c)" |
|
290 |
by simp |
|
291 |
qed |
|
292 |
||
293 |
lemma add_scale_eq_noteq: "\<lbrakk>r \<noteq> r0 ; (a = b) \<and> ~(c = d)\<rbrakk> |
|
294 |
\<Longrightarrow> add a (mul r c) \<noteq> add b (mul r d)" |
|
295 |
proof(clarify) |
|
296 |
assume nz: "r\<noteq> r0" and cnd: "c\<noteq>d" |
|
297 |
and eq: "add b (mul r c) = add b (mul r d)" |
|
298 |
hence "mul r c = mul r d" using cnd add_cancel by simp |
|
299 |
hence "add (mul r0 d) (mul r c) = add (mul r0 c) (mul r d)" |
|
300 |
using mul_0 add_cancel by simp |
|
301 |
thus "False" using add_mul_solve nz cnd by simp |
|
302 |
qed |
|
303 |
||
304 |
declare "axioms" [normalizer del] |
|
305 |
||
306 |
lemma "axioms" [normalizer |
|
307 |
semiring ops: semiring_ops |
|
308 |
semiring rules: semiring_rules |
|
309 |
idom rules: noteq_reduce add_scale_eq_noteq]: |
|
23389 | 310 |
"semiringb add mul pwr r0 r1" by fact |
23252 | 311 |
|
312 |
end |
|
313 |
||
23258
9062e98fdab1
renamed locale ring/semiring to gb_ring/gb_semiring to avoid clash with Ring_and_Field versions;
wenzelm
parents:
23252
diff
changeset
|
314 |
locale ringb = semiringb + gb_ring |
23252 | 315 |
begin |
316 |
||
317 |
declare "axioms" [normalizer del] |
|
318 |
||
319 |
lemma "axioms" [normalizer |
|
320 |
semiring ops: semiring_ops |
|
321 |
semiring rules: semiring_rules |
|
322 |
ring ops: ring_ops |
|
323 |
ring rules: ring_rules |
|
324 |
idom rules: noteq_reduce add_scale_eq_noteq]: |
|
23389 | 325 |
"ringb add mul pwr r0 r1 sub neg" by fact |
23252 | 326 |
|
327 |
end |
|
328 |
||
329 |
lemma no_zero_divirors_neq0: |
|
330 |
assumes az: "(a::'a::no_zero_divisors) \<noteq> 0" |
|
331 |
and ab: "a*b = 0" shows "b = 0" |
|
332 |
proof - |
|
333 |
{ assume bz: "b \<noteq> 0" |
|
334 |
from no_zero_divisors [OF az bz] ab have False by blast } |
|
335 |
thus "b = 0" by blast |
|
336 |
qed |
|
337 |
||
338 |
interpretation class_ringb: ringb |
|
339 |
["op +" "op *" "op ^" "0::'a::{idom,recpower,number_ring}" "1" "op -" "uminus"] |
|
23477
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents:
23458
diff
changeset
|
340 |
proof(unfold_locales, simp add: ring_simps power_Suc, auto) |
23252 | 341 |
fix w x y z ::"'a::{idom,recpower,number_ring}" |
342 |
assume p: "w * y + x * z = w * z + x * y" and ynz: "y \<noteq> z" |
|
343 |
hence ynz': "y - z \<noteq> 0" by simp |
|
344 |
from p have "w * y + x* z - w*z - x*y = 0" by simp |
|
23477
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents:
23458
diff
changeset
|
345 |
hence "w* (y - z) - x * (y - z) = 0" by (simp add: ring_simps) |
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents:
23458
diff
changeset
|
346 |
hence "(y - z) * (w - x) = 0" by (simp add: ring_simps) |
23252 | 347 |
with no_zero_divirors_neq0 [OF ynz'] |
348 |
have "w - x = 0" by blast |
|
349 |
thus "w = x" by simp |
|
350 |
qed |
|
351 |
||
352 |
||
23573 | 353 |
declaration {* normalizer_funs @{thm class_ringb.axioms} *} |
23252 | 354 |
|
355 |
interpretation natgb: semiringb |
|
356 |
["op +" "op *" "op ^" "0::nat" "1"] |
|
23477
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents:
23458
diff
changeset
|
357 |
proof (unfold_locales, simp add: ring_simps power_Suc) |
23252 | 358 |
fix w x y z ::"nat" |
359 |
{ assume p: "w * y + x * z = w * z + x * y" and ynz: "y \<noteq> z" |
|
360 |
hence "y < z \<or> y > z" by arith |
|
361 |
moreover { |
|
362 |
assume lt:"y <z" hence "\<exists>k. z = y + k \<and> k > 0" by (rule_tac x="z - y" in exI, auto) |
|
363 |
then obtain k where kp: "k>0" and yz:"z = y + k" by blast |
|
23477
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents:
23458
diff
changeset
|
364 |
from p have "(w * y + x *y) + x*k = (w * y + x*y) + w*k" by (simp add: yz ring_simps) |
23252 | 365 |
hence "x*k = w*k" by simp |
366 |
hence "w = x" using kp by (simp add: mult_cancel2) } |
|
367 |
moreover { |
|
368 |
assume lt: "y >z" hence "\<exists>k. y = z + k \<and> k>0" by (rule_tac x="y - z" in exI, auto) |
|
369 |
then obtain k where kp: "k>0" and yz:"y = z + k" by blast |
|
23477
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents:
23458
diff
changeset
|
370 |
from p have "(w * z + x *z) + w*k = (w * z + x*z) + x*k" by (simp add: yz ring_simps) |
23252 | 371 |
hence "w*k = x*k" by simp |
372 |
hence "w = x" using kp by (simp add: mult_cancel2)} |
|
373 |
ultimately have "w=x" by blast } |
|
374 |
thus "(w * y + x * z = w * z + x * y) = (w = x \<or> y = z)" by auto |
|
375 |
qed |
|
376 |
||
23573 | 377 |
declaration {* normalizer_funs @{thm natgb.axioms} *} |
23252 | 378 |
|
23327 | 379 |
locale fieldgb = ringb + gb_field |
380 |
begin |
|
381 |
||
382 |
declare "axioms" [normalizer del] |
|
383 |
||
384 |
lemma "axioms" [normalizer |
|
385 |
semiring ops: semiring_ops |
|
386 |
semiring rules: semiring_rules |
|
387 |
ring ops: ring_ops |
|
388 |
ring rules: ring_rules |
|
389 |
idom rules: noteq_reduce add_scale_eq_noteq]: |
|
390 |
"fieldgb add mul pwr r0 r1 sub neg divide inverse" by unfold_locales |
|
391 |
end |
|
392 |
||
393 |
||
23258
9062e98fdab1
renamed locale ring/semiring to gb_ring/gb_semiring to avoid clash with Ring_and_Field versions;
wenzelm
parents:
23252
diff
changeset
|
394 |
lemmas bool_simps = simp_thms(1-34) |
23252 | 395 |
lemma dnf: |
396 |
"(P & (Q | R)) = ((P&Q) | (P&R))" "((Q | R) & P) = ((Q&P) | (R&P))" |
|
397 |
"(P \<and> Q) = (Q \<and> P)" "(P \<or> Q) = (Q \<or> P)" |
|
398 |
by blast+ |
|
399 |
||
400 |
lemmas weak_dnf_simps = dnf bool_simps |
|
401 |
||
402 |
lemma nnf_simps: |
|
403 |
"(\<not>(P \<and> Q)) = (\<not>P \<or> \<not>Q)" "(\<not>(P \<or> Q)) = (\<not>P \<and> \<not>Q)" "(P \<longrightarrow> Q) = (\<not>P \<or> Q)" |
|
404 |
"(P = Q) = ((P \<and> Q) \<or> (\<not>P \<and> \<not> Q))" "(\<not> \<not>(P)) = P" |
|
405 |
by blast+ |
|
406 |
||
407 |
lemma PFalse: |
|
408 |
"P \<equiv> False \<Longrightarrow> \<not> P" |
|
409 |
"\<not> P \<Longrightarrow> (P \<equiv> False)" |
|
410 |
by auto |
|
411 |
||
412 |
use "Tools/Groebner_Basis/groebner.ML" |
|
413 |
||
23332
b91295432e6d
algebra_tac moved to file Tools/Groebner_Basis/groebner.ML; Method now takes theorems to be added or deleted from a simpset for simplificatio *before* the core method starts
chaieb
parents:
23330
diff
changeset
|
414 |
method_setup algebra = |
23458 | 415 |
{* |
23332
b91295432e6d
algebra_tac moved to file Tools/Groebner_Basis/groebner.ML; Method now takes theorems to be added or deleted from a simpset for simplificatio *before* the core method starts
chaieb
parents:
23330
diff
changeset
|
416 |
let |
b91295432e6d
algebra_tac moved to file Tools/Groebner_Basis/groebner.ML; Method now takes theorems to be added or deleted from a simpset for simplificatio *before* the core method starts
chaieb
parents:
23330
diff
changeset
|
417 |
fun keyword k = Scan.lift (Args.$$$ k -- Args.colon) >> K () |
b91295432e6d
algebra_tac moved to file Tools/Groebner_Basis/groebner.ML; Method now takes theorems to be added or deleted from a simpset for simplificatio *before* the core method starts
chaieb
parents:
23330
diff
changeset
|
418 |
val addN = "add" |
b91295432e6d
algebra_tac moved to file Tools/Groebner_Basis/groebner.ML; Method now takes theorems to be added or deleted from a simpset for simplificatio *before* the core method starts
chaieb
parents:
23330
diff
changeset
|
419 |
val delN = "del" |
b91295432e6d
algebra_tac moved to file Tools/Groebner_Basis/groebner.ML; Method now takes theorems to be added or deleted from a simpset for simplificatio *before* the core method starts
chaieb
parents:
23330
diff
changeset
|
420 |
val any_keyword = keyword addN || keyword delN |
b91295432e6d
algebra_tac moved to file Tools/Groebner_Basis/groebner.ML; Method now takes theorems to be added or deleted from a simpset for simplificatio *before* the core method starts
chaieb
parents:
23330
diff
changeset
|
421 |
val thms = Scan.repeat (Scan.unless any_keyword Attrib.multi_thm) >> flat; |
b91295432e6d
algebra_tac moved to file Tools/Groebner_Basis/groebner.ML; Method now takes theorems to be added or deleted from a simpset for simplificatio *before* the core method starts
chaieb
parents:
23330
diff
changeset
|
422 |
in |
b91295432e6d
algebra_tac moved to file Tools/Groebner_Basis/groebner.ML; Method now takes theorems to be added or deleted from a simpset for simplificatio *before* the core method starts
chaieb
parents:
23330
diff
changeset
|
423 |
fn src => Method.syntax |
b91295432e6d
algebra_tac moved to file Tools/Groebner_Basis/groebner.ML; Method now takes theorems to be added or deleted from a simpset for simplificatio *before* the core method starts
chaieb
parents:
23330
diff
changeset
|
424 |
((Scan.optional (keyword addN |-- thms) []) -- |
b91295432e6d
algebra_tac moved to file Tools/Groebner_Basis/groebner.ML; Method now takes theorems to be added or deleted from a simpset for simplificatio *before* the core method starts
chaieb
parents:
23330
diff
changeset
|
425 |
(Scan.optional (keyword delN |-- thms) [])) src |
b91295432e6d
algebra_tac moved to file Tools/Groebner_Basis/groebner.ML; Method now takes theorems to be added or deleted from a simpset for simplificatio *before* the core method starts
chaieb
parents:
23330
diff
changeset
|
426 |
#> (fn ((add_ths, del_ths), ctxt) => |
23573 | 427 |
Method.SIMPLE_METHOD' (Groebner.ring_tac add_ths del_ths ctxt)) |
23332
b91295432e6d
algebra_tac moved to file Tools/Groebner_Basis/groebner.ML; Method now takes theorems to be added or deleted from a simpset for simplificatio *before* the core method starts
chaieb
parents:
23330
diff
changeset
|
428 |
end |
23458 | 429 |
*} "solve polynomial equations over (semi)rings using Groebner bases" |
23252 | 430 |
|
431 |
end |