author | clasohm |
Fri, 24 Mar 1995 12:30:35 +0100 | |
changeset 972 | e61b058d58d2 |
parent 923 | ff1574a81019 |
child 1151 | c820b3cc3df0 |
permissions | -rw-r--r-- |
923 | 1 |
(* Title: HOL/Nat.thy |
2 |
ID: $Id$ |
|
3 |
Author: Tobias Nipkow, Cambridge University Computer Laboratory |
|
4 |
Copyright 1991 University of Cambridge |
|
5 |
||
6 |
Definition of types ind and nat. |
|
7 |
||
8 |
Type nat is defined as a set Nat over type ind. |
|
9 |
*) |
|
10 |
||
11 |
Nat = WF + |
|
12 |
||
13 |
(** type ind **) |
|
14 |
||
15 |
types |
|
16 |
ind |
|
17 |
||
18 |
arities |
|
19 |
ind :: term |
|
20 |
||
21 |
consts |
|
22 |
Zero_Rep :: "ind" |
|
23 |
Suc_Rep :: "ind => ind" |
|
24 |
||
25 |
rules |
|
26 |
(*the axiom of infinity in 2 parts*) |
|
27 |
inj_Suc_Rep "inj(Suc_Rep)" |
|
28 |
Suc_Rep_not_Zero_Rep "Suc_Rep(x) ~= Zero_Rep" |
|
29 |
||
30 |
||
31 |
||
32 |
(** type nat **) |
|
33 |
||
34 |
(* type definition *) |
|
35 |
||
36 |
subtype (Nat) |
|
37 |
nat = "lfp(%X. {Zero_Rep} Un (Suc_Rep``X))" (lfp_def) |
|
38 |
||
39 |
instance |
|
40 |
nat :: ord |
|
41 |
||
42 |
||
43 |
(* abstract constants and syntax *) |
|
44 |
||
45 |
consts |
|
46 |
"0" :: "nat" ("0") |
|
47 |
Suc :: "nat => nat" |
|
48 |
nat_case :: "['a, nat => 'a, nat] => 'a" |
|
49 |
pred_nat :: "(nat * nat) set" |
|
50 |
nat_rec :: "[nat, 'a, [nat, 'a] => 'a] => 'a" |
|
51 |
||
52 |
translations |
|
53 |
"case p of 0 => a | Suc(y) => b" == "nat_case a (%y.b) p" |
|
54 |
||
55 |
defs |
|
56 |
Zero_def "0 == Abs_Nat(Zero_Rep)" |
|
57 |
Suc_def "Suc == (%n. Abs_Nat(Suc_Rep(Rep_Nat(n))))" |
|
58 |
||
59 |
(*nat operations and recursion*) |
|
60 |
nat_case_def "nat_case a f n == @z. (n=0 --> z=a) \ |
|
61 |
\ & (!x. n=Suc(x) --> z=f(x))" |
|
972
e61b058d58d2
changed syntax of tuples from <..., ...> to (..., ...)
clasohm
parents:
923
diff
changeset
|
62 |
pred_nat_def "pred_nat == {p. ? n. p = (n, Suc(n))}" |
923 | 63 |
|
972
e61b058d58d2
changed syntax of tuples from <..., ...> to (..., ...)
clasohm
parents:
923
diff
changeset
|
64 |
less_def "m<n == (m,n):trancl(pred_nat)" |
923 | 65 |
|
66 |
le_def "m<=(n::nat) == ~(n<m)" |
|
67 |
||
68 |
nat_rec_def "nat_rec n c d == wfrec pred_nat n \ |
|
69 |
\ (nat_case (%g.c) (%m g.(d m (g m))))" |
|
70 |
end |