src/HOL/Algebra/poly/LongDiv.thy
author blanchet
Mon, 21 May 2012 10:39:31 +0200
changeset 47944 e6b51fab96f7
parent 42768 4db4a8b164c1
permissions -rw-r--r--
added helper -- cf. SET616^5
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
35849
b5522b51cb1e standard headers;
wenzelm
parents: 30968
diff changeset
     1
(*  Author: Clemens Ballarin, started 23 June 1999
b5522b51cb1e standard headers;
wenzelm
parents: 30968
diff changeset
     2
b5522b51cb1e standard headers;
wenzelm
parents: 30968
diff changeset
     3
Experimental theory: long division of polynomials.
7998
3d0c34795831 Algebra and Polynomial theories, by Clemens Ballarin
paulson
parents:
diff changeset
     4
*)
3d0c34795831 Algebra and Polynomial theories, by Clemens Ballarin
paulson
parents:
diff changeset
     5
35849
b5522b51cb1e standard headers;
wenzelm
parents: 30968
diff changeset
     6
theory LongDiv
b5522b51cb1e standard headers;
wenzelm
parents: 30968
diff changeset
     7
imports PolyHomo
b5522b51cb1e standard headers;
wenzelm
parents: 30968
diff changeset
     8
begin
7998
3d0c34795831 Algebra and Polynomial theories, by Clemens Ballarin
paulson
parents:
diff changeset
     9
21423
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    10
definition
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    11
  lcoeff :: "'a::ring up => 'a" where
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    12
  "lcoeff p = coeff p (deg p)"
7998
3d0c34795831 Algebra and Polynomial theories, by Clemens Ballarin
paulson
parents:
diff changeset
    13
21423
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    14
definition
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    15
  eucl_size :: "'a::zero up => nat" where
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    16
  "eucl_size p = (if p = 0 then 0 else deg p + 1)"
14723
b77ce15b625a moved first lemma in LongDiv.ML to LongDiv.thy
obua
parents: 13735
diff changeset
    17
b77ce15b625a moved first lemma in LongDiv.ML to LongDiv.thy
obua
parents: 13735
diff changeset
    18
lemma SUM_shrink_below_lemma:
b77ce15b625a moved first lemma in LongDiv.ML to LongDiv.thy
obua
parents: 13735
diff changeset
    19
  "!! f::(nat=>'a::ring). (ALL i. i < m --> f i = 0) --> 
b77ce15b625a moved first lemma in LongDiv.ML to LongDiv.thy
obua
parents: 13735
diff changeset
    20
  setsum (%i. f (i+m)) {..d} = setsum f {..m+d}"
b77ce15b625a moved first lemma in LongDiv.ML to LongDiv.thy
obua
parents: 13735
diff changeset
    21
  apply (induct_tac d)
15481
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 14738
diff changeset
    22
   apply (induct_tac m)
21423
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    23
    apply simp
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    24
   apply force
22384
33a46e6c7f04 prefix of class interpretation not mandatory any longer
haftmann
parents: 21423
diff changeset
    25
  apply (simp add: add_commute [of m]) 
21423
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    26
  done
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    27
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    28
lemma SUM_extend_below: 
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    29
  "!! f::(nat=>'a::ring).  
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    30
     [| m <= n; !!i. i < m ==> f i = 0; P (setsum (%i. f (i+m)) {..n-m}) |]  
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    31
     ==> P (setsum f {..n})"
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    32
  by (simp add: SUM_shrink_below_lemma add_diff_inverse leD)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    33
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    34
lemma up_repr2D: 
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    35
  "!! p::'a::ring up.  
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    36
   [| deg p <= n; P (setsum (%i. monom (coeff p i) i) {..n}) |]  
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    37
     ==> P p"
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    38
  by (simp add: up_repr_le)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    39
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    40
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    41
(* Start of LongDiv *)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    42
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    43
lemma deg_lcoeff_cancel: 
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    44
  "!!p::('a::ring up).  
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    45
     [| deg p <= deg r; deg q <= deg r;  
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    46
        coeff p (deg r) = - (coeff q (deg r)); deg r ~= 0 |] ==>  
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    47
     deg (p + q) < deg r"
24742
73b8b42a36b6 removal of some "ref"s from res_axioms.ML; a side-effect is that the ordering
paulson
parents: 22384
diff changeset
    48
  apply (rule le_less_trans [of _ "deg r - 1"])
21423
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    49
   prefer 2
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    50
   apply arith
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    51
  apply (rule deg_aboveI)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    52
  apply (case_tac "deg r = m")
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    53
   apply clarify
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    54
   apply simp
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    55
  (* case "deg q ~= m" *)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    56
   apply (subgoal_tac "deg p < m & deg q < m")
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    57
    apply (simp (no_asm_simp) add: deg_aboveD)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    58
  apply arith
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    59
  done
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    60
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    61
lemma deg_lcoeff_cancel2: 
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    62
  "!!p::('a::ring up).  
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    63
     [| deg p <= deg r; deg q <= deg r;  
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    64
        p ~= -q; coeff p (deg r) = - (coeff q (deg r)) |] ==>  
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    65
     deg (p + q) < deg r"
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    66
  apply (rule deg_lcoeff_cancel)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    67
     apply assumption+
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    68
  apply (rule classical)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    69
  apply clarify
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    70
  apply (erule notE)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    71
  apply (rule_tac p = p in up_repr2D, assumption)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    72
  apply (rule_tac p = q in up_repr2D, assumption)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    73
  apply (rotate_tac -1)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    74
  apply (simp add: smult_l_minus)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    75
  done
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    76
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    77
lemma long_div_eucl_size: 
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    78
  "!!g::('a::ring up). g ~= 0 ==>  
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    79
     Ex (% (q, r, k).  
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    80
       (lcoeff g)^k *s f = q * g + r & (eucl_size r < eucl_size g))"
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    81
  apply (rule_tac P = "%f. Ex (% (q, r, k) . (lcoeff g) ^k *s f = q * g + r & (eucl_size r < eucl_size g))" in wf_induct)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    82
  (* TO DO: replace by measure_induct *)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    83
  apply (rule_tac f = eucl_size in wf_measure)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    84
  apply (case_tac "eucl_size x < eucl_size g")
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    85
   apply (rule_tac x = "(0, x, 0)" in exI)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    86
   apply (simp (no_asm_simp))
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    87
  (* case "eucl_size x >= eucl_size g" *)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    88
  apply (drule_tac x = "lcoeff g *s x - (monom (lcoeff x) (deg x - deg g)) * g" in spec)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    89
  apply (erule impE)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    90
   apply (simp (no_asm_use) add: inv_image_def measure_def lcoeff_def)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    91
   apply (case_tac "x = 0")
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    92
    apply (rotate_tac -1)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    93
    apply (simp add: eucl_size_def)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    94
    (* case "x ~= 0 *)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    95
    apply (rotate_tac -1)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    96
   apply (simp add: eucl_size_def)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    97
   apply (rule impI)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    98
   apply (rule deg_lcoeff_cancel2)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
    99
  (* replace by linear arithmetic??? *)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   100
      apply (rule_tac [2] le_trans)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   101
       apply (rule_tac [2] deg_smult_ring)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   102
      prefer 2
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   103
      apply simp
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   104
     apply (simp (no_asm))
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   105
     apply (rule le_trans)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   106
      apply (rule deg_mult_ring)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   107
     apply (rule le_trans)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   108
(**)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   109
      apply (rule add_le_mono)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   110
       apply (rule le_refl)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   111
    (* term order forces to use this instead of add_le_mono1 *)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   112
      apply (rule deg_monom_ring)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   113
     apply (simp (no_asm_simp))
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   114
    apply force
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   115
   apply (simp (no_asm))
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   116
(**)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   117
   (* This change is probably caused by application of commutativity *)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   118
   apply (rule_tac m = "deg g" and n = "deg x" in SUM_extend)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   119
     apply (simp (no_asm))
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   120
    apply (simp (no_asm_simp))
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   121
    apply arith
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   122
   apply (rule_tac m = "deg g" and n = "deg g" in SUM_extend_below)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   123
     apply (rule le_refl)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   124
    apply (simp (no_asm_simp))
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   125
    apply arith
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   126
   apply (simp (no_asm))
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   127
(**)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   128
(* end of subproof deg f1 < deg f *)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   129
  apply (erule exE)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   130
  apply (rule_tac x = "((% (q,r,k) . (monom (lcoeff g ^ k * lcoeff x) (deg x - deg g) + q)) xa, (% (q,r,k) . r) xa, (% (q,r,k) . Suc k) xa) " in exI)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   131
  apply clarify
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   132
  apply (drule sym)
42768
4db4a8b164c1 modernized simproc_setup;
wenzelm
parents: 39159
diff changeset
   133
  using [[simproc del: ring]]
4db4a8b164c1 modernized simproc_setup;
wenzelm
parents: 39159
diff changeset
   134
  apply (simp (no_asm_use) add: l_distr a_assoc)
4db4a8b164c1 modernized simproc_setup;
wenzelm
parents: 39159
diff changeset
   135
  apply (simp (no_asm_simp))
4db4a8b164c1 modernized simproc_setup;
wenzelm
parents: 39159
diff changeset
   136
  apply (simp (no_asm_use) add: minus_def smult_r_distr smult_r_minus
4db4a8b164c1 modernized simproc_setup;
wenzelm
parents: 39159
diff changeset
   137
    monom_mult_smult smult_assoc2)
4db4a8b164c1 modernized simproc_setup;
wenzelm
parents: 39159
diff changeset
   138
  using [[simproc ring]]
30968
10fef94f40fc adaptions due to rearrangment of power operation
haftmann
parents: 27214
diff changeset
   139
  apply (simp add: smult_assoc1 [symmetric])
21423
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   140
  done
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   141
42768
4db4a8b164c1 modernized simproc_setup;
wenzelm
parents: 39159
diff changeset
   142
lemma long_div_ring_aux:
4db4a8b164c1 modernized simproc_setup;
wenzelm
parents: 39159
diff changeset
   143
  "(g :: 'a::ring up) ~= 0 ==>
4db4a8b164c1 modernized simproc_setup;
wenzelm
parents: 39159
diff changeset
   144
    Ex (\<lambda>(q, r, k). lcoeff g ^ k *s f = q * g + r \<and>
4db4a8b164c1 modernized simproc_setup;
wenzelm
parents: 39159
diff changeset
   145
      (if r = 0 then 0 else deg r + 1) < (if g = 0 then 0 else deg g + 1))"
4db4a8b164c1 modernized simproc_setup;
wenzelm
parents: 39159
diff changeset
   146
proof -
4db4a8b164c1 modernized simproc_setup;
wenzelm
parents: 39159
diff changeset
   147
  note [[simproc del: ring]]
4db4a8b164c1 modernized simproc_setup;
wenzelm
parents: 39159
diff changeset
   148
  assume "g ~= 0"
4db4a8b164c1 modernized simproc_setup;
wenzelm
parents: 39159
diff changeset
   149
  then show ?thesis
4db4a8b164c1 modernized simproc_setup;
wenzelm
parents: 39159
diff changeset
   150
    by (rule long_div_eucl_size [simplified eucl_size_def])
4db4a8b164c1 modernized simproc_setup;
wenzelm
parents: 39159
diff changeset
   151
qed
21423
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   152
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   153
lemma long_div_ring: 
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   154
  "!!g::('a::ring up). g ~= 0 ==>  
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   155
     Ex (% (q, r, k).  
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   156
       (lcoeff g)^k *s f = q * g + r & (r = 0 | deg r < deg g))"
27214
0978b8e32fd0 tuned proof;
wenzelm
parents: 26342
diff changeset
   157
  apply (frule_tac f = f in long_div_ring_aux)
42768
4db4a8b164c1 modernized simproc_setup;
wenzelm
parents: 39159
diff changeset
   158
  using [[simproc del: ring]]
4db4a8b164c1 modernized simproc_setup;
wenzelm
parents: 39159
diff changeset
   159
  apply auto
21423
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   160
  apply (case_tac "aa = 0")
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   161
   apply blast
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   162
  (* case "aa ~= 0 *)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   163
  apply (rotate_tac -1)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   164
  apply auto
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   165
  done
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   166
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   167
(* Next one fails *)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   168
lemma long_div_unit: 
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   169
  "!!g::('a::ring up). [| g ~= 0; (lcoeff g) dvd 1 |] ==>  
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   170
     Ex (% (q, r). f = q * g + r & (r = 0 | deg r < deg g))"
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   171
  apply (frule_tac f = "f" in long_div_ring)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   172
  apply (erule exE)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   173
  apply (rule_tac x = "((% (q,r,k) . (inverse (lcoeff g ^k) *s q)) x, (% (q,r,k) . inverse (lcoeff g ^k) *s r) x) " in exI)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   174
  apply clarify
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   175
  apply (rule conjI)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   176
   apply (drule sym)
42768
4db4a8b164c1 modernized simproc_setup;
wenzelm
parents: 39159
diff changeset
   177
   using [[simproc del: ring]]
4db4a8b164c1 modernized simproc_setup;
wenzelm
parents: 39159
diff changeset
   178
   apply (simp (no_asm_simp) add: smult_r_distr [symmetric] smult_assoc2)
4db4a8b164c1 modernized simproc_setup;
wenzelm
parents: 39159
diff changeset
   179
   using [[simproc ring]]
21423
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   180
   apply (simp (no_asm_simp) add: l_inverse_ring unit_power smult_assoc1 [symmetric])
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   181
  (* degree property *)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   182
   apply (erule disjE)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   183
    apply (simp (no_asm_simp))
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   184
  apply (rule disjI2)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   185
  apply (rule le_less_trans)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   186
   apply (rule deg_smult_ring)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   187
  apply (simp (no_asm_simp))
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   188
  done
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   189
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   190
lemma long_div_theorem: 
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   191
  "!!g::('a::field up). g ~= 0 ==>  
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   192
     Ex (% (q, r). f = q * g + r & (r = 0 | deg r < deg g))"
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   193
  apply (rule long_div_unit)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   194
   apply assumption
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   195
  apply (simp (no_asm_simp) add: lcoeff_def lcoeff_nonzero field_ax)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   196
  done
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   197
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   198
lemma uminus_zero: "- (0::'a::ring) = 0"
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   199
  by simp
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   200
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   201
lemma diff_zero_imp_eq: "!!a::'a::ring. a - b = 0 ==> a = b"
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   202
  apply (rule_tac s = "a - (a - b) " in trans)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   203
   apply simp
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   204
  apply (simp (no_asm))
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   205
  done
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   206
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   207
lemma eq_imp_diff_zero: "!!a::'a::ring. a = b ==> a + (-b) = 0"
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   208
  by simp
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   209
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   210
lemma long_div_quo_unique: 
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   211
  "!!g::('a::field up). [| g ~= 0;  
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   212
     f = q1 * g + r1; (r1 = 0 | deg r1 < deg g);  
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   213
     f = q2 * g + r2; (r2 = 0 | deg r2 < deg g) |] ==> q1 = q2"
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   214
  apply (subgoal_tac "(q1 - q2) * g = r2 - r1") (* 1 *)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   215
   apply (erule_tac V = "f = ?x" in thin_rl)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   216
  apply (erule_tac V = "f = ?x" in thin_rl)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   217
  apply (rule diff_zero_imp_eq)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   218
  apply (rule classical)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   219
  apply (erule disjE)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   220
  (* r1 = 0 *)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   221
    apply (erule disjE)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   222
  (* r2 = 0 *)
42768
4db4a8b164c1 modernized simproc_setup;
wenzelm
parents: 39159
diff changeset
   223
     using [[simproc del: ring]]
4db4a8b164c1 modernized simproc_setup;
wenzelm
parents: 39159
diff changeset
   224
     apply (simp add: integral_iff minus_def l_zero uminus_zero)
21423
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   225
  (* r2 ~= 0 *)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   226
    apply (drule_tac f = "deg" and y = "r2 - r1" in arg_cong)
42768
4db4a8b164c1 modernized simproc_setup;
wenzelm
parents: 39159
diff changeset
   227
    apply (simp add: minus_def l_zero uminus_zero)
21423
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   228
  (* r1 ~=0 *)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   229
   apply (erule disjE)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   230
  (* r2 = 0 *)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   231
    apply (drule_tac f = "deg" and y = "r2 - r1" in arg_cong)
42768
4db4a8b164c1 modernized simproc_setup;
wenzelm
parents: 39159
diff changeset
   232
    apply (simp add: minus_def l_zero uminus_zero)
21423
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   233
  (* r2 ~= 0 *)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   234
   apply (drule_tac f = "deg" and y = "r2 - r1" in arg_cong)
42768
4db4a8b164c1 modernized simproc_setup;
wenzelm
parents: 39159
diff changeset
   235
   apply (simp add: minus_def)
21423
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   236
   apply (drule order_eq_refl [THEN add_leD2])
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   237
   apply (drule leD)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   238
   apply (erule notE, rule deg_add [THEN le_less_trans])
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   239
   apply (simp (no_asm_simp))
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   240
  (* proof of 1 *)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   241
   apply (rule diff_zero_imp_eq)
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   242
  apply hypsubst
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   243
  apply (drule_tac a = "?x+?y" in eq_imp_diff_zero)
42768
4db4a8b164c1 modernized simproc_setup;
wenzelm
parents: 39159
diff changeset
   244
  using [[simproc ring]]
21423
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   245
  apply simp
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   246
  done
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   247
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   248
lemma long_div_rem_unique: 
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   249
  "!!g::('a::field up). [| g ~= 0;  
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   250
     f = q1 * g + r1; (r1 = 0 | deg r1 < deg g);  
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   251
     f = q2 * g + r2; (r2 = 0 | deg r2 < deg g) |] ==> r1 = r2"
6cdd0589aa73 HOL-Algebra: converted legacy ML scripts;
wenzelm
parents: 17274
diff changeset
   252
  apply (subgoal_tac "q1 = q2")
24742
73b8b42a36b6 removal of some "ref"s from res_axioms.ML; a side-effect is that the ordering
paulson
parents: 22384
diff changeset
   253
   apply (metis a_comm a_lcancel m_comm)
73b8b42a36b6 removal of some "ref"s from res_axioms.ML; a side-effect is that the ordering
paulson
parents: 22384
diff changeset
   254
  apply (metis a_comm l_zero long_div_quo_unique m_comm conc)
14723
b77ce15b625a moved first lemma in LongDiv.ML to LongDiv.thy
obua
parents: 13735
diff changeset
   255
  done
7998
3d0c34795831 Algebra and Polynomial theories, by Clemens Ballarin
paulson
parents:
diff changeset
   256
3d0c34795831 Algebra and Polynomial theories, by Clemens Ballarin
paulson
parents:
diff changeset
   257
end