| author | wenzelm | 
| Tue, 16 Oct 2007 19:45:56 +0200 | |
| changeset 25059 | e6e0ee56a672 | 
| parent 22277 | b89dc456dbc6 | 
| child 26636 | 65343a5ac627 | 
| permissions | -rw-r--r-- | 
| 13404 | 1 | (* Title: HOL/Tools/rewrite_hol_proof.ML | 
| 2 | ID: $Id$ | |
| 3 | Author: Stefan Berghofer, TU Muenchen | |
| 4 | ||
| 5 | Rewrite rules for HOL proofs | |
| 6 | *) | |
| 7 | ||
| 8 | signature REWRITE_HOL_PROOF = | |
| 9 | sig | |
| 10 | val rews: (Proofterm.proof * Proofterm.proof) list | |
| 11 | val elim_cong: typ list -> Proofterm.proof -> Proofterm.proof option | |
| 12 | end; | |
| 13 | ||
| 14 | structure RewriteHOLProof : REWRITE_HOL_PROOF = | |
| 15 | struct | |
| 16 | ||
| 17 | open Proofterm; | |
| 18 | ||
| 19 | val rews = map (pairself (ProofSyntax.proof_of_term (the_context ()) Symtab.empty true) o | |
| 20 | Logic.dest_equals o Logic.varify o ProofSyntax.read_term (the_context ()) propT) | |
| 21 | ||
| 22 | (** eliminate meta-equality rules **) | |
| 23 | ||
| 24 | ["(equal_elim % x1 % x2 %% \ | |
| 25 |  \    (combination % TYPE('T1) % TYPE('T2) % Trueprop % x3 % A % B %%  \
 | |
| 26 |  \      (axm.reflexive % TYPE('T3) % x4) %% prf1) %% prf2) ==  \
 | |
| 27 | \ (iffD1 % A % B %% \ | |
| 28 | \ (meta_eq_to_obj_eq % TYPE(bool) % A % B %% prf1) %% prf2)", | |
| 29 | ||
| 30 |    "(equal_elim % x1 % x2 %% (axm.symmetric % TYPE('T1) % x3 % x4 %%  \
 | |
| 31 |  \    (combination % TYPE('T2) % TYPE('T3) % Trueprop % x5 % A % B %%  \
 | |
| 32 |  \      (axm.reflexive % TYPE('T4) % x6) %% prf1)) %% prf2) ==  \
 | |
| 33 | \ (iffD2 % A % B %% \ | |
| 34 | \ (meta_eq_to_obj_eq % TYPE(bool) % A % B %% prf1) %% prf2)", | |
| 35 | ||
| 36 |    "(meta_eq_to_obj_eq % TYPE('U) % x1 % x2 %%  \
 | |
| 37 |  \    (combination % TYPE('U) % TYPE('T) % f % g % x % y %% prf1 %% prf2)) ==  \
 | |
| 38 |  \  (cong % TYPE('U) % TYPE('T) % f % g % x % y %%  \
 | |
| 39 |  \    (meta_eq_to_obj_eq % TYPE('T => 'U) % f % g %% prf1) %%  \
 | |
| 40 |  \    (meta_eq_to_obj_eq % TYPE('T) % x % y %% prf2))",
 | |
| 41 | ||
| 42 |    "(meta_eq_to_obj_eq % TYPE('T) % x1 % x2 %%  \
 | |
| 43 |  \    (axm.transitive % TYPE('T) % x % y % z %% prf1 %% prf2)) ==  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 44 |  \  (HOL.trans % TYPE('T) % x % y % z %%  \
 | 
| 13404 | 45 |  \    (meta_eq_to_obj_eq % TYPE('T) % x % y %% prf1) %%  \
 | 
| 46 |  \    (meta_eq_to_obj_eq % TYPE('T) % y % z %% prf2))",
 | |
| 47 | ||
| 48 |    "(meta_eq_to_obj_eq % TYPE('T) % x % x %% (axm.reflexive % TYPE('T) % x)) ==  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 49 |  \  (HOL.refl % TYPE('T) % x)",
 | 
| 13404 | 50 | |
| 51 |    "(meta_eq_to_obj_eq % TYPE('T) % x % y %%  \
 | |
| 52 |  \    (axm.symmetric % TYPE('T) % x % y %% prf)) ==  \
 | |
| 53 |  \  (sym % TYPE('T) % x % y %% (meta_eq_to_obj_eq % TYPE('T) % x % y %% prf))",
 | |
| 54 | ||
| 55 |    "(meta_eq_to_obj_eq % TYPE('T => 'U) % x1 % x2 %%  \
 | |
| 56 |  \    (abstract_rule % TYPE('U) % TYPE('T) % f % g %% prf)) ==  \
 | |
| 57 |  \  (ext % TYPE('U) % TYPE('T) % f % g %%  \
 | |
| 58 |  \    (Lam (x::'T). meta_eq_to_obj_eq % TYPE('U) % f x % g x %% (prf % x)))",
 | |
| 59 | ||
| 60 |    "(meta_eq_to_obj_eq % TYPE('T) % x % y %%  \
 | |
| 61 |  \    (eq_reflection % TYPE('T) % x % y %% prf)) == prf",
 | |
| 62 | ||
| 63 |    "(meta_eq_to_obj_eq % TYPE('T1) % x1 % x2 %% (equal_elim % x3 % x4 %%  \
 | |
| 64 |  \    (combination % TYPE(prop) % TYPE('T) % x7 % x8 % C % D %%  \
 | |
| 65 |  \      (combination % TYPE('T3) % TYPE('T) % op == % op == % A % B %%  \
 | |
| 66 |  \        (axm.reflexive % TYPE('T4) % op ==) %% prf1) %% prf2) %% prf3)) ==  \
 | |
| 67 | \ (iffD1 % A = C % B = D %% \ | |
| 68 |  \    (cong % TYPE(bool) % TYPE('T::type) % op = A % op = B % C % D %%  \
 | |
| 69 |  \      (cong % TYPE('T=>bool) % TYPE('T) %  \
 | |
| 70 | \ (op = :: 'T=>'T=>bool) % (op = :: 'T=>'T=>bool) % A % B %% \ | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 71 |  \        (HOL.refl % TYPE('T=>'T=>bool) % (op = :: 'T=>'T=>bool)) %%  \
 | 
| 13404 | 72 |  \        (meta_eq_to_obj_eq % TYPE('T) % A % B %% prf1)) %%  \
 | 
| 73 |  \      (meta_eq_to_obj_eq % TYPE('T) % C % D %% prf2)) %%  \
 | |
| 74 |  \    (meta_eq_to_obj_eq % TYPE('T) % C % D %% prf3))",
 | |
| 75 | ||
| 76 |    "(meta_eq_to_obj_eq % TYPE('T1) % x1 % x2 %% (equal_elim % x3 % x4 %%  \
 | |
| 77 |  \    (axm.symmetric % TYPE('T2) % x5 % x6 %%  \
 | |
| 78 |  \      (combination % TYPE(prop) % TYPE('T) % x7 % x8 % C % D %%  \
 | |
| 79 |  \        (combination % TYPE('T3) % TYPE('T) % op == % op == % A % B %%  \
 | |
| 80 |  \          (axm.reflexive % TYPE('T4) % op ==) %% prf1) %% prf2)) %% prf3)) ==  \
 | |
| 81 | \ (iffD2 % A = C % B = D %% \ | |
| 82 |  \    (cong % TYPE(bool) % TYPE('T::type) % op = A % op = B % C % D %%  \
 | |
| 83 |  \      (cong % TYPE('T=>bool) % TYPE('T) %  \
 | |
| 84 | \ (op = :: 'T=>'T=>bool) % (op = :: 'T=>'T=>bool) % A % B %% \ | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 85 |  \        (HOL.refl % TYPE('T=>'T=>bool) % (op = :: 'T=>'T=>bool)) %%  \
 | 
| 13404 | 86 |  \        (meta_eq_to_obj_eq % TYPE('T) % A % B %% prf1)) %%  \
 | 
| 87 |  \      (meta_eq_to_obj_eq % TYPE('T) % C % D %% prf2)) %%  \
 | |
| 88 |  \    (meta_eq_to_obj_eq % TYPE('T) % C % D %% prf3))",
 | |
| 89 | ||
| 90 | (** rewriting on bool: insert proper congruence rules for logical connectives **) | |
| 91 | ||
| 92 | (* All *) | |
| 93 | ||
| 94 |    "(iffD1 % All P % All Q %% (cong % TYPE('T1) % TYPE('T2) % All % All % P % Q %%  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 95 |  \    (HOL.refl % TYPE('T3) % x1) %% (ext % TYPE(bool) % TYPE('a) % x2 % x3 %% prf)) %% prf') ==  \
 | 
| 13404 | 96 |  \  (allI % TYPE('a) % Q %%  \
 | 
| 97 | \ (Lam x. \ | |
| 98 | \ iffD1 % P x % Q x %% (prf % x) %% \ | |
| 99 |  \         (spec % TYPE('a) % P % x %% prf')))",
 | |
| 100 | ||
| 101 |    "(iffD2 % All P % All Q %% (cong % TYPE('T1) % TYPE('T2) % All % All % P % Q %%  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 102 |  \    (HOL.refl % TYPE('T3) % x1) %% (ext % TYPE(bool) % TYPE('a) % x2 % x3 %% prf)) %% prf') ==  \
 | 
| 13404 | 103 |  \  (allI % TYPE('a) % P %%  \
 | 
| 104 | \ (Lam x. \ | |
| 105 | \ iffD2 % P x % Q x %% (prf % x) %% \ | |
| 19798 | 106 |  \         (spec % TYPE('a) % Q % x %% prf')))",
 | 
| 13404 | 107 | |
| 108 | (* Ex *) | |
| 109 | ||
| 110 |    "(iffD1 % Ex P % Ex Q %% (cong % TYPE('T1) % TYPE('T2) % Ex % Ex % P % Q %%  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 111 |  \    (HOL.refl % TYPE('T3) % x1) %% (ext % TYPE(bool) % TYPE('a) % x2 % x3 %% prf)) %% prf') ==  \
 | 
| 13404 | 112 |  \  (exE % TYPE('a) % P % EX x. Q x %% prf' %%  \
 | 
| 113 | \ (Lam x H : P x. \ | |
| 114 |  \        exI % TYPE('a) % Q % x %%  \
 | |
| 115 | \ (iffD1 % P x % Q x %% (prf % x) %% H)))", | |
| 116 | ||
| 117 |    "(iffD2 % Ex P % Ex Q %% (cong % TYPE('T1) % TYPE('T2) % Ex % Ex % P % Q %%  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 118 |  \    (HOL.refl % TYPE('T3) % x1) %% (ext % TYPE(bool) % TYPE('a) % x2 % x3 %% prf)) %% prf') ==  \
 | 
| 13404 | 119 |  \  (exE % TYPE('a) % Q % EX x. P x %% prf' %%  \
 | 
| 120 | \ (Lam x H : Q x. \ | |
| 121 |  \        exI % TYPE('a) % P % x %%  \
 | |
| 122 | \ (iffD2 % P x % Q x %% (prf % x) %% H)))", | |
| 123 | ||
| 124 | (* & *) | |
| 125 | ||
| 126 |    "(iffD1 % A & C % B & D %% (cong % TYPE('T1) % TYPE('T2) % x1 % x2 % C % D %%  \
 | |
| 127 |  \    (cong % TYPE('T3) % TYPE('T4) % op & % op & % A % B %%  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 128 |  \      (HOL.refl % TYPE('T5) % op &) %% prf1) %% prf2) %% prf3) ==  \
 | 
| 13404 | 129 | \ (conjI % B % D %% \ | 
| 130 | \ (iffD1 % A % B %% prf1 %% (conjunct1 % A % C %% prf3)) %% \ | |
| 131 | \ (iffD1 % C % D %% prf2 %% (conjunct2 % A % C %% prf3)))", | |
| 132 | ||
| 133 |    "(iffD2 % A & C % B & D %% (cong % TYPE('T1) % TYPE('T2) % x1 % x2 % C % D %%  \
 | |
| 134 |  \    (cong % TYPE('T3) % TYPE('T4) % op & % op & % A % B %%  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 135 |  \      (HOL.refl % TYPE('T5) % op &) %% prf1) %% prf2) %% prf3) ==  \
 | 
| 13404 | 136 | \ (conjI % A % C %% \ | 
| 137 | \ (iffD2 % A % B %% prf1 %% (conjunct1 % B % D %% prf3)) %% \ | |
| 138 | \ (iffD2 % C % D %% prf2 %% (conjunct2 % B % D %% prf3)))", | |
| 139 | ||
| 13602 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 140 | "(cong % TYPE(bool) % TYPE(bool) % op & A % op & A % B % C %% \ | 
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 141 | \ (HOL.refl % TYPE(bool=>bool) % op & A)) == \ | 
| 13602 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 142 | \ (cong % TYPE(bool) % TYPE(bool) % op & A % op & A % B % C %% \ | 
| 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 143 | \ (cong % TYPE(bool=>bool) % TYPE(bool) % \ | 
| 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 144 | \ (op & :: bool=>bool=>bool) % (op & :: bool=>bool=>bool) % A % A %% \ | 
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 145 | \ (HOL.refl % TYPE(bool=>bool=>bool) % (op & :: bool=>bool=>bool)) %% \ | 
| 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 146 | \ (HOL.refl % TYPE(bool) % A)))", | 
| 13602 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 147 | |
| 13404 | 148 | (* | *) | 
| 149 | ||
| 150 |    "(iffD1 % A | C % B | D %% (cong % TYPE('T1) % TYPE('T2) % x1 % x2 % C % D %%  \
 | |
| 151 |  \    (cong % TYPE('T3) % TYPE('T4) % op | % op | % A % B %%  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 152 |  \      (HOL.refl % TYPE('T5) % op | ) %% prf1) %% prf2) %% prf3) ==  \
 | 
| 13404 | 153 | \ (disjE % A % C % B | D %% prf3 %% \ | 
| 154 | \ (Lam H : A. disjI1 % B % D %% (iffD1 % A % B %% prf1 %% H)) %% \ | |
| 155 | \ (Lam H : C. disjI2 % D % B %% (iffD1 % C % D %% prf2 %% H)))", | |
| 156 | ||
| 157 |    "(iffD2 % A | C % B | D %% (cong % TYPE('T1) % TYPE('T2) % x1 % x2 % C % D %%  \
 | |
| 158 |  \    (cong % TYPE('T3) % TYPE('T4) % op | % op | % A % B %%  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 159 |  \      (HOL.refl % TYPE('T5) % op | ) %% prf1) %% prf2) %% prf3) ==  \
 | 
| 13404 | 160 | \ (disjE % B % D % A | C %% prf3 %% \ | 
| 161 | \ (Lam H : B. disjI1 % A % C %% (iffD2 % A % B %% prf1 %% H)) %% \ | |
| 162 | \ (Lam H : D. disjI2 % C % A %% (iffD2 % C % D %% prf2 %% H)))", | |
| 163 | ||
| 13602 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 164 | "(cong % TYPE(bool) % TYPE(bool) % op | A % op | A % B % C %% \ | 
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 165 | \ (HOL.refl % TYPE(bool=>bool) % op | A)) == \ | 
| 13602 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 166 | \ (cong % TYPE(bool) % TYPE(bool) % op | A % op | A % B % C %% \ | 
| 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 167 | \ (cong % TYPE(bool=>bool) % TYPE(bool) % \ | 
| 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 168 | \ (op | :: bool=>bool=>bool) % (op | :: bool=>bool=>bool) % A % A %% \ | 
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 169 | \ (HOL.refl % TYPE(bool=>bool=>bool) % (op | :: bool=>bool=>bool)) %% \ | 
| 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 170 | \ (HOL.refl % TYPE(bool) % A)))", | 
| 13602 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 171 | |
| 13404 | 172 | (* --> *) | 
| 173 | ||
| 174 |    "(iffD1 % A --> C % B --> D %% (cong % TYPE('T1) % TYPE('T2) % x1 % x2 % C % D %%  \
 | |
| 175 |  \    (cong % TYPE('T3) % TYPE('T4) % op --> % op --> % A % B %%  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 176 |  \      (HOL.refl % TYPE('T5) % op --> ) %% prf1) %% prf2) %% prf3) ==  \
 | 
| 13404 | 177 | \ (impI % B % D %% (Lam H: B. iffD1 % C % D %% prf2 %% \ | 
| 178 | \ (mp % A % C %% prf3 %% (iffD2 % A % B %% prf1 %% H))))", | |
| 179 | ||
| 180 |    "(iffD2 % A --> C % B --> D %% (cong % TYPE('T1) % TYPE('T2) % x1 % x2 % C % D %%  \
 | |
| 181 |  \    (cong % TYPE('T3) % TYPE('T4) % op --> % op --> % A % B %%  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 182 |  \      (HOL.refl % TYPE('T5) % op --> ) %% prf1) %% prf2) %% prf3) ==  \
 | 
| 13404 | 183 | \ (impI % A % C %% (Lam H: A. iffD2 % C % D %% prf2 %% \ | 
| 184 | \ (mp % B % D %% prf3 %% (iffD1 % A % B %% prf1 %% H))))", | |
| 185 | ||
| 13602 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 186 | "(cong % TYPE(bool) % TYPE(bool) % op --> A % op --> A % B % C %% \ | 
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 187 | \ (HOL.refl % TYPE(bool=>bool) % op --> A)) == \ | 
| 13602 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 188 | \ (cong % TYPE(bool) % TYPE(bool) % op --> A % op --> A % B % C %% \ | 
| 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 189 | \ (cong % TYPE(bool=>bool) % TYPE(bool) % \ | 
| 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 190 | \ (op --> :: bool=>bool=>bool) % (op --> :: bool=>bool=>bool) % A % A %% \ | 
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 191 | \ (HOL.refl % TYPE(bool=>bool=>bool) % (op --> :: bool=>bool=>bool)) %% \ | 
| 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 192 | \ (HOL.refl % TYPE(bool) % A)))", | 
| 13602 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 193 | |
| 13404 | 194 | (* ~ *) | 
| 195 | ||
| 196 |    "(iffD1 % ~ P % ~ Q %% (cong % TYPE('T1) % TYPE('T2) % Not % Not % P % Q %%  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 197 |  \    (HOL.refl % TYPE('T3) % Not) %% prf1) %% prf2) ==  \
 | 
| 13404 | 198 | \ (notI % Q %% (Lam H: Q. \ | 
| 199 | \ notE % P % False %% prf2 %% (iffD2 % P % Q %% prf1 %% H)))", | |
| 200 | ||
| 201 |    "(iffD2 % ~ P % ~ Q %% (cong % TYPE('T1) % TYPE('T2) % Not % Not % P % Q %%  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 202 |  \    (HOL.refl % TYPE('T3) % Not) %% prf1) %% prf2) ==  \
 | 
| 13404 | 203 | \ (notI % P %% (Lam H: P. \ | 
| 204 | \ notE % Q % False %% prf2 %% (iffD1 % P % Q %% prf1 %% H)))", | |
| 205 | ||
| 206 | (* = *) | |
| 207 | ||
| 208 | "(iffD1 % B % D %% \ | |
| 209 |  \    (iffD1 % A = C % B = D %% (cong % TYPE('T1) % TYPE(bool) % x1 % x2 % C % D %%  \
 | |
| 210 |  \      (cong % TYPE('T2) % TYPE(bool) % op = % op = % A % B %%  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 211 |  \        (HOL.refl % TYPE('T3) % op =) %% prf1) %% prf2) %% prf3) %% prf4) ==  \
 | 
| 13404 | 212 | \ (iffD1 % C % D %% prf2 %% \ | 
| 213 | \ (iffD1 % A % C %% prf3 %% (iffD2 % A % B %% prf1 %% prf4)))", | |
| 214 | ||
| 215 | "(iffD2 % B % D %% \ | |
| 216 |  \    (iffD1 % A = C % B = D %% (cong % TYPE('T1) % TYPE(bool) % x1 % x2 % C % D %%  \
 | |
| 217 |  \      (cong % TYPE('T2) % TYPE(bool) % op = % op = % A % B %%  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 218 |  \        (HOL.refl % TYPE('T3) % op =) %% prf1) %% prf2) %% prf3) %% prf4) ==  \
 | 
| 13404 | 219 | \ (iffD1 % A % B %% prf1 %% \ | 
| 220 | \ (iffD2 % A % C %% prf3 %% (iffD2 % C % D %% prf2 %% prf4)))", | |
| 221 | ||
| 222 | "(iffD1 % A % C %% \ | |
| 223 |  \    (iffD2 % A = C % B = D %% (cong % TYPE('T1) % TYPE(bool) % x1 % x2 % C % D %%  \
 | |
| 224 |  \      (cong % TYPE('T2) % TYPE(bool) % op = % op = % A % B %%  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 225 |  \        (HOL.refl % TYPE('T3) % op =) %% prf1) %% prf2) %% prf3) %% prf4)==  \
 | 
| 13404 | 226 | \ (iffD2 % C % D %% prf2 %% \ | 
| 227 | \ (iffD1 % B % D %% prf3 %% (iffD1 % A % B %% prf1 %% prf4)))", | |
| 228 | ||
| 229 | "(iffD2 % A % C %% \ | |
| 230 |  \    (iffD2 % A = C % B = D %% (cong % TYPE('T1) % TYPE(bool) % x1 % x2 % C % D %%  \
 | |
| 231 |  \      (cong % TYPE('T2) % TYPE(bool) % op = % op = % A % B %%  \
 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 232 |  \        (HOL.refl % TYPE('T3) % op =) %% prf1) %% prf2) %% prf3) %% prf4) ==  \
 | 
| 13404 | 233 | \ (iffD2 % A % B %% prf1 %% \ | 
| 234 | \ (iffD2 % B % D %% prf3 %% (iffD1 % C % D %% prf2 %% prf4)))", | |
| 235 | ||
| 236 | "(cong % TYPE(bool) % TYPE(bool) % op = A % op = A % B % C %% \ | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 237 | \ (HOL.refl % TYPE(bool=>bool) % op = A)) == \ | 
| 13404 | 238 | \ (cong % TYPE(bool) % TYPE(bool) % op = A % op = A % B % C %% \ | 
| 239 | \ (cong % TYPE(bool=>bool) % TYPE(bool) % \ | |
| 240 | \ (op = :: bool=>bool=>bool) % (op = :: bool=>bool=>bool) % A % A %% \ | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 241 | \ (HOL.refl % TYPE(bool=>bool=>bool) % (op = :: bool=>bool=>bool)) %% \ | 
| 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 242 | \ (HOL.refl % TYPE(bool) % A)))", | 
| 13404 | 243 | |
| 13916 
f078a758e5d8
elim_cong now eta-expands proofs on the fly if required.
 berghofe parents: 
13602diff
changeset | 244 | (** transitivity, reflexivity, and symmetry **) | 
| 
f078a758e5d8
elim_cong now eta-expands proofs on the fly if required.
 berghofe parents: 
13602diff
changeset | 245 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 246 | "(iffD1 % A % C %% (HOL.trans % TYPE(bool) % A % B % C %% prf1 %% prf2) %% prf3) == \ | 
| 13404 | 247 | \ (iffD1 % B % C %% prf2 %% (iffD1 % A % B %% prf1 %% prf3))", | 
| 248 | ||
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 249 | "(iffD2 % A % C %% (HOL.trans % TYPE(bool) % A % B % C %% prf1 %% prf2) %% prf3) == \ | 
| 13404 | 250 | \ (iffD2 % A % B %% prf1 %% (iffD2 % B % C %% prf2 %% prf3))", | 
| 251 | ||
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 252 | "(iffD1 % A % A %% (HOL.refl % TYPE(bool) % A) %% prf) == prf", | 
| 13404 | 253 | |
| 15530 
6f43714517ee
Fully qualified refl and trans to avoid confusion with theorems
 berghofe parents: 
14981diff
changeset | 254 | "(iffD2 % A % A %% (HOL.refl % TYPE(bool) % A) %% prf) == prf", | 
| 13404 | 255 | |
| 13602 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 256 | "(iffD1 % A % B %% (sym % TYPE(bool) % B % A %% prf)) == (iffD2 % B % A %% prf)", | 
| 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 257 | |
| 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 258 | "(iffD2 % A % B %% (sym % TYPE(bool) % B % A %% prf)) == (iffD1 % B % A %% prf)", | 
| 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 259 | |
| 13404 | 260 | (** normalization of HOL proofs **) | 
| 261 | ||
| 262 | "(mp % A % B %% (impI % A % B %% prf)) == prf", | |
| 263 | ||
| 264 | "(impI % A % B %% (mp % A % B %% prf)) == prf", | |
| 265 | ||
| 266 |    "(spec % TYPE('a) % P % x %% (allI % TYPE('a) % P %% prf)) == prf % x",
 | |
| 267 | ||
| 268 |    "(allI % TYPE('a) % P %% (Lam x::'a. spec % TYPE('a) % P % x %% prf)) == prf",
 | |
| 269 | ||
| 13602 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 270 |    "(exE % TYPE('a) % P % Q %% (exI % TYPE('a) % P % x %% prf1) %% prf2) == (prf2 % x %% prf1)",
 | 
| 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 271 | |
| 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 272 |    "(exE % TYPE('a) % P % Q %% prf %% (exI % TYPE('a) % P)) == prf",
 | 
| 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 berghofe parents: 
13404diff
changeset | 273 | |
| 13404 | 274 | "(disjE % P % Q % R %% (disjI1 % P % Q %% prf1) %% prf2 %% prf3) == (prf2 %% prf1)", | 
| 275 | ||
| 276 | "(disjE % P % Q % R %% (disjI2 % Q % P %% prf1) %% prf2 %% prf3) == (prf3 %% prf1)", | |
| 277 | ||
| 278 | "(conjunct1 % P % Q %% (conjI % P % Q %% prf1 %% prf2)) == prf1", | |
| 279 | ||
| 280 | "(conjunct2 % P % Q %% (conjI % P % Q %% prf1 %% prf2)) == prf2", | |
| 281 | ||
| 282 | "(iffD1 % A % B %% (iffI % A % B %% prf1 %% prf2)) == prf1", | |
| 283 | ||
| 284 | "(iffD2 % A % B %% (iffI % A % B %% prf1 %% prf2)) == prf2"]; | |
| 285 | ||
| 286 | ||
| 287 | (** Replace congruence rules by substitution rules **) | |
| 288 | ||
| 21646 
c07b5b0e8492
thm/prf: separate official name vs. additional tags;
 wenzelm parents: 
19798diff
changeset | 289 | fun strip_cong ps (PThm ("HOL.cong", _, _, _) % _ % _ % SOME x % SOME y %%
 | 
| 13404 | 290 | prf1 %% prf2) = strip_cong (((x, y), prf2) :: ps) prf1 | 
| 21646 
c07b5b0e8492
thm/prf: separate official name vs. additional tags;
 wenzelm parents: 
19798diff
changeset | 291 |   | strip_cong ps (PThm ("HOL.refl", _, _, _) % SOME f) = SOME (f, ps)
 | 
| 15531 | 292 | | strip_cong _ _ = NONE; | 
| 13404 | 293 | |
| 294 | val subst_prf = fst (strip_combt (#2 (#der (rep_thm subst)))); | |
| 295 | val sym_prf = fst (strip_combt (#2 (#der (rep_thm sym)))); | |
| 296 | ||
| 297 | fun make_subst Ts prf xs (_, []) = prf | |
| 298 | | make_subst Ts prf xs (f, ((x, y), prf') :: ps) = | |
| 299 | let val T = fastype_of1 (Ts, x) | |
| 300 | in if x aconv y then make_subst Ts prf (xs @ [x]) (f, ps) | |
| 15531 | 301 | else change_type (SOME [T]) subst_prf %> x %> y %> | 
| 13404 | 302 |           Abs ("z", T, list_comb (incr_boundvars 1 f,
 | 
| 303 | map (incr_boundvars 1) xs @ Bound 0 :: | |
| 304 | map (incr_boundvars 1 o snd o fst) ps)) %% prf' %% | |
| 305 | make_subst Ts prf (xs @ [x]) (f, ps) | |
| 306 | end; | |
| 307 | ||
| 308 | fun make_sym Ts ((x, y), prf) = | |
| 15531 | 309 | ((y, x), change_type (SOME [fastype_of1 (Ts, x)]) sym_prf %> x %> y %% prf); | 
| 13404 | 310 | |
| 22277 | 311 | fun mk_AbsP P t = AbsP ("H", Option.map HOLogic.mk_Trueprop P, t);
 | 
| 13916 
f078a758e5d8
elim_cong now eta-expands proofs on the fly if required.
 berghofe parents: 
13602diff
changeset | 312 | |
| 21646 
c07b5b0e8492
thm/prf: separate official name vs. additional tags;
 wenzelm parents: 
19798diff
changeset | 313 | fun elim_cong Ts (PThm ("HOL.iffD1", _, _, _) % _ % _ %% prf1 %% prf2) =
 | 
| 15570 | 314 | Option.map (make_subst Ts prf2 []) (strip_cong [] prf1) | 
| 21646 
c07b5b0e8492
thm/prf: separate official name vs. additional tags;
 wenzelm parents: 
19798diff
changeset | 315 |   | elim_cong Ts (PThm ("HOL.iffD1", _, _, _) % P % _ %% prf) =
 | 
| 15570 | 316 | Option.map (mk_AbsP P o make_subst Ts (PBound 0) []) | 
| 13916 
f078a758e5d8
elim_cong now eta-expands proofs on the fly if required.
 berghofe parents: 
13602diff
changeset | 317 | (strip_cong [] (incr_pboundvars 1 0 prf)) | 
| 21646 
c07b5b0e8492
thm/prf: separate official name vs. additional tags;
 wenzelm parents: 
19798diff
changeset | 318 |   | elim_cong Ts (PThm ("HOL.iffD2", _, _, _) % _ % _ %% prf1 %% prf2) =
 | 
| 15570 | 319 | Option.map (make_subst Ts prf2 [] o | 
| 13404 | 320 | apsnd (map (make_sym Ts))) (strip_cong [] prf1) | 
| 21646 
c07b5b0e8492
thm/prf: separate official name vs. additional tags;
 wenzelm parents: 
19798diff
changeset | 321 |   | elim_cong Ts (PThm ("HOL.iffD2", _, _, _) % _ % P %% prf) =
 | 
| 15570 | 322 | Option.map (mk_AbsP P o make_subst Ts (PBound 0) [] o | 
| 13916 
f078a758e5d8
elim_cong now eta-expands proofs on the fly if required.
 berghofe parents: 
13602diff
changeset | 323 | apsnd (map (make_sym Ts))) (strip_cong [] (incr_pboundvars 1 0 prf)) | 
| 15531 | 324 | | elim_cong _ _ = NONE; | 
| 13404 | 325 | |
| 326 | end; |