| author | wenzelm | 
| Sat, 02 Apr 2016 23:14:08 +0200 | |
| changeset 62825 | e6e80a8bf624 | 
| parent 61890 | f6ded81f5690 | 
| child 63882 | 018998c00003 | 
| permissions | -rw-r--r-- | 
| 47613 | 1 | (* Author: Tobias Nipkow *) | 
| 2 | ||
| 3 | theory Abs_Int3 | |
| 4 | imports Abs_Int2_ivl | |
| 5 | begin | |
| 6 | ||
| 7 | ||
| 8 | subsection "Widening and Narrowing" | |
| 9 | ||
| 10 | class widen = | |
| 11 | fixes widen :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infix "\<nabla>" 65) | |
| 12 | ||
| 13 | class narrow = | |
| 14 | fixes narrow :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infix "\<triangle>" 65) | |
| 15 | ||
| 52504 | 16 | class wn = widen + narrow + order + | 
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 17 | assumes widen1: "x \<le> x \<nabla> y" | 
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 18 | assumes widen2: "y \<le> x \<nabla> y" | 
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 19 | assumes narrow1: "y \<le> x \<Longrightarrow> y \<le> x \<triangle> y" | 
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 20 | assumes narrow2: "y \<le> x \<Longrightarrow> x \<triangle> y \<le> x" | 
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 21 | begin | 
| 47613 | 22 | |
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 23 | lemma narrowid[simp]: "x \<triangle> x = x" | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 24 | by (metis eq_iff narrow1 narrow2) | 
| 47613 | 25 | |
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 26 | end | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 27 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52504diff
changeset | 28 | lemma top_widen_top[simp]: "\<top> \<nabla> \<top> = (\<top>::_::{wn,order_top})"
 | 
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 29 | by (metis eq_iff top_greatest widen2) | 
| 47613 | 30 | |
| 52504 | 31 | instantiation ivl :: wn | 
| 47613 | 32 | begin | 
| 33 | ||
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 34 | definition "widen_rep p1 p2 = | 
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 35 | (if is_empty_rep p1 then p2 else if is_empty_rep p2 then p1 else | 
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 36 | let (l1,h1) = p1; (l2,h2) = p2 | 
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 37 | in (if l2 < l1 then Minf else l1, if h1 < h2 then Pinf else h1))" | 
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 38 | |
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 39 | lift_definition widen_ivl :: "ivl \<Rightarrow> ivl \<Rightarrow> ivl" is widen_rep | 
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 40 | by(auto simp: widen_rep_def eq_ivl_iff) | 
| 47613 | 41 | |
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 42 | definition "narrow_rep p1 p2 = | 
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 43 | (if is_empty_rep p1 \<or> is_empty_rep p2 then empty_rep else | 
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 44 | let (l1,h1) = p1; (l2,h2) = p2 | 
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 45 | in (if l1 = Minf then l2 else l1, if h1 = Pinf then h2 else h1))" | 
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 46 | |
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 47 | lift_definition narrow_ivl :: "ivl \<Rightarrow> ivl \<Rightarrow> ivl" is narrow_rep | 
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 48 | by(auto simp: narrow_rep_def eq_ivl_iff) | 
| 47613 | 49 | |
| 50 | instance | |
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 51 | proof | 
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 52 | qed (transfer, auto simp: widen_rep_def narrow_rep_def le_iff_subset \<gamma>_rep_def subset_eq is_empty_rep_def empty_rep_def eq_ivl_def split: if_splits extended.splits)+ | 
| 47613 | 53 | |
| 54 | end | |
| 55 | ||
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52504diff
changeset | 56 | instantiation st :: ("{order_top,wn}")wn
 | 
| 47613 | 57 | begin | 
| 58 | ||
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 59 | lift_definition widen_st :: "'a st \<Rightarrow> 'a st \<Rightarrow> 'a st" is "map2_st_rep (op \<nabla>)" | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 60 | by(auto simp: eq_st_def) | 
| 47613 | 61 | |
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 62 | lift_definition narrow_st :: "'a st \<Rightarrow> 'a st \<Rightarrow> 'a st" is "map2_st_rep (op \<triangle>)" | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 63 | by(auto simp: eq_st_def) | 
| 47613 | 64 | |
| 65 | instance | |
| 61179 | 66 | proof (standard, goal_cases) | 
| 67 | case 1 thus ?case by transfer (simp add: less_eq_st_rep_iff widen1) | |
| 47613 | 68 | next | 
| 61179 | 69 | case 2 thus ?case by transfer (simp add: less_eq_st_rep_iff widen2) | 
| 47613 | 70 | next | 
| 61179 | 71 | case 3 thus ?case by transfer (simp add: less_eq_st_rep_iff narrow1) | 
| 47613 | 72 | next | 
| 61179 | 73 | case 4 thus ?case by transfer (simp add: less_eq_st_rep_iff narrow2) | 
| 47613 | 74 | qed | 
| 75 | ||
| 76 | end | |
| 77 | ||
| 78 | ||
| 52504 | 79 | instantiation option :: (wn)wn | 
| 47613 | 80 | begin | 
| 81 | ||
| 82 | fun widen_option where | |
| 83 | "None \<nabla> x = x" | | |
| 84 | "x \<nabla> None = x" | | |
| 85 | "(Some x) \<nabla> (Some y) = Some(x \<nabla> y)" | |
| 86 | ||
| 87 | fun narrow_option where | |
| 88 | "None \<triangle> x = None" | | |
| 89 | "x \<triangle> None = None" | | |
| 90 | "(Some x) \<triangle> (Some y) = Some(x \<triangle> y)" | |
| 91 | ||
| 92 | instance | |
| 61179 | 93 | proof (standard, goal_cases) | 
| 94 | case (1 x y) thus ?case | |
| 47613 | 95 | by(induct x y rule: widen_option.induct)(simp_all add: widen1) | 
| 96 | next | |
| 61179 | 97 | case (2 x y) thus ?case | 
| 47613 | 98 | by(induct x y rule: widen_option.induct)(simp_all add: widen2) | 
| 99 | next | |
| 61179 | 100 | case (3 x y) thus ?case | 
| 47613 | 101 | by(induct x y rule: narrow_option.induct) (simp_all add: narrow1) | 
| 102 | next | |
| 61179 | 103 | case (4 y x) thus ?case | 
| 47613 | 104 | by(induct x y rule: narrow_option.induct) (simp_all add: narrow2) | 
| 105 | qed | |
| 106 | ||
| 107 | end | |
| 108 | ||
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51974diff
changeset | 109 | definition map2_acom :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> 'a acom \<Rightarrow> 'a acom \<Rightarrow> 'a acom"
 | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51974diff
changeset | 110 | where | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51974diff
changeset | 111 | "map2_acom f C1 C2 = annotate (\<lambda>p. f (anno C1 p) (anno C2 p)) (strip C1)" | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51974diff
changeset | 112 | |
| 52504 | 113 | |
| 49548 | 114 | instantiation acom :: (widen)widen | 
| 115 | begin | |
| 116 | definition "widen_acom = map2_acom (op \<nabla>)" | |
| 117 | instance .. | |
| 118 | end | |
| 119 | ||
| 120 | instantiation acom :: (narrow)narrow | |
| 121 | begin | |
| 122 | definition "narrow_acom = map2_acom (op \<triangle>)" | |
| 123 | instance .. | |
| 124 | end | |
| 125 | ||
| 47613 | 126 | lemma strip_map2_acom[simp]: | 
| 127 | "strip C1 = strip C2 \<Longrightarrow> strip(map2_acom f C1 C2) = strip C1" | |
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51974diff
changeset | 128 | by(simp add: map2_acom_def) | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51974diff
changeset | 129 | (*by(induct f C1 C2 rule: map2_acom.induct) simp_all*) | 
| 47613 | 130 | |
| 131 | lemma strip_widen_acom[simp]: | |
| 132 | "strip C1 = strip C2 \<Longrightarrow> strip(C1 \<nabla> C2) = strip C1" | |
| 49548 | 133 | by(simp add: widen_acom_def) | 
| 47613 | 134 | |
| 135 | lemma strip_narrow_acom[simp]: | |
| 136 | "strip C1 = strip C2 \<Longrightarrow> strip(C1 \<triangle> C2) = strip C1" | |
| 49548 | 137 | by(simp add: narrow_acom_def) | 
| 47613 | 138 | |
| 52504 | 139 | lemma narrow1_acom: "C2 \<le> C1 \<Longrightarrow> C2 \<le> C1 \<triangle> (C2::'a::wn acom)" | 
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51974diff
changeset | 140 | by(simp add: narrow_acom_def narrow1 map2_acom_def less_eq_acom_def size_annos) | 
| 47613 | 141 | |
| 52504 | 142 | lemma narrow2_acom: "C2 \<le> C1 \<Longrightarrow> C1 \<triangle> (C2::'a::wn acom) \<le> C1" | 
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51974diff
changeset | 143 | by(simp add: narrow_acom_def narrow2 map2_acom_def less_eq_acom_def size_annos) | 
| 47613 | 144 | |
| 145 | ||
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51974diff
changeset | 146 | subsubsection "Pre-fixpoint computation" | 
| 47613 | 147 | |
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 148 | definition iter_widen :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> ('a::{order,widen})option"
 | 
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 149 | where "iter_widen f = while_option (\<lambda>x. \<not> f x \<le> x) (\<lambda>x. x \<nabla> f x)" | 
| 47613 | 150 | |
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 151 | definition iter_narrow :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> ('a::{order,narrow})option"
 | 
| 51385 
f193d44d4918
termination proof for narrowing: fewer assumptions
 nipkow parents: 
51372diff
changeset | 152 | where "iter_narrow f = while_option (\<lambda>x. x \<triangle> f x < x) (\<lambda>x. x \<triangle> f x)" | 
| 47613 | 153 | |
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 154 | definition pfp_wn :: "('a::{order,widen,narrow} \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a option"
 | 
| 49548 | 155 | where "pfp_wn f x = | 
| 49576 | 156 | (case iter_widen f x of None \<Rightarrow> None | Some p \<Rightarrow> iter_narrow f p)" | 
| 47613 | 157 | |
| 158 | ||
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 159 | lemma iter_widen_pfp: "iter_widen f x = Some p \<Longrightarrow> f p \<le> p" | 
| 47613 | 160 | by(auto simp add: iter_widen_def dest: while_option_stop) | 
| 161 | ||
| 162 | lemma iter_widen_inv: | |
| 163 | assumes "!!x. P x \<Longrightarrow> P(f x)" "!!x1 x2. P x1 \<Longrightarrow> P x2 \<Longrightarrow> P(x1 \<nabla> x2)" and "P x" | |
| 164 | and "iter_widen f x = Some y" shows "P y" | |
| 165 | using while_option_rule[where P = "P", OF _ assms(4)[unfolded iter_widen_def]] | |
| 166 | by (blast intro: assms(1-3)) | |
| 167 | ||
| 168 | lemma strip_while: fixes f :: "'a acom \<Rightarrow> 'a acom" | |
| 169 | assumes "\<forall>C. strip (f C) = strip C" and "while_option P f C = Some C'" | |
| 170 | shows "strip C' = strip C" | |
| 171 | using while_option_rule[where P = "\<lambda>C'. strip C' = strip C", OF _ assms(2)] | |
| 172 | by (metis assms(1)) | |
| 173 | ||
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 174 | lemma strip_iter_widen: fixes f :: "'a::{order,widen} acom \<Rightarrow> 'a acom"
 | 
| 47613 | 175 | assumes "\<forall>C. strip (f C) = strip C" and "iter_widen f C = Some C'" | 
| 176 | shows "strip C' = strip C" | |
| 177 | proof- | |
| 178 | have "\<forall>C. strip(C \<nabla> f C) = strip C" | |
| 179 | by (metis assms(1) strip_map2_acom widen_acom_def) | |
| 180 | from strip_while[OF this] assms(2) show ?thesis by(simp add: iter_widen_def) | |
| 181 | qed | |
| 182 | ||
| 183 | lemma iter_narrow_pfp: | |
| 52504 | 184 | assumes mono: "!!x1 x2::_::wn acom. P x1 \<Longrightarrow> P x2 \<Longrightarrow> x1 \<le> x2 \<Longrightarrow> f x1 \<le> f x2" | 
| 49576 | 185 | and Pinv: "!!x. P x \<Longrightarrow> P(f x)" "!!x1 x2. P x1 \<Longrightarrow> P x2 \<Longrightarrow> P(x1 \<triangle> x2)" | 
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 186 | and "P p0" and "f p0 \<le> p0" and "iter_narrow f p0 = Some p" | 
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 187 | shows "P p \<and> f p \<le> p" | 
| 47613 | 188 | proof- | 
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 189 | let ?Q = "%p. P p \<and> f p \<le> p \<and> p \<le> p0" | 
| 49576 | 190 |   { fix p assume "?Q p"
 | 
| 47613 | 191 | note P = conjunct1[OF this] and 12 = conjunct2[OF this] | 
| 192 | note 1 = conjunct1[OF 12] and 2 = conjunct2[OF 12] | |
| 49576 | 193 | let ?p' = "p \<triangle> f p" | 
| 194 | have "?Q ?p'" | |
| 47613 | 195 | proof auto | 
| 49576 | 196 | show "P ?p'" by (blast intro: P Pinv) | 
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 197 | have "f ?p' \<le> f p" by(rule mono[OF `P (p \<triangle> f p)` P narrow2_acom[OF 1]]) | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 198 | also have "\<dots> \<le> ?p'" by(rule narrow1_acom[OF 1]) | 
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 199 | finally show "f ?p' \<le> ?p'" . | 
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 200 | have "?p' \<le> p" by (rule narrow2_acom[OF 1]) | 
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 201 | also have "p \<le> p0" by(rule 2) | 
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 202 | finally show "?p' \<le> p0" . | 
| 47613 | 203 | qed | 
| 204 | } | |
| 205 | thus ?thesis | |
| 206 | using while_option_rule[where P = ?Q, OF _ assms(6)[simplified iter_narrow_def]] | |
| 207 | by (blast intro: assms(4,5) le_refl) | |
| 208 | qed | |
| 209 | ||
| 210 | lemma pfp_wn_pfp: | |
| 52504 | 211 | assumes mono: "!!x1 x2::_::wn acom. P x1 \<Longrightarrow> P x2 \<Longrightarrow> x1 \<le> x2 \<Longrightarrow> f x1 \<le> f x2" | 
| 49548 | 212 | and Pinv: "P x" "!!x. P x \<Longrightarrow> P(f x)" | 
| 213 | "!!x1 x2. P x1 \<Longrightarrow> P x2 \<Longrightarrow> P(x1 \<nabla> x2)" | |
| 214 | "!!x1 x2. P x1 \<Longrightarrow> P x2 \<Longrightarrow> P(x1 \<triangle> x2)" | |
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 215 | and pfp_wn: "pfp_wn f x = Some p" shows "P p \<and> f p \<le> p" | 
| 47613 | 216 | proof- | 
| 49576 | 217 | from pfp_wn obtain p0 | 
| 218 | where its: "iter_widen f x = Some p0" "iter_narrow f p0 = Some p" | |
| 47613 | 219 | by(auto simp: pfp_wn_def split: option.splits) | 
| 49576 | 220 | have "P p0" by (blast intro: iter_widen_inv[where P="P"] its(1) Pinv(1-3)) | 
| 47613 | 221 | thus ?thesis | 
| 222 | by - (assumption | | |
| 223 | rule iter_narrow_pfp[where P=P] mono Pinv(2,4) iter_widen_pfp its)+ | |
| 224 | qed | |
| 225 | ||
| 226 | lemma strip_pfp_wn: | |
| 49548 | 227 | "\<lbrakk> \<forall>C. strip(f C) = strip C; pfp_wn f C = Some C' \<rbrakk> \<Longrightarrow> strip C' = strip C" | 
| 47613 | 228 | by(auto simp add: pfp_wn_def iter_narrow_def split: option.splits) | 
| 51390 | 229 | (metis (mono_tags) strip_iter_widen strip_narrow_acom strip_while) | 
| 47613 | 230 | |
| 231 | ||
| 52504 | 232 | locale Abs_Int_wn = Abs_Int_inv_mono where \<gamma>=\<gamma> | 
| 233 |   for \<gamma> :: "'av::{wn,bounded_lattice} \<Rightarrow> val set"
 | |
| 47613 | 234 | begin | 
| 235 | ||
| 236 | definition AI_wn :: "com \<Rightarrow> 'av st option acom option" where | |
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 237 | "AI_wn c = pfp_wn (step' \<top>) (bot c)" | 
| 47613 | 238 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52729diff
changeset | 239 | lemma AI_wn_correct: "AI_wn c = Some C \<Longrightarrow> CS c \<le> \<gamma>\<^sub>c C" | 
| 47613 | 240 | proof(simp add: CS_def AI_wn_def) | 
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 241 | assume 1: "pfp_wn (step' \<top>) (bot c) = Some C" | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 242 | have 2: "strip C = c \<and> step' \<top> C \<le> C" | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 243 | by(rule pfp_wn_pfp[where x="bot c"]) (simp_all add: 1 mono_step'_top) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52729diff
changeset | 244 | have pfp: "step (\<gamma>\<^sub>o \<top>) (\<gamma>\<^sub>c C) \<le> \<gamma>\<^sub>c C" | 
| 50986 | 245 | proof(rule order_trans) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52729diff
changeset | 246 | show "step (\<gamma>\<^sub>o \<top>) (\<gamma>\<^sub>c C) \<le> \<gamma>\<^sub>c (step' \<top> C)" | 
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 247 | by(rule step_step') | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52729diff
changeset | 248 | show "... \<le> \<gamma>\<^sub>c C" | 
| 50986 | 249 | by(rule mono_gamma_c[OF conjunct2[OF 2]]) | 
| 47613 | 250 | qed | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52729diff
changeset | 251 | have 3: "strip (\<gamma>\<^sub>c C) = c" by(simp add: strip_pfp_wn[OF _ 1]) | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52729diff
changeset | 252 | have "lfp c (step (\<gamma>\<^sub>o \<top>)) \<le> \<gamma>\<^sub>c C" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52729diff
changeset | 253 | by(rule lfp_lowerbound[simplified,where f="step (\<gamma>\<^sub>o \<top>)", OF 3 pfp]) | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52729diff
changeset | 254 | thus "lfp c (step UNIV) \<le> \<gamma>\<^sub>c C" by simp | 
| 47613 | 255 | qed | 
| 256 | ||
| 257 | end | |
| 258 | ||
| 61890 
f6ded81f5690
abandoned attempt to unify sublocale and interpretation into global theories
 haftmann parents: 
61671diff
changeset | 259 | global_interpretation Abs_Int_wn | 
| 51245 | 260 | where \<gamma> = \<gamma>_ivl and num' = num_ivl and plus' = "op +" | 
| 47613 | 261 | and test_num' = in_ivl | 
| 51974 | 262 | and inv_plus' = inv_plus_ivl and inv_less' = inv_less_ivl | 
| 61671 
20d4cd2ceab2
prefer "rewrites" and "defines" to note rewrite morphisms
 haftmann parents: 
61179diff
changeset | 263 | defines AI_wn_ivl = AI_wn | 
| 47613 | 264 | .. | 
| 265 | ||
| 266 | ||
| 267 | subsubsection "Tests" | |
| 268 | ||
| 51791 | 269 | definition "step_up_ivl n = ((\<lambda>C. C \<nabla> step_ivl \<top> C)^^n)" | 
| 270 | definition "step_down_ivl n = ((\<lambda>C. C \<triangle> step_ivl \<top> C)^^n)" | |
| 47613 | 271 | |
| 272 | text{* For @{const test3_ivl}, @{const AI_ivl} needed as many iterations as
 | |
| 51953 | 273 | the loop took to execute. In contrast, @{const AI_wn_ivl} converges in a
 | 
| 47613 | 274 | constant number of steps: *} | 
| 275 | ||
| 276 | value "show_acom (step_up_ivl 1 (bot test3_ivl))" | |
| 277 | value "show_acom (step_up_ivl 2 (bot test3_ivl))" | |
| 278 | value "show_acom (step_up_ivl 3 (bot test3_ivl))" | |
| 279 | value "show_acom (step_up_ivl 4 (bot test3_ivl))" | |
| 280 | value "show_acom (step_up_ivl 5 (bot test3_ivl))" | |
| 49188 | 281 | value "show_acom (step_up_ivl 6 (bot test3_ivl))" | 
| 282 | value "show_acom (step_up_ivl 7 (bot test3_ivl))" | |
| 283 | value "show_acom (step_up_ivl 8 (bot test3_ivl))" | |
| 284 | value "show_acom (step_down_ivl 1 (step_up_ivl 8 (bot test3_ivl)))" | |
| 285 | value "show_acom (step_down_ivl 2 (step_up_ivl 8 (bot test3_ivl)))" | |
| 286 | value "show_acom (step_down_ivl 3 (step_up_ivl 8 (bot test3_ivl)))" | |
| 287 | value "show_acom (step_down_ivl 4 (step_up_ivl 8 (bot test3_ivl)))" | |
| 51953 | 288 | value "show_acom_opt (AI_wn_ivl test3_ivl)" | 
| 47613 | 289 | |
| 290 | ||
| 291 | text{* Now all the analyses terminate: *}
 | |
| 292 | ||
| 51953 | 293 | value "show_acom_opt (AI_wn_ivl test4_ivl)" | 
| 294 | value "show_acom_opt (AI_wn_ivl test5_ivl)" | |
| 295 | value "show_acom_opt (AI_wn_ivl test6_ivl)" | |
| 47613 | 296 | |
| 297 | ||
| 298 | subsubsection "Generic Termination Proof" | |
| 299 | ||
| 51722 | 300 | lemma top_on_opt_widen: | 
| 51785 | 301 | "top_on_opt o1 X \<Longrightarrow> top_on_opt o2 X \<Longrightarrow> top_on_opt (o1 \<nabla> o2 :: _ st option) X" | 
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 302 | apply(induct o1 o2 rule: widen_option.induct) | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 303 | apply (auto) | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 304 | by transfer simp | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 305 | |
| 51722 | 306 | lemma top_on_opt_narrow: | 
| 51785 | 307 | "top_on_opt o1 X \<Longrightarrow> top_on_opt o2 X \<Longrightarrow> top_on_opt (o1 \<triangle> o2 :: _ st option) X" | 
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 308 | apply(induct o1 o2 rule: narrow_option.induct) | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 309 | apply (auto) | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 310 | by transfer simp | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 311 | |
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51974diff
changeset | 312 | (* FIXME mk anno abbrv *) | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51974diff
changeset | 313 | lemma annos_map2_acom[simp]: "strip C2 = strip C1 \<Longrightarrow> | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51974diff
changeset | 314 | annos(map2_acom f C1 C2) = map (%(x,y).f x y) (zip (annos C1) (annos C2))" | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51974diff
changeset | 315 | by(simp add: map2_acom_def list_eq_iff_nth_eq size_annos anno_def[symmetric] size_annos_same[of C1 C2]) | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51974diff
changeset | 316 | |
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 317 | lemma top_on_acom_widen: | 
| 51785 | 318 | "\<lbrakk>top_on_acom C1 X; strip C1 = strip C2; top_on_acom C2 X\<rbrakk> | 
| 319 | \<Longrightarrow> top_on_acom (C1 \<nabla> C2 :: _ st option acom) X" | |
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 320 | by(auto simp add: widen_acom_def top_on_acom_def)(metis top_on_opt_widen in_set_zipE) | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 321 | |
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 322 | lemma top_on_acom_narrow: | 
| 51785 | 323 | "\<lbrakk>top_on_acom C1 X; strip C1 = strip C2; top_on_acom C2 X\<rbrakk> | 
| 324 | \<Longrightarrow> top_on_acom (C1 \<triangle> C2 :: _ st option acom) X" | |
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 325 | by(auto simp add: narrow_acom_def top_on_acom_def)(metis top_on_opt_narrow in_set_zipE) | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 326 | |
| 51385 
f193d44d4918
termination proof for narrowing: fewer assumptions
 nipkow parents: 
51372diff
changeset | 327 | text{* The assumptions for widening and narrowing differ because during
 | 
| 
f193d44d4918
termination proof for narrowing: fewer assumptions
 nipkow parents: 
51372diff
changeset | 328 | narrowing we have the invariant @{prop"y \<le> x"} (where @{text y} is the next
 | 
| 
f193d44d4918
termination proof for narrowing: fewer assumptions
 nipkow parents: 
51372diff
changeset | 329 | iterate), but during widening there is no such invariant, there we only have | 
| 
f193d44d4918
termination proof for narrowing: fewer assumptions
 nipkow parents: 
51372diff
changeset | 330 | that not yet @{prop"y \<le> x"}. This complicates the termination proof for
 | 
| 
f193d44d4918
termination proof for narrowing: fewer assumptions
 nipkow parents: 
51372diff
changeset | 331 | widening. *} | 
| 
f193d44d4918
termination proof for narrowing: fewer assumptions
 nipkow parents: 
51372diff
changeset | 332 | |
| 52504 | 333 | locale Measure_wn = Measure1 where m=m | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52504diff
changeset | 334 |   for m :: "'av::{order_top,wn} \<Rightarrow> nat" +
 | 
| 47613 | 335 | fixes n :: "'av \<Rightarrow> nat" | 
| 51372 | 336 | assumes m_anti_mono: "x \<le> y \<Longrightarrow> m x \<ge> m y" | 
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 337 | assumes m_widen: "~ y \<le> x \<Longrightarrow> m(x \<nabla> y) < m x" | 
| 51385 
f193d44d4918
termination proof for narrowing: fewer assumptions
 nipkow parents: 
51372diff
changeset | 338 | assumes n_narrow: "y \<le> x \<Longrightarrow> x \<triangle> y < x \<Longrightarrow> n(x \<triangle> y) < n x" | 
| 47613 | 339 | |
| 340 | begin | |
| 341 | ||
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 342 | lemma m_s_anti_mono_rep: assumes "\<forall>x. S1 x \<le> S2 x" | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 343 | shows "(\<Sum>x\<in>X. m (S2 x)) \<le> (\<Sum>x\<in>X. m (S1 x))" | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 344 | proof- | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 345 | from assms have "\<forall>x. m(S1 x) \<ge> m(S2 x)" by (metis m_anti_mono) | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 346 | thus "(\<Sum>x\<in>X. m (S2 x)) \<le> (\<Sum>x\<in>X. m (S1 x))" by (metis setsum_mono) | 
| 51372 | 347 | qed | 
| 348 | ||
| 51791 | 349 | lemma m_s_anti_mono: "S1 \<le> S2 \<Longrightarrow> m_s S1 X \<ge> m_s S2 X" | 
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 350 | unfolding m_s_def | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 351 | apply (transfer fixing: m) | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 352 | apply(simp add: less_eq_st_rep_iff eq_st_def m_s_anti_mono_rep) | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 353 | done | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 354 | |
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 355 | lemma m_s_widen_rep: assumes "finite X" "S1 = S2 on -X" "\<not> S2 x \<le> S1 x" | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 356 | shows "(\<Sum>x\<in>X. m (S1 x \<nabla> S2 x)) < (\<Sum>x\<in>X. m (S1 x))" | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 357 | proof- | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 358 | have 1: "\<forall>x\<in>X. m(S1 x) \<ge> m(S1 x \<nabla> S2 x)" | 
| 52504 | 359 | by (metis m_anti_mono wn_class.widen1) | 
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 360 | have "x \<in> X" using assms(2,3) | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 361 | by(auto simp add: Ball_def) | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 362 | hence 2: "\<exists>x\<in>X. m(S1 x) > m(S1 x \<nabla> S2 x)" | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 363 | using assms(3) m_widen by blast | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 364 | from setsum_strict_mono_ex1[OF `finite X` 1 2] | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 365 | show ?thesis . | 
| 47613 | 366 | qed | 
| 367 | ||
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 368 | lemma m_s_widen: "finite X \<Longrightarrow> fun S1 = fun S2 on -X ==> | 
| 51791 | 369 | ~ S2 \<le> S1 \<Longrightarrow> m_s (S1 \<nabla> S2) X < m_s S1 X" | 
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 370 | apply(auto simp add: less_st_def m_s_def) | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 371 | apply (transfer fixing: m) | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 372 | apply(auto simp add: less_eq_st_rep_iff m_s_widen_rep) | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 373 | done | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 374 | |
| 51785 | 375 | lemma m_o_anti_mono: "finite X \<Longrightarrow> top_on_opt o1 (-X) \<Longrightarrow> top_on_opt o2 (-X) \<Longrightarrow> | 
| 51791 | 376 | o1 \<le> o2 \<Longrightarrow> m_o o1 X \<ge> m_o o2 X" | 
| 51372 | 377 | proof(induction o1 o2 rule: less_eq_option.induct) | 
| 378 | case 1 thus ?case by (simp add: m_o_def)(metis m_s_anti_mono) | |
| 379 | next | |
| 380 | case 2 thus ?case | |
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 381 | by(simp add: m_o_def le_SucI m_s_h split: option.splits) | 
| 51372 | 382 | next | 
| 383 | case 3 thus ?case by simp | |
| 384 | qed | |
| 385 | ||
| 51785 | 386 | lemma m_o_widen: "\<lbrakk> finite X; top_on_opt S1 (-X); top_on_opt S2 (-X); \<not> S2 \<le> S1 \<rbrakk> \<Longrightarrow> | 
| 51791 | 387 | m_o (S1 \<nabla> S2) X < m_o S1 X" | 
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 388 | by(auto simp: m_o_def m_s_h less_Suc_eq_le m_s_widen split: option.split) | 
| 47613 | 389 | |
| 49547 | 390 | lemma m_c_widen: | 
| 51785 | 391 | "strip C1 = strip C2 \<Longrightarrow> top_on_acom C1 (-vars C1) \<Longrightarrow> top_on_acom C2 (-vars C2) | 
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 392 | \<Longrightarrow> \<not> C2 \<le> C1 \<Longrightarrow> m_c (C1 \<nabla> C2) < m_c C1" | 
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51974diff
changeset | 393 | apply(auto simp: m_c_def widen_acom_def map2_acom_def size_annos[symmetric] anno_def[symmetric]listsum_setsum_nth) | 
| 49547 | 394 | apply(subgoal_tac "length(annos C2) = length(annos C1)") | 
| 51390 | 395 | prefer 2 apply (simp add: size_annos_same2) | 
| 49547 | 396 | apply (auto) | 
| 397 | apply(rule setsum_strict_mono_ex1) | |
| 52019 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51974diff
changeset | 398 | apply(auto simp add: m_o_anti_mono vars_acom_def anno_def top_on_acom_def top_on_opt_widen widen1 less_eq_acom_def listrel_iff_nth) | 
| 
a4cbca8f7342
finally: acom with pointwise access and update of annotations
 nipkow parents: 
51974diff
changeset | 399 | apply(rule_tac x=p in bexI) | 
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 400 | apply (auto simp: vars_acom_def m_o_widen top_on_acom_def) | 
| 49547 | 401 | done | 
| 402 | ||
| 403 | ||
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52729diff
changeset | 404 | definition n_s :: "'av st \<Rightarrow> vname set \<Rightarrow> nat" ("n\<^sub>s") where
 | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52729diff
changeset | 405 | "n\<^sub>s S X = (\<Sum>x\<in>X. n(fun S x))" | 
| 49547 | 406 | |
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 407 | lemma n_s_narrow_rep: | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 408 | assumes "finite X" "S1 = S2 on -X" "\<forall>x. S2 x \<le> S1 x" "\<forall>x. S1 x \<triangle> S2 x \<le> S1 x" | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 409 | "S1 x \<noteq> S1 x \<triangle> S2 x" | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 410 | shows "(\<Sum>x\<in>X. n (S1 x \<triangle> S2 x)) < (\<Sum>x\<in>X. n (S1 x))" | 
| 47613 | 411 | proof- | 
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 412 | have 1: "\<forall>x. n(S1 x \<triangle> S2 x) \<le> n(S1 x)" | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 413 | by (metis assms(3) assms(4) eq_iff less_le_not_le n_narrow) | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 414 | have "x \<in> X" by (metis Compl_iff assms(2) assms(5) narrowid) | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 415 | hence 2: "\<exists>x\<in>X. n(S1 x \<triangle> S2 x) < n(S1 x)" | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 416 | by (metis assms(3-5) eq_iff less_le_not_le n_narrow) | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 417 | show ?thesis | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 418 | apply(rule setsum_strict_mono_ex1[OF `finite X`]) using 1 2 by blast+ | 
| 47613 | 419 | qed | 
| 420 | ||
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 421 | lemma n_s_narrow: "finite X \<Longrightarrow> fun S1 = fun S2 on -X \<Longrightarrow> S2 \<le> S1 \<Longrightarrow> S1 \<triangle> S2 < S1 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52729diff
changeset | 422 | \<Longrightarrow> n\<^sub>s (S1 \<triangle> S2) X < n\<^sub>s S1 X" | 
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 423 | apply(auto simp add: less_st_def n_s_def) | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 424 | apply (transfer fixing: n) | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 425 | apply(auto simp add: less_eq_st_rep_iff eq_st_def fun_eq_iff n_s_narrow_rep) | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 426 | done | 
| 47613 | 427 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52729diff
changeset | 428 | definition n_o :: "'av st option \<Rightarrow> vname set \<Rightarrow> nat" ("n\<^sub>o") where
 | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52729diff
changeset | 429 | "n\<^sub>o opt X = (case opt of None \<Rightarrow> 0 | Some S \<Rightarrow> n\<^sub>s S X + 1)" | 
| 47613 | 430 | |
| 431 | lemma n_o_narrow: | |
| 51785 | 432 | "top_on_opt S1 (-X) \<Longrightarrow> top_on_opt S2 (-X) \<Longrightarrow> finite X | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52729diff
changeset | 433 | \<Longrightarrow> S2 \<le> S1 \<Longrightarrow> S1 \<triangle> S2 < S1 \<Longrightarrow> n\<^sub>o (S1 \<triangle> S2) X < n\<^sub>o S1 X" | 
| 47613 | 434 | apply(induction S1 S2 rule: narrow_option.induct) | 
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 435 | apply(auto simp: n_o_def n_s_narrow) | 
| 47613 | 436 | done | 
| 437 | ||
| 49576 | 438 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52729diff
changeset | 439 | definition n_c :: "'av st option acom \<Rightarrow> nat" ("n\<^sub>c") where
 | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52729diff
changeset | 440 | "n\<^sub>c C = listsum (map (\<lambda>a. n\<^sub>o a (vars C)) (annos C))" | 
| 47613 | 441 | |
| 51385 
f193d44d4918
termination proof for narrowing: fewer assumptions
 nipkow parents: 
51372diff
changeset | 442 | lemma less_annos_iff: "(C1 < C2) = (C1 \<le> C2 \<and> | 
| 
f193d44d4918
termination proof for narrowing: fewer assumptions
 nipkow parents: 
51372diff
changeset | 443 | (\<exists>i<length (annos C1). annos C1 ! i < annos C2 ! i))" | 
| 
f193d44d4918
termination proof for narrowing: fewer assumptions
 nipkow parents: 
51372diff
changeset | 444 | by(metis (hide_lams, no_types) less_le_not_le le_iff_le_annos size_annos_same2) | 
| 
f193d44d4918
termination proof for narrowing: fewer assumptions
 nipkow parents: 
51372diff
changeset | 445 | |
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 446 | lemma n_c_narrow: "strip C1 = strip C2 | 
| 51785 | 447 | \<Longrightarrow> top_on_acom C1 (- vars C1) \<Longrightarrow> top_on_acom C2 (- vars C2) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52729diff
changeset | 448 | \<Longrightarrow> C2 \<le> C1 \<Longrightarrow> C1 \<triangle> C2 < C1 \<Longrightarrow> n\<^sub>c (C1 \<triangle> C2) < n\<^sub>c C1" | 
| 51792 | 449 | apply(auto simp: n_c_def narrow_acom_def listsum_setsum_nth) | 
| 47613 | 450 | apply(subgoal_tac "length(annos C2) = length(annos C1)") | 
| 451 | prefer 2 apply (simp add: size_annos_same2) | |
| 452 | apply (auto) | |
| 51385 
f193d44d4918
termination proof for narrowing: fewer assumptions
 nipkow parents: 
51372diff
changeset | 453 | apply(simp add: less_annos_iff le_iff_le_annos) | 
| 47613 | 454 | apply(rule setsum_strict_mono_ex1) | 
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 455 | apply (auto simp: vars_acom_def top_on_acom_def) | 
| 51385 
f193d44d4918
termination proof for narrowing: fewer assumptions
 nipkow parents: 
51372diff
changeset | 456 | apply (metis n_o_narrow nth_mem finite_cvars less_imp_le le_less order_refl) | 
| 47613 | 457 | apply(rule_tac x=i in bexI) | 
| 458 | prefer 2 apply simp | |
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 459 | apply(rule n_o_narrow[where X = "vars(strip C2)"]) | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 460 | apply (simp_all) | 
| 47613 | 461 | done | 
| 462 | ||
| 463 | end | |
| 464 | ||
| 465 | ||
| 466 | lemma iter_widen_termination: | |
| 52504 | 467 | fixes m :: "'a::wn acom \<Rightarrow> nat" | 
| 47613 | 468 | assumes P_f: "\<And>C. P C \<Longrightarrow> P(f C)" | 
| 469 | and P_widen: "\<And>C1 C2. P C1 \<Longrightarrow> P C2 \<Longrightarrow> P(C1 \<nabla> C2)" | |
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 470 | and m_widen: "\<And>C1 C2. P C1 \<Longrightarrow> P C2 \<Longrightarrow> ~ C2 \<le> C1 \<Longrightarrow> m(C1 \<nabla> C2) < m C1" | 
| 47613 | 471 | and "P C" shows "EX C'. iter_widen f C = Some C'" | 
| 49547 | 472 | proof(simp add: iter_widen_def, | 
| 473 | rule measure_while_option_Some[where P = P and f=m]) | |
| 47613 | 474 | show "P C" by(rule `P C`) | 
| 475 | next | |
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 476 | fix C assume "P C" "\<not> f C \<le> C" thus "P (C \<nabla> f C) \<and> m (C \<nabla> f C) < m C" | 
| 49547 | 477 | by(simp add: P_f P_widen m_widen) | 
| 47613 | 478 | qed | 
| 49496 | 479 | |
| 47613 | 480 | lemma iter_narrow_termination: | 
| 52504 | 481 | fixes n :: "'a::wn acom \<Rightarrow> nat" | 
| 47613 | 482 | assumes P_f: "\<And>C. P C \<Longrightarrow> P(f C)" | 
| 483 | and P_narrow: "\<And>C1 C2. P C1 \<Longrightarrow> P C2 \<Longrightarrow> P(C1 \<triangle> C2)" | |
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 484 | and mono: "\<And>C1 C2. P C1 \<Longrightarrow> P C2 \<Longrightarrow> C1 \<le> C2 \<Longrightarrow> f C1 \<le> f C2" | 
| 51385 
f193d44d4918
termination proof for narrowing: fewer assumptions
 nipkow parents: 
51372diff
changeset | 485 | and n_narrow: "\<And>C1 C2. P C1 \<Longrightarrow> P C2 \<Longrightarrow> C2 \<le> C1 \<Longrightarrow> C1 \<triangle> C2 < C1 \<Longrightarrow> n(C1 \<triangle> C2) < n C1" | 
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 486 | and init: "P C" "f C \<le> C" shows "EX C'. iter_narrow f C = Some C'" | 
| 49547 | 487 | proof(simp add: iter_narrow_def, | 
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 488 | rule measure_while_option_Some[where f=n and P = "%C. P C \<and> f C \<le> C"]) | 
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 489 | show "P C \<and> f C \<le> C" using init by blast | 
| 47613 | 490 | next | 
| 51385 
f193d44d4918
termination proof for narrowing: fewer assumptions
 nipkow parents: 
51372diff
changeset | 491 | fix C assume 1: "P C \<and> f C \<le> C" and 2: "C \<triangle> f C < C" | 
| 47613 | 492 | hence "P (C \<triangle> f C)" by(simp add: P_f P_narrow) | 
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 493 | moreover then have "f (C \<triangle> f C) \<le> C \<triangle> f C" | 
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 494 | by (metis narrow1_acom narrow2_acom 1 mono order_trans) | 
| 49547 | 495 | moreover have "n (C \<triangle> f C) < n C" using 1 2 by(simp add: n_narrow P_f) | 
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 496 | ultimately show "(P (C \<triangle> f C) \<and> f (C \<triangle> f C) \<le> C \<triangle> f C) \<and> n(C \<triangle> f C) < n C" | 
| 49547 | 497 | by blast | 
| 47613 | 498 | qed | 
| 499 | ||
| 52504 | 500 | locale Abs_Int_wn_measure = Abs_Int_wn where \<gamma>=\<gamma> + Measure_wn where m=m | 
| 501 |   for \<gamma> :: "'av::{wn,bounded_lattice} \<Rightarrow> val set" and m :: "'av \<Rightarrow> nat"
 | |
| 49547 | 502 | |
| 47613 | 503 | |
| 504 | subsubsection "Termination: Intervals" | |
| 505 | ||
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 506 | definition m_rep :: "eint2 \<Rightarrow> nat" where | 
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 507 | "m_rep p = (if is_empty_rep p then 3 else | 
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 508 | let (l,h) = p in (case l of Minf \<Rightarrow> 0 | _ \<Rightarrow> 1) + (case h of Pinf \<Rightarrow> 0 | _ \<Rightarrow> 1))" | 
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 509 | |
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 510 | lift_definition m_ivl :: "ivl \<Rightarrow> nat" is m_rep | 
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 511 | by(auto simp: m_rep_def eq_ivl_iff) | 
| 47613 | 512 | |
| 51924 | 513 | lemma m_ivl_nice: "m_ivl[l,h] = (if [l,h] = \<bottom> then 3 else | 
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 514 | (if l = Minf then 0 else 1) + (if h = Pinf then 0 else 1))" | 
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 515 | unfolding bot_ivl_def | 
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 516 | by transfer (auto simp: m_rep_def eq_ivl_empty split: extended.split) | 
| 47613 | 517 | |
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 518 | lemma m_ivl_height: "m_ivl iv \<le> 3" | 
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 519 | by transfer (simp add: m_rep_def split: prod.split extended.split) | 
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 520 | |
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 521 | lemma m_ivl_anti_mono: "y \<le> x \<Longrightarrow> m_ivl x \<le> m_ivl y" | 
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 522 | by transfer | 
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 523 | (auto simp: m_rep_def is_empty_rep_def \<gamma>_rep_cases le_iff_subset | 
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 524 | split: prod.split extended.splits if_splits) | 
| 47613 | 525 | |
| 526 | lemma m_ivl_widen: | |
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 527 | "~ y \<le> x \<Longrightarrow> m_ivl(x \<nabla> y) < m_ivl x" | 
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 528 | by transfer | 
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 529 | (auto simp: m_rep_def widen_rep_def is_empty_rep_def \<gamma>_rep_cases le_iff_subset | 
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 530 | split: prod.split extended.splits if_splits) | 
| 47613 | 531 | |
| 532 | definition n_ivl :: "ivl \<Rightarrow> nat" where | |
| 51953 | 533 | "n_ivl iv = 3 - m_ivl iv" | 
| 47613 | 534 | |
| 535 | lemma n_ivl_narrow: | |
| 51385 
f193d44d4918
termination proof for narrowing: fewer assumptions
 nipkow parents: 
51372diff
changeset | 536 | "x \<triangle> y < x \<Longrightarrow> n_ivl(x \<triangle> y) < n_ivl x" | 
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 537 | unfolding n_ivl_def | 
| 51385 
f193d44d4918
termination proof for narrowing: fewer assumptions
 nipkow parents: 
51372diff
changeset | 538 | apply(subst (asm) less_le_not_le) | 
| 
f193d44d4918
termination proof for narrowing: fewer assumptions
 nipkow parents: 
51372diff
changeset | 539 | apply transfer | 
| 
f193d44d4918
termination proof for narrowing: fewer assumptions
 nipkow parents: 
51372diff
changeset | 540 | by(auto simp add: m_rep_def narrow_rep_def is_empty_rep_def empty_rep_def \<gamma>_rep_cases le_iff_subset | 
| 
f193d44d4918
termination proof for narrowing: fewer assumptions
 nipkow parents: 
51372diff
changeset | 541 | split: prod.splits if_splits extended.split) | 
| 47613 | 542 | |
| 543 | ||
| 61890 
f6ded81f5690
abandoned attempt to unify sublocale and interpretation into global theories
 haftmann parents: 
61671diff
changeset | 544 | global_interpretation Abs_Int_wn_measure | 
| 51245 | 545 | where \<gamma> = \<gamma>_ivl and num' = num_ivl and plus' = "op +" | 
| 47613 | 546 | and test_num' = in_ivl | 
| 51974 | 547 | and inv_plus' = inv_plus_ivl and inv_less' = inv_less_ivl | 
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 548 | and m = m_ivl and n = n_ivl and h = 3 | 
| 61179 | 549 | proof (standard, goal_cases) | 
| 550 | case 2 thus ?case by(rule m_ivl_anti_mono) | |
| 47613 | 551 | next | 
| 61179 | 552 | case 1 thus ?case by(rule m_ivl_height) | 
| 47613 | 553 | next | 
| 61179 | 554 | case 3 thus ?case by(rule m_ivl_widen) | 
| 47613 | 555 | next | 
| 61179 | 556 | case 4 from 4(2) show ?case by(rule n_ivl_narrow) | 
| 49576 | 557 | -- "note that the first assms is unnecessary for intervals" | 
| 47613 | 558 | qed | 
| 559 | ||
| 560 | lemma iter_winden_step_ivl_termination: | |
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 561 | "\<exists>C. iter_widen (step_ivl \<top>) (bot c) = Some C" | 
| 51785 | 562 | apply(rule iter_widen_termination[where m = "m_c" and P = "%C. strip C = c \<and> top_on_acom C (- vars C)"]) | 
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 563 | apply (auto simp add: m_c_widen top_on_bot top_on_step'[simplified comp_def vars_acom_def] | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 564 | vars_acom_def top_on_acom_widen) | 
| 47613 | 565 | done | 
| 566 | ||
| 567 | lemma iter_narrow_step_ivl_termination: | |
| 51953 | 568 | "top_on_acom C (- vars C) \<Longrightarrow> step_ivl \<top> C \<le> C \<Longrightarrow> | 
| 569 | \<exists>C'. iter_narrow (step_ivl \<top>) C = Some C'" | |
| 570 | apply(rule iter_narrow_termination[where n = "n_c" and P = "%C'. strip C = strip C' \<and> top_on_acom C' (-vars C')"]) | |
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 571 | apply(auto simp: top_on_step'[simplified comp_def vars_acom_def] | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 572 | mono_step'_top n_c_narrow vars_acom_def top_on_acom_narrow) | 
| 47613 | 573 | done | 
| 574 | ||
| 51953 | 575 | theorem AI_wn_ivl_termination: | 
| 576 | "\<exists>C. AI_wn_ivl c = Some C" | |
| 47613 | 577 | apply(auto simp: AI_wn_def pfp_wn_def iter_winden_step_ivl_termination | 
| 578 | split: option.split) | |
| 579 | apply(rule iter_narrow_step_ivl_termination) | |
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 580 | apply(rule conjunct2) | 
| 51785 | 581 | apply(rule iter_widen_inv[where f = "step' \<top>" and P = "%C. c = strip C & top_on_acom C (- vars C)"]) | 
| 51711 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 582 | apply(auto simp: top_on_acom_widen top_on_step'[simplified comp_def vars_acom_def] | 
| 
df3426139651
complete revision: finally got rid of annoying L-predicate
 nipkow parents: 
51390diff
changeset | 583 | iter_widen_pfp top_on_bot vars_acom_def) | 
| 47613 | 584 | done | 
| 585 | ||
| 51390 | 586 | (*unused_thms Abs_Int_init - *) | 
| 47613 | 587 | |
| 49578 | 588 | subsubsection "Counterexamples" | 
| 589 | ||
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 590 | text{* Widening is increasing by assumption, but @{prop"x \<le> f x"} is not an invariant of widening.
 | 
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 591 | It can already be lost after the first step: *} | 
| 49578 | 592 | |
| 52504 | 593 | lemma assumes "!!x y::'a::wn. x \<le> y \<Longrightarrow> f x \<le> f y" | 
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 594 | and "x \<le> f x" and "\<not> f x \<le> x" shows "x \<nabla> f x \<le> f(x \<nabla> f x)" | 
| 55357 | 595 | nitpick[card = 3, expect = genuine, show_consts, timeout = 120] | 
| 49578 | 596 | (* | 
| 597 | 1 < 2 < 3, | |
| 598 | f x = 2, | |
| 599 | x widen y = 3 -- guarantees termination with top=3 | |
| 600 | x = 1 | |
| 601 | Now f is mono, x <= f x, not f x <= x | |
| 602 | but x widen f x = 3, f 3 = 2, but not 3 <= 2 | |
| 603 | *) | |
| 604 | oops | |
| 605 | ||
| 606 | text{* Widening terminates but may converge more slowly than Kleene iteration.
 | |
| 607 | In the following model, Kleene iteration goes from 0 to the least pfp | |
| 608 | in one step but widening takes 2 steps to reach a strictly larger pfp: *} | |
| 52504 | 609 | lemma assumes "!!x y::'a::wn. x \<le> y \<Longrightarrow> f x \<le> f y" | 
| 51359 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 610 | and "x \<le> f x" and "\<not> f x \<le> x" and "f(f x) \<le> f x" | 
| 
00b45c7e831f
major redesign: order instead of preorder, new definition of intervals as quotients
 nipkow parents: 
51245diff
changeset | 611 | shows "f(x \<nabla> f x) \<le> x \<nabla> f x" | 
| 55357 | 612 | nitpick[card = 4, expect = genuine, show_consts, timeout = 120] | 
| 49578 | 613 | (* | 
| 614 | ||
| 615 | 0 < 1 < 2 < 3 | |
| 616 | f: 1 1 3 3 | |
| 617 | ||
| 618 | 0 widen 1 = 2 | |
| 619 | 2 widen 3 = 3 | |
| 620 | and x widen y arbitrary, eg 3, which guarantees termination | |
| 621 | ||
| 622 | Kleene: f(f 0) = f 1 = 1 <= 1 = f 1 | |
| 623 | ||
| 624 | but | |
| 625 | ||
| 626 | because not f 0 <= 0, we obtain 0 widen f 0 = 0 wide 1 = 2, | |
| 627 | which is again not a pfp: not f 2 = 3 <= 2 | |
| 628 | Another widening step yields 2 widen f 2 = 2 widen 3 = 3 | |
| 629 | *) | |
| 49892 
09956f7a00af
proper 'oops' to force sequential checking here, and avoid spurious *** Interrupt stemming from crash of forked outer syntax element;
 wenzelm parents: 
49579diff
changeset | 630 | oops | 
| 49578 | 631 | |
| 47613 | 632 | end |