| author | huffman | 
| Mon, 02 Apr 2012 16:06:24 +0200 | |
| changeset 47299 | e705ef5ffe95 | 
| parent 47094 | 1a7ad2601cb5 | 
| child 47308 | 9caab698dbe4 | 
| permissions | -rw-r--r-- | 
| 35788 | 1 | (* Title: HOL/Library/Quotient_List.thy | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 2 | Author: Cezary Kaliszyk and Christian Urban | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 3 | *) | 
| 35788 | 4 | |
| 5 | header {* Quotient infrastructure for the list type *}
 | |
| 6 | ||
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 7 | theory Quotient_List | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 8 | imports Main Quotient_Syntax | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 9 | begin | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 10 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 11 | lemma map_id [id_simps]: | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 12 | "map id = id" | 
| 46663 | 13 | by (fact List.map.id) | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 14 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 15 | lemma list_all2_eq [id_simps]: | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 16 | "list_all2 (op =) = (op =)" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 17 | proof (rule ext)+ | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 18 | fix xs ys | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 19 | show "list_all2 (op =) xs ys \<longleftrightarrow> xs = ys" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 20 | by (induct xs ys rule: list_induct2') simp_all | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 21 | qed | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 22 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 23 | lemma list_reflp: | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 24 | assumes "reflp R" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 25 | shows "reflp (list_all2 R)" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 26 | proof (rule reflpI) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 27 | from assms have *: "\<And>xs. R xs xs" by (rule reflpE) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 28 | fix xs | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 29 | show "list_all2 R xs xs" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 30 | by (induct xs) (simp_all add: *) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 31 | qed | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 32 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 33 | lemma list_symp: | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 34 | assumes "symp R" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 35 | shows "symp (list_all2 R)" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 36 | proof (rule sympI) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 37 | from assms have *: "\<And>xs ys. R xs ys \<Longrightarrow> R ys xs" by (rule sympE) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 38 | fix xs ys | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 39 | assume "list_all2 R xs ys" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 40 | then show "list_all2 R ys xs" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 41 | by (induct xs ys rule: list_induct2') (simp_all add: *) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 42 | qed | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 43 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 44 | lemma list_transp: | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 45 | assumes "transp R" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 46 | shows "transp (list_all2 R)" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 47 | proof (rule transpI) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 48 | from assms have *: "\<And>xs ys zs. R xs ys \<Longrightarrow> R ys zs \<Longrightarrow> R xs zs" by (rule transpE) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 49 | fix xs ys zs | 
| 45803 
fe44c0b216ef
remove some duplicate lemmas, simplify some proofs
 huffman parents: 
40820diff
changeset | 50 | assume "list_all2 R xs ys" and "list_all2 R ys zs" | 
| 
fe44c0b216ef
remove some duplicate lemmas, simplify some proofs
 huffman parents: 
40820diff
changeset | 51 | then show "list_all2 R xs zs" | 
| 
fe44c0b216ef
remove some duplicate lemmas, simplify some proofs
 huffman parents: 
40820diff
changeset | 52 | by (induct arbitrary: zs) (auto simp: list_all2_Cons1 intro: *) | 
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 53 | qed | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 54 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 55 | lemma list_equivp [quot_equiv]: | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 56 | "equivp R \<Longrightarrow> equivp (list_all2 R)" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 57 | by (blast intro: equivpI list_reflp list_symp list_transp elim: equivpE) | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 58 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 59 | lemma list_quotient [quot_thm]: | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 60 | assumes "Quotient R Abs Rep" | 
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 61 | shows "Quotient (list_all2 R) (map Abs) (map Rep)" | 
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 62 | proof (rule QuotientI) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 63 | from assms have "\<And>x. Abs (Rep x) = x" by (rule Quotient_abs_rep) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 64 | then show "\<And>xs. map Abs (map Rep xs) = xs" by (simp add: comp_def) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 65 | next | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 66 | from assms have "\<And>x y. R (Rep x) (Rep y) \<longleftrightarrow> x = y" by (rule Quotient_rel_rep) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 67 | then show "\<And>xs. list_all2 R (map Rep xs) (map Rep xs)" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 68 | by (simp add: list_all2_map1 list_all2_map2 list_all2_eq) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 69 | next | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 70 | fix xs ys | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 71 | from assms have "\<And>x y. R x x \<and> R y y \<and> Abs x = Abs y \<longleftrightarrow> R x y" by (rule Quotient_rel) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 72 | then show "list_all2 R xs ys \<longleftrightarrow> list_all2 R xs xs \<and> list_all2 R ys ys \<and> map Abs xs = map Abs ys" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 73 | by (induct xs ys rule: list_induct2') auto | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 74 | qed | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 75 | |
| 47094 | 76 | declare [[map list = (list_all2, list_quotient)]] | 
| 77 | ||
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 78 | lemma cons_prs [quot_preserve]: | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 79 | assumes q: "Quotient R Abs Rep" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 80 | shows "(Rep ---> (map Rep) ---> (map Abs)) (op #) = (op #)" | 
| 40463 | 81 | by (auto simp add: fun_eq_iff comp_def Quotient_abs_rep [OF q]) | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 82 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 83 | lemma cons_rsp [quot_respect]: | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 84 | assumes q: "Quotient R Abs Rep" | 
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 85 | shows "(R ===> list_all2 R ===> list_all2 R) (op #) (op #)" | 
| 40463 | 86 | by auto | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 87 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 88 | lemma nil_prs [quot_preserve]: | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 89 | assumes q: "Quotient R Abs Rep" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 90 | shows "map Abs [] = []" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 91 | by simp | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 92 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 93 | lemma nil_rsp [quot_respect]: | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 94 | assumes q: "Quotient R Abs Rep" | 
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 95 | shows "list_all2 R [] []" | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 96 | by simp | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 97 | |
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 98 | lemma map_prs_aux: | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 99 | assumes a: "Quotient R1 abs1 rep1" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 100 | and b: "Quotient R2 abs2 rep2" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 101 | shows "(map abs2) (map ((abs1 ---> rep2) f) (map rep1 l)) = map f l" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 102 | by (induct l) | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 103 | (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b]) | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 104 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 105 | lemma map_prs [quot_preserve]: | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 106 | assumes a: "Quotient R1 abs1 rep1" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 107 | and b: "Quotient R2 abs2 rep2" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 108 | shows "((abs1 ---> rep2) ---> (map rep1) ---> (map abs2)) map = map" | 
| 36216 
8fb6cc6f3b94
respectfullness and preservation of map for identity quotients
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36154diff
changeset | 109 | and "((abs1 ---> id) ---> map rep1 ---> id) map = map" | 
| 40463 | 110 | by (simp_all only: fun_eq_iff map_prs_aux[OF a b] comp_def) | 
| 111 | (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b]) | |
| 112 | ||
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 113 | lemma map_rsp [quot_respect]: | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 114 | assumes q1: "Quotient R1 Abs1 Rep1" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 115 | and q2: "Quotient R2 Abs2 Rep2" | 
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 116 | shows "((R1 ===> R2) ===> (list_all2 R1) ===> list_all2 R2) map map" | 
| 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 117 | and "((R1 ===> op =) ===> (list_all2 R1) ===> op =) map map" | 
| 40463 | 118 | apply (simp_all add: fun_rel_def) | 
| 36216 
8fb6cc6f3b94
respectfullness and preservation of map for identity quotients
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36154diff
changeset | 119 | apply(rule_tac [!] allI)+ | 
| 
8fb6cc6f3b94
respectfullness and preservation of map for identity quotients
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36154diff
changeset | 120 | apply(rule_tac [!] impI) | 
| 
8fb6cc6f3b94
respectfullness and preservation of map for identity quotients
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36154diff
changeset | 121 | apply(rule_tac [!] allI)+ | 
| 
8fb6cc6f3b94
respectfullness and preservation of map for identity quotients
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36154diff
changeset | 122 | apply (induct_tac [!] xa ya rule: list_induct2') | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 123 | apply simp_all | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 124 | done | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 125 | |
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 126 | lemma foldr_prs_aux: | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 127 | assumes a: "Quotient R1 abs1 rep1" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 128 | and b: "Quotient R2 abs2 rep2" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 129 | shows "abs2 (foldr ((abs1 ---> abs2 ---> rep2) f) (map rep1 l) (rep2 e)) = foldr f l e" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 130 | by (induct l) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b]) | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 131 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 132 | lemma foldr_prs [quot_preserve]: | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 133 | assumes a: "Quotient R1 abs1 rep1" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 134 | and b: "Quotient R2 abs2 rep2" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 135 | shows "((abs1 ---> abs2 ---> rep2) ---> (map rep1) ---> rep2 ---> abs2) foldr = foldr" | 
| 40463 | 136 | apply (simp add: fun_eq_iff) | 
| 137 | by (simp only: fun_eq_iff foldr_prs_aux[OF a b]) | |
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 138 | (simp) | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 139 | |
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 140 | lemma foldl_prs_aux: | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 141 | assumes a: "Quotient R1 abs1 rep1" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 142 | and b: "Quotient R2 abs2 rep2" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 143 | shows "abs1 (foldl ((abs1 ---> abs2 ---> rep1) f) (rep1 e) (map rep2 l)) = foldl f e l" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 144 | by (induct l arbitrary:e) (simp_all add: Quotient_abs_rep[OF a] Quotient_abs_rep[OF b]) | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 145 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 146 | lemma foldl_prs [quot_preserve]: | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 147 | assumes a: "Quotient R1 abs1 rep1" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 148 | and b: "Quotient R2 abs2 rep2" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 149 | shows "((abs1 ---> abs2 ---> rep1) ---> rep1 ---> (map rep2) ---> abs1) foldl = foldl" | 
| 40463 | 150 | by (simp add: fun_eq_iff foldl_prs_aux [OF a b]) | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 151 | |
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 152 | (* induct_tac doesn't accept 'arbitrary', so we manually 'spec' *) | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 153 | lemma foldl_rsp[quot_respect]: | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 154 | assumes q1: "Quotient R1 Abs1 Rep1" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 155 | and q2: "Quotient R2 Abs2 Rep2" | 
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 156 | shows "((R1 ===> R2 ===> R1) ===> R1 ===> list_all2 R2 ===> R1) foldl foldl" | 
| 40463 | 157 | apply(auto simp add: fun_rel_def) | 
| 45803 
fe44c0b216ef
remove some duplicate lemmas, simplify some proofs
 huffman parents: 
40820diff
changeset | 158 | apply (erule_tac P="R1 xa ya" in rev_mp) | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 159 | apply (rule_tac x="xa" in spec) | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 160 | apply (rule_tac x="ya" in spec) | 
| 45803 
fe44c0b216ef
remove some duplicate lemmas, simplify some proofs
 huffman parents: 
40820diff
changeset | 161 | apply (erule list_all2_induct, simp_all) | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 162 | done | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 163 | |
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 164 | lemma foldr_rsp[quot_respect]: | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 165 | assumes q1: "Quotient R1 Abs1 Rep1" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 166 | and q2: "Quotient R2 Abs2 Rep2" | 
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 167 | shows "((R1 ===> R2 ===> R2) ===> list_all2 R1 ===> R2 ===> R2) foldr foldr" | 
| 40463 | 168 | apply (auto simp add: fun_rel_def) | 
| 45803 
fe44c0b216ef
remove some duplicate lemmas, simplify some proofs
 huffman parents: 
40820diff
changeset | 169 | apply (erule list_all2_induct, simp_all) | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 170 | done | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 171 | |
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 172 | lemma list_all2_rsp: | 
| 36154 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35788diff
changeset | 173 | assumes r: "\<forall>x y. R x y \<longrightarrow> (\<forall>a b. R a b \<longrightarrow> S x a = T y b)" | 
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 174 | and l1: "list_all2 R x y" | 
| 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 175 | and l2: "list_all2 R a b" | 
| 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 176 | shows "list_all2 S x a = list_all2 T y b" | 
| 45803 
fe44c0b216ef
remove some duplicate lemmas, simplify some proofs
 huffman parents: 
40820diff
changeset | 177 | using l1 l2 | 
| 
fe44c0b216ef
remove some duplicate lemmas, simplify some proofs
 huffman parents: 
40820diff
changeset | 178 | by (induct arbitrary: a b rule: list_all2_induct, | 
| 
fe44c0b216ef
remove some duplicate lemmas, simplify some proofs
 huffman parents: 
40820diff
changeset | 179 | auto simp: list_all2_Cons1 list_all2_Cons2 r) | 
| 36154 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35788diff
changeset | 180 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 181 | lemma [quot_respect]: | 
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 182 | "((R ===> R ===> op =) ===> list_all2 R ===> list_all2 R ===> op =) list_all2 list_all2" | 
| 40463 | 183 | by (simp add: list_all2_rsp fun_rel_def) | 
| 36154 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35788diff
changeset | 184 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 185 | lemma [quot_preserve]: | 
| 36154 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35788diff
changeset | 186 | assumes a: "Quotient R abs1 rep1" | 
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 187 | shows "((abs1 ---> abs1 ---> id) ---> map rep1 ---> map rep1 ---> id) list_all2 = list_all2" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 188 | apply (simp add: fun_eq_iff) | 
| 36154 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35788diff
changeset | 189 | apply clarify | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35788diff
changeset | 190 | apply (induct_tac xa xb rule: list_induct2') | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35788diff
changeset | 191 | apply (simp_all add: Quotient_abs_rep[OF a]) | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35788diff
changeset | 192 | done | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35788diff
changeset | 193 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 194 | lemma [quot_preserve]: | 
| 36154 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35788diff
changeset | 195 | assumes a: "Quotient R abs1 rep1" | 
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 196 | shows "(list_all2 ((rep1 ---> rep1 ---> id) R) l m) = (l = m)" | 
| 36154 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35788diff
changeset | 197 | by (induct l m rule: list_induct2') (simp_all add: Quotient_rel_rep[OF a]) | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35788diff
changeset | 198 | |
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 199 | lemma list_all2_find_element: | 
| 36276 
92011cc923f5
fun_rel introduction and list_rel elimination for quotient package
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36216diff
changeset | 200 | assumes a: "x \<in> set a" | 
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 201 | and b: "list_all2 R a b" | 
| 36276 
92011cc923f5
fun_rel introduction and list_rel elimination for quotient package
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36216diff
changeset | 202 | shows "\<exists>y. (y \<in> set b \<and> R x y)" | 
| 45803 
fe44c0b216ef
remove some duplicate lemmas, simplify some proofs
 huffman parents: 
40820diff
changeset | 203 | using b a by induct auto | 
| 36276 
92011cc923f5
fun_rel introduction and list_rel elimination for quotient package
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36216diff
changeset | 204 | |
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 205 | lemma list_all2_refl: | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 206 | assumes a: "\<And>x y. R x y = (R x = R y)" | 
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 207 | shows "list_all2 R x x" | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 208 | by (induct x) (auto simp add: a) | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 209 | |
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 210 | end |