47108
|
1 |
(* Title: HOL/ex/Code_Nat_examples.thy
|
|
2 |
Author: Florian Haftmann, TU Muenchen
|
|
3 |
*)
|
|
4 |
|
|
5 |
header {* Simple examples for Code\_Numeral\_Nat theory. *}
|
|
6 |
|
|
7 |
theory Code_Nat_examples
|
|
8 |
imports Complex_Main "~~/src/HOL/Library/Efficient_Nat"
|
|
9 |
begin
|
|
10 |
|
|
11 |
fun to_n :: "nat \<Rightarrow> nat list"
|
|
12 |
where
|
|
13 |
"to_n 0 = []"
|
|
14 |
| "to_n (Suc 0) = []"
|
|
15 |
| "to_n (Suc (Suc 0)) = []"
|
|
16 |
| "to_n (Suc n) = n # to_n n"
|
|
17 |
|
|
18 |
definition naive_prime :: "nat \<Rightarrow> bool"
|
|
19 |
where
|
|
20 |
"naive_prime n \<longleftrightarrow> n \<ge> 2 \<and> filter (\<lambda>m. n mod m = 0) (to_n n) = []"
|
|
21 |
|
|
22 |
primrec fac :: "nat \<Rightarrow> nat"
|
|
23 |
where
|
|
24 |
"fac 0 = 1"
|
|
25 |
| "fac (Suc n) = Suc n * fac n"
|
|
26 |
|
|
27 |
primrec harmonic :: "nat \<Rightarrow> rat"
|
|
28 |
where
|
|
29 |
"harmonic 0 = 0"
|
|
30 |
| "harmonic (Suc n) = 1 / of_nat (Suc n) + harmonic n"
|
|
31 |
|
|
32 |
lemma "harmonic 200 \<ge> 5"
|
|
33 |
by eval
|
|
34 |
|
|
35 |
lemma "(let (q, r) = quotient_of (harmonic 8) in q div r) \<ge> 2"
|
|
36 |
by normalization
|
|
37 |
|
|
38 |
lemma "naive_prime 89"
|
|
39 |
by eval
|
|
40 |
|
|
41 |
lemma "naive_prime 89"
|
|
42 |
by normalization
|
|
43 |
|
|
44 |
lemma "\<not> naive_prime 87"
|
|
45 |
by eval
|
|
46 |
|
|
47 |
lemma "\<not> naive_prime 87"
|
|
48 |
by normalization
|
|
49 |
|
|
50 |
lemma "fac 10 > 3000000"
|
|
51 |
by eval
|
|
52 |
|
|
53 |
lemma "fac 10 > 3000000"
|
|
54 |
by normalization
|
|
55 |
|
|
56 |
end
|
|
57 |
|