| author | haftmann | 
| Sun, 16 Oct 2016 09:31:05 +0200 | |
| changeset 64244 | e7102c40783c | 
| parent 63538 | d7b5e2a222c2 | 
| child 67019 | 7a3724078363 | 
| permissions | -rw-r--r-- | 
| 43158 | 1  | 
(* Author: Tobias Nipkow *)  | 
2  | 
||
| 
63538
 
d7b5e2a222c2
added new vcg based on existentially quantified while-rule
 
nipkow 
parents: 
54809 
diff
changeset
 | 
3  | 
subsection \<open>Soundness and Completeness\<close>  | 
| 43158 | 4  | 
|
| 
63538
 
d7b5e2a222c2
added new vcg based on existentially quantified while-rule
 
nipkow 
parents: 
54809 
diff
changeset
 | 
5  | 
theory Hoare_Sound_Complete  | 
| 
 
d7b5e2a222c2
added new vcg based on existentially quantified while-rule
 
nipkow 
parents: 
54809 
diff
changeset
 | 
6  | 
imports Hoare  | 
| 
 
d7b5e2a222c2
added new vcg based on existentially quantified while-rule
 
nipkow 
parents: 
54809 
diff
changeset
 | 
7  | 
begin  | 
| 
 
d7b5e2a222c2
added new vcg based on existentially quantified while-rule
 
nipkow 
parents: 
54809 
diff
changeset
 | 
8  | 
|
| 
 
d7b5e2a222c2
added new vcg based on existentially quantified while-rule
 
nipkow 
parents: 
54809 
diff
changeset
 | 
9  | 
subsubsection "Soundness"  | 
| 43158 | 10  | 
|
11  | 
lemma hoare_sound: "\<turnstile> {P}c{Q}  \<Longrightarrow>  \<Turnstile> {P}c{Q}"
 | 
|
| 45015 | 12  | 
proof(induction rule: hoare.induct)  | 
| 43158 | 13  | 
case (While P b c)  | 
14  | 
  { fix s t
 | 
|
| 52168 | 15  | 
have "(WHILE b DO c,s) \<Rightarrow> t \<Longrightarrow> P s \<Longrightarrow> P t \<and> \<not> bval b t"  | 
| 45015 | 16  | 
proof(induction "WHILE b DO c" s t rule: big_step_induct)  | 
| 43158 | 17  | 
case WhileFalse thus ?case by blast  | 
18  | 
next  | 
|
19  | 
case WhileTrue thus ?case  | 
|
| 52168 | 20  | 
using While.IH unfolding hoare_valid_def by blast  | 
| 43158 | 21  | 
qed  | 
22  | 
}  | 
|
23  | 
thus ?case unfolding hoare_valid_def by blast  | 
|
24  | 
qed (auto simp: hoare_valid_def)  | 
|
25  | 
||
26  | 
||
| 
63538
 
d7b5e2a222c2
added new vcg based on existentially quantified while-rule
 
nipkow 
parents: 
54809 
diff
changeset
 | 
27  | 
subsubsection "Weakest Precondition"  | 
| 43158 | 28  | 
|
29  | 
definition wp :: "com \<Rightarrow> assn \<Rightarrow> assn" where  | 
|
30  | 
"wp c Q = (\<lambda>s. \<forall>t. (c,s) \<Rightarrow> t \<longrightarrow> Q t)"  | 
|
31  | 
||
32  | 
lemma wp_SKIP[simp]: "wp SKIP Q = Q"  | 
|
33  | 
by (rule ext) (auto simp: wp_def)  | 
|
34  | 
||
35  | 
lemma wp_Ass[simp]: "wp (x::=a) Q = (\<lambda>s. Q(s[a/x]))"  | 
|
36  | 
by (rule ext) (auto simp: wp_def)  | 
|
37  | 
||
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52373 
diff
changeset
 | 
38  | 
lemma wp_Seq[simp]: "wp (c\<^sub>1;;c\<^sub>2) Q = wp c\<^sub>1 (wp c\<^sub>2 Q)"  | 
| 43158 | 39  | 
by (rule ext) (auto simp: wp_def)  | 
40  | 
||
41  | 
lemma wp_If[simp]:  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52373 
diff
changeset
 | 
42  | 
"wp (IF b THEN c\<^sub>1 ELSE c\<^sub>2) Q =  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52373 
diff
changeset
 | 
43  | 
(\<lambda>s. if bval b s then wp c\<^sub>1 Q s else wp c\<^sub>2 Q s)"  | 
| 43158 | 44  | 
by (rule ext) (auto simp: wp_def)  | 
45  | 
||
46  | 
lemma wp_While_If:  | 
|
47  | 
"wp (WHILE b DO c) Q s =  | 
|
| 
52046
 
bc01725d7918
replaced `;' by `;;' to disambiguate syntax; unexpected slight increase in build time
 
nipkow 
parents: 
47818 
diff
changeset
 | 
48  | 
wp (IF b THEN c;;WHILE b DO c ELSE SKIP) Q s"  | 
| 43158 | 49  | 
unfolding wp_def by (metis unfold_while)  | 
50  | 
||
51  | 
lemma wp_While_True[simp]: "bval b s \<Longrightarrow>  | 
|
| 
52046
 
bc01725d7918
replaced `;' by `;;' to disambiguate syntax; unexpected slight increase in build time
 
nipkow 
parents: 
47818 
diff
changeset
 | 
52  | 
wp (WHILE b DO c) Q s = wp (c;; WHILE b DO c) Q s"  | 
| 43158 | 53  | 
by(simp add: wp_While_If)  | 
54  | 
||
55  | 
lemma wp_While_False[simp]: "\<not> bval b s \<Longrightarrow> wp (WHILE b DO c) Q s = Q s"  | 
|
56  | 
by(simp add: wp_While_If)  | 
|
57  | 
||
58  | 
||
| 
63538
 
d7b5e2a222c2
added new vcg based on existentially quantified while-rule
 
nipkow 
parents: 
54809 
diff
changeset
 | 
59  | 
subsubsection "Completeness"  | 
| 43158 | 60  | 
|
61  | 
lemma wp_is_pre: "\<turnstile> {wp c Q} c {Q}"
 | 
|
| 45015 | 62  | 
proof(induction c arbitrary: Q)  | 
| 52373 | 63  | 
case If thus ?case by(auto intro: conseq)  | 
| 43158 | 64  | 
next  | 
65  | 
case (While b c)  | 
|
66  | 
let ?w = "WHILE b DO c"  | 
|
| 52193 | 67  | 
  show "\<turnstile> {wp ?w Q} ?w {Q}"
 | 
68  | 
proof(rule While')  | 
|
| 43158 | 69  | 
    show "\<turnstile> {\<lambda>s. wp ?w Q s \<and> bval b s} c {wp ?w Q}"
 | 
| 52193 | 70  | 
proof(rule strengthen_pre[OF _ While.IH])  | 
| 43158 | 71  | 
show "\<forall>s. wp ?w Q s \<and> bval b s \<longrightarrow> wp c (wp ?w Q) s" by auto  | 
72  | 
qed  | 
|
73  | 
show "\<forall>s. wp ?w Q s \<and> \<not> bval b s \<longrightarrow> Q s" by auto  | 
|
74  | 
qed  | 
|
75  | 
qed auto  | 
|
76  | 
||
| 52291 | 77  | 
lemma hoare_complete: assumes "\<Turnstile> {P}c{Q}" shows "\<turnstile> {P}c{Q}"
 | 
| 43158 | 78  | 
proof(rule strengthen_pre)  | 
79  | 
show "\<forall>s. P s \<longrightarrow> wp c Q s" using assms  | 
|
80  | 
by (auto simp: hoare_valid_def wp_def)  | 
|
81  | 
  show "\<turnstile> {wp c Q} c {Q}" by(rule wp_is_pre)
 | 
|
82  | 
qed  | 
|
83  | 
||
| 54809 | 84  | 
corollary hoare_sound_complete: "\<turnstile> {P}c{Q} \<longleftrightarrow> \<Turnstile> {P}c{Q}"
 | 
85  | 
by (metis hoare_complete hoare_sound)  | 
|
86  | 
||
| 43158 | 87  | 
end  |