10213
|
1 |
(* Title: HOL/Datatype_Universe.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1993 University of Cambridge
|
|
5 |
|
|
6 |
Declares the type ('a, 'b) node, a subtype of (nat=>'b+nat) * ('a+nat)
|
|
7 |
|
|
8 |
Defines "Cartesian Product" and "Disjoint Sum" as set operations.
|
|
9 |
Could <*> be generalized to a general summation (Sigma)?
|
|
10 |
*)
|
|
11 |
|
10214
|
12 |
Datatype_Universe = NatArith + Sum_Type +
|
10213
|
13 |
|
|
14 |
|
|
15 |
(** lists, trees will be sets of nodes **)
|
|
16 |
|
|
17 |
typedef (Node)
|
|
18 |
('a, 'b) node = "{p. EX f x k. p = (f::nat=>'b+nat, x::'a+nat) & f k = Inr 0}"
|
|
19 |
|
|
20 |
types
|
|
21 |
'a item = ('a, unit) node set
|
|
22 |
('a, 'b) dtree = ('a, 'b) node set
|
|
23 |
|
|
24 |
consts
|
|
25 |
apfst :: "['a=>'c, 'a*'b] => 'c*'b"
|
|
26 |
Push :: "[('b + nat), nat => ('b + nat)] => (nat => ('b + nat))"
|
|
27 |
|
|
28 |
Push_Node :: "[('b + nat), ('a, 'b) node] => ('a, 'b) node"
|
|
29 |
ndepth :: ('a, 'b) node => nat
|
|
30 |
|
|
31 |
Atom :: "('a + nat) => ('a, 'b) dtree"
|
|
32 |
Leaf :: 'a => ('a, 'b) dtree
|
|
33 |
Numb :: nat => ('a, 'b) dtree
|
|
34 |
Scons :: [('a, 'b) dtree, ('a, 'b) dtree] => ('a, 'b) dtree
|
|
35 |
In0,In1 :: ('a, 'b) dtree => ('a, 'b) dtree
|
|
36 |
|
|
37 |
Lim :: ('b => ('a, 'b) dtree) => ('a, 'b) dtree
|
|
38 |
Funs :: "'u set => ('t => 'u) set"
|
|
39 |
|
|
40 |
ntrunc :: [nat, ('a, 'b) dtree] => ('a, 'b) dtree
|
|
41 |
|
|
42 |
uprod :: [('a, 'b) dtree set, ('a, 'b) dtree set]=> ('a, 'b) dtree set
|
|
43 |
usum :: [('a, 'b) dtree set, ('a, 'b) dtree set]=> ('a, 'b) dtree set
|
|
44 |
|
|
45 |
Split :: [[('a, 'b) dtree, ('a, 'b) dtree]=>'c, ('a, 'b) dtree] => 'c
|
|
46 |
Case :: [[('a, 'b) dtree]=>'c, [('a, 'b) dtree]=>'c, ('a, 'b) dtree] => 'c
|
|
47 |
|
|
48 |
dprod :: "[(('a, 'b) dtree * ('a, 'b) dtree)set, (('a, 'b) dtree * ('a, 'b) dtree)set]
|
|
49 |
=> (('a, 'b) dtree * ('a, 'b) dtree)set"
|
|
50 |
dsum :: "[(('a, 'b) dtree * ('a, 'b) dtree)set, (('a, 'b) dtree * ('a, 'b) dtree)set]
|
|
51 |
=> (('a, 'b) dtree * ('a, 'b) dtree)set"
|
|
52 |
|
|
53 |
|
|
54 |
defs
|
|
55 |
|
|
56 |
Push_Node_def "Push_Node == (%n x. Abs_Node (apfst (Push n) (Rep_Node x)))"
|
|
57 |
|
|
58 |
(*crude "lists" of nats -- needed for the constructions*)
|
|
59 |
apfst_def "apfst == (%f (x,y). (f(x),y))"
|
|
60 |
Push_def "Push == (%b h. nat_case b h)"
|
|
61 |
|
|
62 |
(** operations on S-expressions -- sets of nodes **)
|
|
63 |
|
|
64 |
(*S-expression constructors*)
|
|
65 |
Atom_def "Atom == (%x. {Abs_Node((%k. Inr 0, x))})"
|
10832
|
66 |
Scons_def "Scons M N == (Push_Node (Inr 1) ` M) Un (Push_Node (Inr 2) ` N)"
|
10213
|
67 |
|
|
68 |
(*Leaf nodes, with arbitrary or nat labels*)
|
|
69 |
Leaf_def "Leaf == Atom o Inl"
|
|
70 |
Numb_def "Numb == Atom o Inr"
|
|
71 |
|
|
72 |
(*Injections of the "disjoint sum"*)
|
|
73 |
In0_def "In0(M) == Scons (Numb 0) M"
|
|
74 |
In1_def "In1(M) == Scons (Numb 1) M"
|
|
75 |
|
|
76 |
(*Function spaces*)
|
10832
|
77 |
Lim_def "Lim f == Union {z. ? x. z = Push_Node (Inl x) ` (f x)}"
|
10213
|
78 |
Funs_def "Funs S == {f. range f <= S}"
|
|
79 |
|
|
80 |
(*the set of nodes with depth less than k*)
|
|
81 |
ndepth_def "ndepth(n) == (%(f,x). LEAST k. f k = Inr 0) (Rep_Node n)"
|
|
82 |
ntrunc_def "ntrunc k N == {n. n:N & ndepth(n)<k}"
|
|
83 |
|
|
84 |
(*products and sums for the "universe"*)
|
|
85 |
uprod_def "uprod A B == UN x:A. UN y:B. { Scons x y }"
|
10832
|
86 |
usum_def "usum A B == In0`A Un In1`B"
|
10213
|
87 |
|
|
88 |
(*the corresponding eliminators*)
|
|
89 |
Split_def "Split c M == @u. ? x y. M = Scons x y & u = c x y"
|
|
90 |
|
|
91 |
Case_def "Case c d M == @u. (? x . M = In0(x) & u = c(x))
|
|
92 |
| (? y . M = In1(y) & u = d(y))"
|
|
93 |
|
|
94 |
|
|
95 |
(** equality for the "universe" **)
|
|
96 |
|
|
97 |
dprod_def "dprod r s == UN (x,x'):r. UN (y,y'):s. {(Scons x y, Scons x' y')}"
|
|
98 |
|
|
99 |
dsum_def "dsum r s == (UN (x,x'):r. {(In0(x),In0(x'))}) Un
|
|
100 |
(UN (y,y'):s. {(In1(y),In1(y'))})"
|
|
101 |
|
|
102 |
end
|