| author | wenzelm | 
| Tue, 31 Jul 2007 00:56:31 +0200 | |
| changeset 24077 | e7ba448bc571 | 
| parent 23746 | a455e69c31cc | 
| child 25134 | 3d4953e88449 | 
| permissions | -rw-r--r-- | 
| 13508 | 1  | 
(******************************************************************************  | 
2  | 
date: january 2002  | 
|
3  | 
author: Frederic Blanqui  | 
|
4  | 
email: blanqui@lri.fr  | 
|
5  | 
webpage: http://www.lri.fr/~blanqui/  | 
|
6  | 
||
7  | 
University of Cambridge, Computer Laboratory  | 
|
8  | 
William Gates Building, JJ Thomson Avenue  | 
|
9  | 
Cambridge CB3 0FD, United Kingdom  | 
|
10  | 
******************************************************************************)  | 
|
11  | 
||
12  | 
header{*Protocol-Independent Confidentiality Theorem on Nonces*}
 | 
|
13  | 
||
| 16417 | 14  | 
theory Guard imports Analz Extensions begin  | 
| 13508 | 15  | 
|
16  | 
(******************************************************************************  | 
|
17  | 
messages where all the occurrences of Nonce n are  | 
|
18  | 
in a sub-message of the form Crypt (invKey K) X with K:Ks  | 
|
19  | 
******************************************************************************)  | 
|
20  | 
||
| 23746 | 21  | 
inductive_set  | 
22  | 
guard :: "nat => key set => msg set"  | 
|
23  | 
for n :: nat and Ks :: "key set"  | 
|
24  | 
where  | 
|
25  | 
  No_Nonce [intro]: "Nonce n ~:parts {X} ==> X:guard n Ks"
 | 
|
26  | 
| Guard_Nonce [intro]: "invKey K:Ks ==> Crypt K X:guard n Ks"  | 
|
27  | 
| Crypt [intro]: "X:guard n Ks ==> Crypt K X:guard n Ks"  | 
|
28  | 
| Pair [intro]: "[| X:guard n Ks; Y:guard n Ks |] ==> {|X,Y|}:guard n Ks"
 | 
|
| 13508 | 29  | 
|
30  | 
subsection{*basic facts about @{term guard}*}
 | 
|
31  | 
||
32  | 
lemma Key_is_guard [iff]: "Key K:guard n Ks"  | 
|
33  | 
by auto  | 
|
34  | 
||
35  | 
lemma Agent_is_guard [iff]: "Agent A:guard n Ks"  | 
|
36  | 
by auto  | 
|
37  | 
||
38  | 
lemma Number_is_guard [iff]: "Number r:guard n Ks"  | 
|
39  | 
by auto  | 
|
40  | 
||
41  | 
lemma Nonce_notin_guard: "X:guard n Ks ==> X ~= Nonce n"  | 
|
42  | 
by (erule guard.induct, auto)  | 
|
43  | 
||
44  | 
lemma Nonce_notin_guard_iff [iff]: "Nonce n ~:guard n Ks"  | 
|
45  | 
by (auto dest: Nonce_notin_guard)  | 
|
46  | 
||
47  | 
lemma guard_has_Crypt [rule_format]: "X:guard n Ks ==> Nonce n:parts {X}
 | 
|
48  | 
--> (EX K Y. Crypt K Y:kparts {X} & Nonce n:parts {Y})"
 | 
|
49  | 
by (erule guard.induct, auto)  | 
|
50  | 
||
51  | 
lemma Nonce_notin_kparts_msg: "X:guard n Ks ==> Nonce n ~:kparts {X}"
 | 
|
52  | 
by (erule guard.induct, auto)  | 
|
53  | 
||
54  | 
lemma Nonce_in_kparts_imp_no_guard: "Nonce n:kparts H  | 
|
55  | 
==> EX X. X:H & X ~:guard n Ks"  | 
|
56  | 
apply (drule in_kparts, clarify)  | 
|
57  | 
apply (rule_tac x=X in exI, clarify)  | 
|
58  | 
by (auto dest: Nonce_notin_kparts_msg)  | 
|
59  | 
||
60  | 
lemma guard_kparts [rule_format]: "X:guard n Ks ==>  | 
|
61  | 
Y:kparts {X} --> Y:guard n Ks"
 | 
|
62  | 
by (erule guard.induct, auto)  | 
|
63  | 
||
64  | 
lemma guard_Crypt: "[| Crypt K Y:guard n Ks; K ~:invKey`Ks |] ==> Y:guard n Ks"  | 
|
65  | 
by (ind_cases "Crypt K Y:guard n Ks", auto)  | 
|
66  | 
||
67  | 
lemma guard_MPair [iff]: "({|X,Y|}:guard n Ks) = (X:guard n Ks & Y:guard n Ks)"
 | 
|
68  | 
by (auto, (ind_cases "{|X,Y|}:guard n Ks", auto)+)
 | 
|
69  | 
||
70  | 
lemma guard_not_guard [rule_format]: "X:guard n Ks ==>  | 
|
71  | 
Crypt K Y:kparts {X} --> Nonce n:kparts {Y} --> Y ~:guard n Ks"
 | 
|
72  | 
by (erule guard.induct, auto dest: guard_kparts)  | 
|
73  | 
||
74  | 
lemma guard_extand: "[| X:guard n Ks; Ks <= Ks' |] ==> X:guard n Ks'"  | 
|
75  | 
by (erule guard.induct, auto)  | 
|
76  | 
||
77  | 
subsection{*guarded sets*}
 | 
|
78  | 
||
79  | 
constdefs Guard :: "nat => key set => msg set => bool"  | 
|
80  | 
"Guard n Ks H == ALL X. X:H --> X:guard n Ks"  | 
|
81  | 
||
82  | 
subsection{*basic facts about @{term Guard}*}
 | 
|
83  | 
||
84  | 
lemma Guard_empty [iff]: "Guard n Ks {}"
 | 
|
85  | 
by (simp add: Guard_def)  | 
|
86  | 
||
87  | 
lemma notin_parts_Guard [intro]: "Nonce n ~:parts G ==> Guard n Ks G"  | 
|
88  | 
apply (unfold Guard_def, clarify)  | 
|
89  | 
apply (subgoal_tac "Nonce n ~:parts {X}")
 | 
|
90  | 
by (auto dest: parts_sub)  | 
|
91  | 
||
92  | 
lemma Nonce_notin_kparts [simplified]: "Guard n Ks H ==> Nonce n ~:kparts H"  | 
|
93  | 
by (auto simp: Guard_def dest: in_kparts Nonce_notin_kparts_msg)  | 
|
94  | 
||
95  | 
lemma Guard_must_decrypt: "[| Guard n Ks H; Nonce n:analz H |] ==>  | 
|
96  | 
EX K Y. Crypt K Y:kparts H & Key (invKey K):kparts H"  | 
|
97  | 
apply (drule_tac P="%G. Nonce n:G" in analz_pparts_kparts_substD, simp)  | 
|
98  | 
by (drule must_decrypt, auto dest: Nonce_notin_kparts)  | 
|
99  | 
||
100  | 
lemma Guard_kparts [intro]: "Guard n Ks H ==> Guard n Ks (kparts H)"  | 
|
101  | 
by (auto simp: Guard_def dest: in_kparts guard_kparts)  | 
|
102  | 
||
103  | 
lemma Guard_mono: "[| Guard n Ks H; G <= H |] ==> Guard n Ks G"  | 
|
104  | 
by (auto simp: Guard_def)  | 
|
105  | 
||
106  | 
lemma Guard_insert [iff]: "Guard n Ks (insert X H)  | 
|
107  | 
= (Guard n Ks H & X:guard n Ks)"  | 
|
108  | 
by (auto simp: Guard_def)  | 
|
109  | 
||
110  | 
lemma Guard_Un [iff]: "Guard n Ks (G Un H) = (Guard n Ks G & Guard n Ks H)"  | 
|
111  | 
by (auto simp: Guard_def)  | 
|
112  | 
||
113  | 
lemma Guard_synth [intro]: "Guard n Ks G ==> Guard n Ks (synth G)"  | 
|
114  | 
by (auto simp: Guard_def, erule synth.induct, auto)  | 
|
115  | 
||
116  | 
lemma Guard_analz [intro]: "[| Guard n Ks G; ALL K. K:Ks --> Key K ~:analz G |]  | 
|
117  | 
==> Guard n Ks (analz G)"  | 
|
118  | 
apply (auto simp: Guard_def)  | 
|
119  | 
apply (erule analz.induct, auto)  | 
|
| 23746 | 120  | 
by (ind_cases "Crypt K Xa:guard n Ks" for K Xa, auto)  | 
| 13508 | 121  | 
|
122  | 
lemma in_Guard [dest]: "[| X:G; Guard n Ks G |] ==> X:guard n Ks"  | 
|
123  | 
by (auto simp: Guard_def)  | 
|
124  | 
||
125  | 
lemma in_synth_Guard: "[| X:synth G; Guard n Ks G |] ==> X:guard n Ks"  | 
|
126  | 
by (drule Guard_synth, auto)  | 
|
127  | 
||
128  | 
lemma in_analz_Guard: "[| X:analz G; Guard n Ks G;  | 
|
129  | 
ALL K. K:Ks --> Key K ~:analz G |] ==> X:guard n Ks"  | 
|
130  | 
by (drule Guard_analz, auto)  | 
|
131  | 
||
132  | 
lemma Guard_keyset [simp]: "keyset G ==> Guard n Ks G"  | 
|
133  | 
by (auto simp: Guard_def)  | 
|
134  | 
||
135  | 
lemma Guard_Un_keyset: "[| Guard n Ks G; keyset H |] ==> Guard n Ks (G Un H)"  | 
|
136  | 
by auto  | 
|
137  | 
||
138  | 
lemma in_Guard_kparts: "[| X:G; Guard n Ks G; Y:kparts {X} |] ==> Y:guard n Ks"
 | 
|
139  | 
by blast  | 
|
140  | 
||
141  | 
lemma in_Guard_kparts_neq: "[| X:G; Guard n Ks G; Nonce n':kparts {X} |]
 | 
|
142  | 
==> n ~= n'"  | 
|
143  | 
by (blast dest: in_Guard_kparts)  | 
|
144  | 
||
145  | 
lemma in_Guard_kparts_Crypt: "[| X:G; Guard n Ks G; is_MPair X;  | 
|
146  | 
Crypt K Y:kparts {X}; Nonce n:kparts {Y} |] ==> invKey K:Ks"
 | 
|
147  | 
apply (drule in_Guard, simp)  | 
|
148  | 
apply (frule guard_not_guard, simp+)  | 
|
149  | 
apply (drule guard_kparts, simp)  | 
|
150  | 
by (ind_cases "Crypt K Y:guard n Ks", auto)  | 
|
151  | 
||
152  | 
lemma Guard_extand: "[| Guard n Ks G; Ks <= Ks' |] ==> Guard n Ks' G"  | 
|
153  | 
by (auto simp: Guard_def dest: guard_extand)  | 
|
154  | 
||
155  | 
lemma guard_invKey [rule_format]: "[| X:guard n Ks; Nonce n:kparts {Y} |] ==>
 | 
|
156  | 
Crypt K Y:kparts {X} --> invKey K:Ks"
 | 
|
157  | 
by (erule guard.induct, auto)  | 
|
158  | 
||
159  | 
lemma Crypt_guard_invKey [rule_format]: "[| Crypt K Y:guard n Ks;  | 
|
160  | 
Nonce n:kparts {Y} |] ==> invKey K:Ks"
 | 
|
161  | 
by (auto dest: guard_invKey)  | 
|
162  | 
||
163  | 
subsection{*set obtained by decrypting a message*}
 | 
|
164  | 
||
| 20768 | 165  | 
abbreviation (input)  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
20768 
diff
changeset
 | 
166  | 
decrypt :: "msg set => key => msg => msg set" where  | 
| 20768 | 167  | 
  "decrypt H K Y == insert Y (H - {Crypt K Y})"
 | 
| 13508 | 168  | 
|
169  | 
lemma analz_decrypt: "[| Crypt K Y:H; Key (invKey K):H; Nonce n:analz H |]  | 
|
170  | 
==> Nonce n:analz (decrypt H K Y)"  | 
|
| 14307 | 171  | 
apply (drule_tac P="%H. Nonce n:analz H" in ssubst [OF insert_Diff])  | 
172  | 
apply assumption  | 
|
173  | 
apply (simp only: analz_Crypt_if, simp)  | 
|
174  | 
done  | 
|
| 13508 | 175  | 
|
176  | 
lemma parts_decrypt: "[| Crypt K Y:H; X:parts (decrypt H K Y) |] ==> X:parts H"  | 
|
177  | 
by (erule parts.induct, auto intro: parts.Fst parts.Snd parts.Body)  | 
|
178  | 
||
179  | 
subsection{*number of Crypt's in a message*}
 | 
|
180  | 
||
181  | 
consts crypt_nb :: "msg => nat"  | 
|
182  | 
||
183  | 
recdef crypt_nb "measure size"  | 
|
184  | 
"crypt_nb (Crypt K X) = Suc (crypt_nb X)"  | 
|
185  | 
"crypt_nb {|X,Y|} = crypt_nb X + crypt_nb Y"
 | 
|
186  | 
"crypt_nb X = 0" (* otherwise *)  | 
|
187  | 
||
188  | 
subsection{*basic facts about @{term crypt_nb}*}
 | 
|
189  | 
||
190  | 
lemma non_empty_crypt_msg: "Crypt K Y:parts {X} ==> 0 < crypt_nb X"
 | 
|
191  | 
by (induct X, simp_all, safe, simp_all)  | 
|
192  | 
||
193  | 
subsection{*number of Crypt's in a message list*}
 | 
|
194  | 
||
195  | 
consts cnb :: "msg list => nat"  | 
|
196  | 
||
197  | 
recdef cnb "measure size"  | 
|
198  | 
"cnb [] = 0"  | 
|
199  | 
"cnb (X#l) = crypt_nb X + cnb l"  | 
|
200  | 
||
201  | 
subsection{*basic facts about @{term cnb}*}
 | 
|
202  | 
||
203  | 
lemma cnb_app [simp]: "cnb (l @ l') = cnb l + cnb l'"  | 
|
204  | 
by (induct l, auto)  | 
|
205  | 
||
206  | 
lemma mem_cnb_minus: "x mem l ==> cnb l = crypt_nb x + (cnb l - crypt_nb x)"  | 
|
207  | 
by (induct l, auto)  | 
|
208  | 
||
209  | 
lemmas mem_cnb_minus_substI = mem_cnb_minus [THEN ssubst]  | 
|
210  | 
||
| 
19233
 
77ca20b0ed77
renamed HOL + - * etc. to HOL.plus HOL.minus HOL.times etc.
 
haftmann 
parents: 
17087 
diff
changeset
 | 
211  | 
lemma cnb_minus [simp]: "x mem l ==> cnb (remove l x) = cnb l - crypt_nb x"  | 
| 13508 | 212  | 
apply (induct l, auto)  | 
| 
15236
 
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
 
nipkow 
parents: 
14307 
diff
changeset
 | 
213  | 
by (erule_tac l1=l and x1=x in mem_cnb_minus_substI, simp)  | 
| 13508 | 214  | 
|
215  | 
lemma parts_cnb: "Z:parts (set l) ==>  | 
|
216  | 
cnb l = (cnb l - crypt_nb Z) + crypt_nb Z"  | 
|
217  | 
by (erule parts.induct, auto simp: in_set_conv_decomp)  | 
|
218  | 
||
219  | 
lemma non_empty_crypt: "Crypt K Y:parts (set l) ==> 0 < cnb l"  | 
|
220  | 
by (induct l, auto dest: non_empty_crypt_msg parts_insert_substD)  | 
|
221  | 
||
222  | 
subsection{*list of kparts*}
 | 
|
223  | 
||
224  | 
lemma kparts_msg_set: "EX l. kparts {X} = set l & cnb l = crypt_nb X"
 | 
|
225  | 
apply (induct X, simp_all)  | 
|
226  | 
apply (rule_tac x="[Agent agent]" in exI, simp)  | 
|
227  | 
apply (rule_tac x="[Number nat]" in exI, simp)  | 
|
228  | 
apply (rule_tac x="[Nonce nat]" in exI, simp)  | 
|
229  | 
apply (rule_tac x="[Key nat]" in exI, simp)  | 
|
| 
15236
 
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
 
nipkow 
parents: 
14307 
diff
changeset
 | 
230  | 
apply (rule_tac x="[Hash X]" in exI, simp)  | 
| 13508 | 231  | 
apply (clarify, rule_tac x="l@la" in exI, simp)  | 
| 
15236
 
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
 
nipkow 
parents: 
14307 
diff
changeset
 | 
232  | 
by (clarify, rule_tac x="[Crypt nat X]" in exI, simp)  | 
| 13508 | 233  | 
|
234  | 
lemma kparts_set: "EX l'. kparts (set l) = set l' & cnb l' = cnb l"  | 
|
235  | 
apply (induct l)  | 
|
236  | 
apply (rule_tac x="[]" in exI, simp, clarsimp)  | 
|
| 
15236
 
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
 
nipkow 
parents: 
14307 
diff
changeset
 | 
237  | 
apply (subgoal_tac "EX l''.  kparts {a} = set l'' & cnb l'' = crypt_nb a", clarify)
 | 
| 
 
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
 
nipkow 
parents: 
14307 
diff
changeset
 | 
238  | 
apply (rule_tac x="l''@l'" in exI, simp)  | 
| 13508 | 239  | 
apply (rule kparts_insert_substI, simp)  | 
240  | 
by (rule kparts_msg_set)  | 
|
241  | 
||
242  | 
subsection{*list corresponding to "decrypt"*}
 | 
|
243  | 
||
244  | 
constdefs decrypt' :: "msg list => key => msg => msg list"  | 
|
| 
19233
 
77ca20b0ed77
renamed HOL + - * etc. to HOL.plus HOL.minus HOL.times etc.
 
haftmann 
parents: 
17087 
diff
changeset
 | 
245  | 
"decrypt' l K Y == Y # remove l (Crypt K Y)"  | 
| 13508 | 246  | 
|
247  | 
declare decrypt'_def [simp]  | 
|
248  | 
||
249  | 
subsection{*basic facts about @{term decrypt'}*}
 | 
|
250  | 
||
251  | 
lemma decrypt_minus: "decrypt (set l) K Y <= set (decrypt' l K Y)"  | 
|
252  | 
by (induct l, auto)  | 
|
253  | 
||
254  | 
subsection{*if the analyse of a finite guarded set gives n then it must also gives
 | 
|
255  | 
one of the keys of Ks*}  | 
|
256  | 
||
257  | 
lemma Guard_invKey_by_list [rule_format]: "ALL l. cnb l = p  | 
|
258  | 
--> Guard n Ks (set l) --> Nonce n:analz (set l)  | 
|
259  | 
--> (EX K. K:Ks & Key K:analz (set l))"  | 
|
260  | 
apply (induct p)  | 
|
261  | 
(* case p=0 *)  | 
|
262  | 
apply (clarify, drule Guard_must_decrypt, simp, clarify)  | 
|
263  | 
apply (drule kparts_parts, drule non_empty_crypt, simp)  | 
|
264  | 
(* case p>0 *)  | 
|
265  | 
apply (clarify, frule Guard_must_decrypt, simp, clarify)  | 
|
266  | 
apply (drule_tac P="%G. Nonce n:G" in analz_pparts_kparts_substD, simp)  | 
|
267  | 
apply (frule analz_decrypt, simp_all)  | 
|
268  | 
apply (subgoal_tac "EX l'. kparts (set l) = set l' & cnb l' = cnb l", clarsimp)  | 
|
269  | 
apply (drule_tac G="insert Y (set l' - {Crypt K Y})"
 | 
|
270  | 
and H="set (decrypt' l' K Y)" in analz_sub, rule decrypt_minus)  | 
|
271  | 
apply (rule_tac analz_pparts_kparts_substI, simp)  | 
|
272  | 
apply (case_tac "K:invKey`Ks")  | 
|
273  | 
(* K:invKey`Ks *)  | 
|
274  | 
apply (clarsimp, blast)  | 
|
275  | 
(* K ~:invKey`Ks *)  | 
|
276  | 
apply (subgoal_tac "Guard n Ks (set (decrypt' l' K Y))")  | 
|
| 17087 | 277  | 
apply (drule_tac x="decrypt' l' K Y" in spec, simp add: mem_iff)  | 
| 13508 | 278  | 
apply (subgoal_tac "Crypt K Y:parts (set l)")  | 
279  | 
apply (drule parts_cnb, rotate_tac -1, simp)  | 
|
280  | 
apply (clarify, drule_tac X="Key Ka" and H="insert Y (set l')" in analz_sub)  | 
|
| 
19233
 
77ca20b0ed77
renamed HOL + - * etc. to HOL.plus HOL.minus HOL.times etc.
 
haftmann 
parents: 
17087 
diff
changeset
 | 
281  | 
apply (rule insert_mono, rule set_remove)  | 
| 13508 | 282  | 
apply (simp add: analz_insertD, blast)  | 
283  | 
(* Crypt K Y:parts (set l) *)  | 
|
284  | 
apply (blast dest: kparts_parts)  | 
|
285  | 
(* Guard n Ks (set (decrypt' l' K Y)) *)  | 
|
286  | 
apply (rule_tac H="insert Y (set l')" in Guard_mono)  | 
|
287  | 
apply (subgoal_tac "Guard n Ks (set l')", simp)  | 
|
288  | 
apply (rule_tac K=K in guard_Crypt, simp add: Guard_def, simp)  | 
|
289  | 
apply (drule_tac t="set l'" in sym, simp)  | 
|
290  | 
apply (rule Guard_kparts, simp, simp)  | 
|
| 
19233
 
77ca20b0ed77
renamed HOL + - * etc. to HOL.plus HOL.minus HOL.times etc.
 
haftmann 
parents: 
17087 
diff
changeset
 | 
291  | 
apply (rule_tac B="set l'" in subset_trans, rule set_remove, blast)  | 
| 13508 | 292  | 
by (rule kparts_set)  | 
293  | 
||
294  | 
lemma Guard_invKey_finite: "[| Nonce n:analz G; Guard n Ks G; finite G |]  | 
|
295  | 
==> EX K. K:Ks & Key K:analz G"  | 
|
296  | 
apply (drule finite_list, clarify)  | 
|
297  | 
by (rule Guard_invKey_by_list, auto)  | 
|
298  | 
||
299  | 
lemma Guard_invKey: "[| Nonce n:analz G; Guard n Ks G |]  | 
|
300  | 
==> EX K. K:Ks & Key K:analz G"  | 
|
301  | 
by (auto dest: analz_needs_only_finite Guard_invKey_finite)  | 
|
302  | 
||
303  | 
subsection{*if the analyse of a finite guarded set and a (possibly infinite) set of keys
 | 
|
304  | 
gives n then it must also gives Ks*}  | 
|
305  | 
||
306  | 
lemma Guard_invKey_keyset: "[| Nonce n:analz (G Un H); Guard n Ks G; finite G;  | 
|
307  | 
keyset H |] ==> EX K. K:Ks & Key K:analz (G Un H)"  | 
|
308  | 
apply (frule_tac P="%G. Nonce n:G" and G2=G in analz_keyset_substD, simp_all)  | 
|
309  | 
apply (drule_tac G="G Un (H Int keysfor G)" in Guard_invKey_finite)  | 
|
310  | 
by (auto simp: Guard_def intro: analz_sub)  | 
|
311  | 
||
312  | 
end  |