| author | wenzelm | 
| Tue, 31 Jul 2007 00:56:31 +0200 | |
| changeset 24077 | e7ba448bc571 | 
| parent 23894 | 1a4167d761ac | 
| child 24122 | fc7f857d33c8 | 
| permissions | -rw-r--r-- | 
| 1934 | 1  | 
(* Title: HOL/Auth/Shared  | 
2  | 
ID: $Id$  | 
|
3  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
4  | 
Copyright 1996 University of Cambridge  | 
|
5  | 
||
6  | 
Theory of Shared Keys (common to all symmetric-key protocols)  | 
|
7  | 
||
| 
3512
 
9dcb4daa15e8
Moving common declarations and proofs from theories "Shared"
 
paulson 
parents: 
3472 
diff
changeset
 | 
8  | 
Shared, long-term keys; initial states of agents  | 
| 1934 | 9  | 
*)  | 
10  | 
||
| 16417 | 11  | 
theory Shared imports Event begin  | 
| 1934 | 12  | 
|
13  | 
consts  | 
|
| 
14126
 
28824746d046
Tidying and replacement of some axioms by specifications
 
paulson 
parents: 
13956 
diff
changeset
 | 
14  | 
shrK :: "agent => key" (*symmetric keys*);  | 
| 
 
28824746d046
Tidying and replacement of some axioms by specifications
 
paulson 
parents: 
13956 
diff
changeset
 | 
15  | 
|
| 
 
28824746d046
Tidying and replacement of some axioms by specifications
 
paulson 
parents: 
13956 
diff
changeset
 | 
16  | 
specification (shrK)  | 
| 
 
28824746d046
Tidying and replacement of some axioms by specifications
 
paulson 
parents: 
13956 
diff
changeset
 | 
17  | 
inj_shrK: "inj shrK"  | 
| 
 
28824746d046
Tidying and replacement of some axioms by specifications
 
paulson 
parents: 
13956 
diff
changeset
 | 
18  | 
  --{*No two agents have the same long-term key*}
 | 
| 
 
28824746d046
Tidying and replacement of some axioms by specifications
 
paulson 
parents: 
13956 
diff
changeset
 | 
19  | 
apply (rule exI [of _ "agent_case 0 (\<lambda>n. n + 2) 1"])  | 
| 
 
28824746d046
Tidying and replacement of some axioms by specifications
 
paulson 
parents: 
13956 
diff
changeset
 | 
20  | 
apply (simp add: inj_on_def split: agent.split)  | 
| 
 
28824746d046
Tidying and replacement of some axioms by specifications
 
paulson 
parents: 
13956 
diff
changeset
 | 
21  | 
done  | 
| 1967 | 22  | 
|
| 
14126
 
28824746d046
Tidying and replacement of some axioms by specifications
 
paulson 
parents: 
13956 
diff
changeset
 | 
23  | 
text{*All keys are symmetric*}
 | 
| 
 
28824746d046
Tidying and replacement of some axioms by specifications
 
paulson 
parents: 
13956 
diff
changeset
 | 
24  | 
|
| 
 
28824746d046
Tidying and replacement of some axioms by specifications
 
paulson 
parents: 
13956 
diff
changeset
 | 
25  | 
defs all_symmetric_def: "all_symmetric == True"  | 
| 1934 | 26  | 
|
| 
14126
 
28824746d046
Tidying and replacement of some axioms by specifications
 
paulson 
parents: 
13956 
diff
changeset
 | 
27  | 
lemma isSym_keys: "K \<in> symKeys"  | 
| 14181 | 28  | 
by (simp add: symKeys_def all_symmetric_def invKey_symmetric)  | 
| 
14126
 
28824746d046
Tidying and replacement of some axioms by specifications
 
paulson 
parents: 
13956 
diff
changeset
 | 
29  | 
|
| 
 
28824746d046
Tidying and replacement of some axioms by specifications
 
paulson 
parents: 
13956 
diff
changeset
 | 
30  | 
text{*Server knows all long-term keys; other agents know only their own*}
 | 
| 5183 | 31  | 
primrec  | 
| 11104 | 32  | 
initState_Server: "initState Server = Key ` range shrK"  | 
33  | 
  initState_Friend:  "initState (Friend i) = {Key (shrK (Friend i))}"
 | 
|
34  | 
initState_Spy: "initState Spy = Key`shrK`bad"  | 
|
| 2032 | 35  | 
|
| 1934 | 36  | 
|
| 13926 | 37  | 
subsection{*Basic properties of shrK*}
 | 
38  | 
||
39  | 
(*Injectiveness: Agents' long-term keys are distinct.*)  | 
|
| 
18749
 
31c2af8b0c60
replacement of bool by a datatype (making problems first-order). More lemma names
 
paulson 
parents: 
17744 
diff
changeset
 | 
40  | 
lemmas shrK_injective = inj_shrK [THEN inj_eq]  | 
| 
 
31c2af8b0c60
replacement of bool by a datatype (making problems first-order). More lemma names
 
paulson 
parents: 
17744 
diff
changeset
 | 
41  | 
declare shrK_injective [iff]  | 
| 13926 | 42  | 
|
43  | 
lemma invKey_K [simp]: "invKey K = K"  | 
|
44  | 
apply (insert isSym_keys)  | 
|
45  | 
apply (simp add: symKeys_def)  | 
|
46  | 
done  | 
|
47  | 
||
48  | 
||
49  | 
lemma analz_Decrypt' [dest]:  | 
|
50  | 
"[| Crypt K X \<in> analz H; Key K \<in> analz H |] ==> X \<in> analz H"  | 
|
51  | 
by auto  | 
|
52  | 
||
53  | 
text{*Now cancel the @{text dest} attribute given to
 | 
|
54  | 
 @{text analz.Decrypt} in its declaration.*}
 | 
|
| 
14200
 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 
paulson 
parents: 
14181 
diff
changeset
 | 
55  | 
declare analz.Decrypt [rule del]  | 
| 13926 | 56  | 
|
57  | 
text{*Rewrites should not refer to  @{term "initState(Friend i)"} because
 | 
|
58  | 
that expression is not in normal form.*}  | 
|
59  | 
||
60  | 
lemma keysFor_parts_initState [simp]: "keysFor (parts (initState C)) = {}"
 | 
|
61  | 
apply (unfold keysFor_def)  | 
|
62  | 
apply (induct_tac "C", auto)  | 
|
63  | 
done  | 
|
64  | 
||
65  | 
(*Specialized to shared-key model: no @{term invKey}*)
 | 
|
66  | 
lemma keysFor_parts_insert:  | 
|
| 14983 | 67  | 
"[| K \<in> keysFor (parts (insert X G)); X \<in> synth (analz H) |]  | 
68  | 
==> K \<in> keysFor (parts (G \<union> H)) | Key K \<in> parts H";  | 
|
| 13926 | 69  | 
by (force dest: Event.keysFor_parts_insert)  | 
70  | 
||
71  | 
lemma Crypt_imp_keysFor: "Crypt K X \<in> H ==> K \<in> keysFor H"  | 
|
72  | 
by (drule Crypt_imp_invKey_keysFor, simp)  | 
|
73  | 
||
74  | 
||
75  | 
subsection{*Function "knows"*}
 | 
|
76  | 
||
77  | 
(*Spy sees shared keys of agents!*)  | 
|
78  | 
lemma Spy_knows_Spy_bad [intro!]: "A: bad ==> Key (shrK A) \<in> knows Spy evs"  | 
|
79  | 
apply (induct_tac "evs")  | 
|
80  | 
apply (simp_all (no_asm_simp) add: imageI knows_Cons split add: event.split)  | 
|
81  | 
done  | 
|
82  | 
||
83  | 
(*For case analysis on whether or not an agent is compromised*)  | 
|
84  | 
lemma Crypt_Spy_analz_bad: "[| Crypt (shrK A) X \<in> analz (knows Spy evs); A: bad |]  | 
|
85  | 
==> X \<in> analz (knows Spy evs)"  | 
|
86  | 
apply (force dest!: analz.Decrypt)  | 
|
87  | 
done  | 
|
88  | 
||
89  | 
||
90  | 
(** Fresh keys never clash with long-term shared keys **)  | 
|
91  | 
||
92  | 
(*Agents see their own shared keys!*)  | 
|
93  | 
lemma shrK_in_initState [iff]: "Key (shrK A) \<in> initState A"  | 
|
94  | 
by (induct_tac "A", auto)  | 
|
95  | 
||
96  | 
lemma shrK_in_used [iff]: "Key (shrK A) \<in> used evs"  | 
|
97  | 
by (rule initState_into_used, blast)  | 
|
98  | 
||
99  | 
(*Used in parts_induct_tac and analz_Fake_tac to distinguish session keys  | 
|
100  | 
from long-term shared keys*)  | 
|
101  | 
lemma Key_not_used [simp]: "Key K \<notin> used evs ==> K \<notin> range shrK"  | 
|
102  | 
by blast  | 
|
103  | 
||
104  | 
lemma shrK_neq [simp]: "Key K \<notin> used evs ==> shrK B \<noteq> K"  | 
|
105  | 
by blast  | 
|
106  | 
||
| 17744 | 107  | 
lemmas shrK_sym_neq = shrK_neq [THEN not_sym]  | 
108  | 
declare shrK_sym_neq [simp]  | 
|
| 13926 | 109  | 
|
110  | 
||
111  | 
subsection{*Fresh nonces*}
 | 
|
112  | 
||
113  | 
lemma Nonce_notin_initState [iff]: "Nonce N \<notin> parts (initState B)"  | 
|
114  | 
by (induct_tac "B", auto)  | 
|
115  | 
||
116  | 
lemma Nonce_notin_used_empty [simp]: "Nonce N \<notin> used []"  | 
|
117  | 
apply (simp (no_asm) add: used_Nil)  | 
|
118  | 
done  | 
|
119  | 
||
120  | 
||
121  | 
subsection{*Supply fresh nonces for possibility theorems.*}
 | 
|
122  | 
||
123  | 
(*In any trace, there is an upper bound N on the greatest nonce in use.*)  | 
|
124  | 
lemma Nonce_supply_lemma: "\<exists>N. ALL n. N<=n --> Nonce n \<notin> used evs"  | 
|
125  | 
apply (induct_tac "evs")  | 
|
126  | 
apply (rule_tac x = 0 in exI)  | 
|
127  | 
apply (simp_all (no_asm_simp) add: used_Cons split add: event.split)  | 
|
128  | 
apply safe  | 
|
129  | 
apply (rule msg_Nonce_supply [THEN exE], blast elim!: add_leE)+  | 
|
130  | 
done  | 
|
131  | 
||
132  | 
lemma Nonce_supply1: "\<exists>N. Nonce N \<notin> used evs"  | 
|
133  | 
by (rule Nonce_supply_lemma [THEN exE], blast)  | 
|
134  | 
||
135  | 
lemma Nonce_supply2: "\<exists>N N'. Nonce N \<notin> used evs & Nonce N' \<notin> used evs' & N \<noteq> N'"  | 
|
136  | 
apply (cut_tac evs = evs in Nonce_supply_lemma)  | 
|
137  | 
apply (cut_tac evs = "evs'" in Nonce_supply_lemma, clarify)  | 
|
138  | 
apply (rule_tac x = N in exI)  | 
|
| 
14200
 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 
paulson 
parents: 
14181 
diff
changeset
 | 
139  | 
apply (rule_tac x = "Suc (N+Na)" in exI)  | 
| 13926 | 140  | 
apply (simp (no_asm_simp) add: less_not_refl3 le_add1 le_add2 less_Suc_eq_le)  | 
141  | 
done  | 
|
142  | 
||
143  | 
lemma Nonce_supply3: "\<exists>N N' N''. Nonce N \<notin> used evs & Nonce N' \<notin> used evs' &  | 
|
144  | 
Nonce N'' \<notin> used evs'' & N \<noteq> N' & N' \<noteq> N'' & N \<noteq> N''"  | 
|
145  | 
apply (cut_tac evs = evs in Nonce_supply_lemma)  | 
|
146  | 
apply (cut_tac evs = "evs'" in Nonce_supply_lemma)  | 
|
147  | 
apply (cut_tac evs = "evs''" in Nonce_supply_lemma, clarify)  | 
|
148  | 
apply (rule_tac x = N in exI)  | 
|
| 
14200
 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 
paulson 
parents: 
14181 
diff
changeset
 | 
149  | 
apply (rule_tac x = "Suc (N+Na)" in exI)  | 
| 13926 | 150  | 
apply (rule_tac x = "Suc (Suc (N+Na+Nb))" in exI)  | 
151  | 
apply (simp (no_asm_simp) add: less_not_refl3 le_add1 le_add2 less_Suc_eq_le)  | 
|
152  | 
done  | 
|
153  | 
||
154  | 
lemma Nonce_supply: "Nonce (@ N. Nonce N \<notin> used evs) \<notin> used evs"  | 
|
155  | 
apply (rule Nonce_supply_lemma [THEN exE])  | 
|
156  | 
apply (rule someI, blast)  | 
|
157  | 
done  | 
|
158  | 
||
| 
14200
 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 
paulson 
parents: 
14181 
diff
changeset
 | 
159  | 
text{*Unlike the corresponding property of nonces, we cannot prove
 | 
| 
 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 
paulson 
parents: 
14181 
diff
changeset
 | 
160  | 
    @{term "finite KK ==> \<exists>K. K \<notin> KK & Key K \<notin> used evs"}.
 | 
| 
2516
 
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
 
paulson 
parents: 
2451 
diff
changeset
 | 
161  | 
We have infinitely many agents and there is nothing to stop their  | 
| 
14200
 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 
paulson 
parents: 
14181 
diff
changeset
 | 
162  | 
long-term keys from exhausting all the natural numbers. Instead,  | 
| 
 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 
paulson 
parents: 
14181 
diff
changeset
 | 
163  | 
possibility theorems must assume the existence of a few keys.*}  | 
| 13926 | 164  | 
|
165  | 
||
166  | 
subsection{*Tactics for possibility theorems*}
 | 
|
167  | 
||
168  | 
ML  | 
|
169  | 
{*
 | 
|
170  | 
val inj_shrK = thm "inj_shrK";  | 
|
171  | 
val isSym_keys = thm "isSym_keys";  | 
|
172  | 
val Nonce_supply = thm "Nonce_supply";  | 
|
173  | 
val invKey_K = thm "invKey_K";  | 
|
174  | 
val analz_Decrypt' = thm "analz_Decrypt'";  | 
|
175  | 
val keysFor_parts_initState = thm "keysFor_parts_initState";  | 
|
176  | 
val keysFor_parts_insert = thm "keysFor_parts_insert";  | 
|
177  | 
val Crypt_imp_keysFor = thm "Crypt_imp_keysFor";  | 
|
178  | 
val Spy_knows_Spy_bad = thm "Spy_knows_Spy_bad";  | 
|
179  | 
val Crypt_Spy_analz_bad = thm "Crypt_Spy_analz_bad";  | 
|
180  | 
val shrK_in_initState = thm "shrK_in_initState";  | 
|
181  | 
val shrK_in_used = thm "shrK_in_used";  | 
|
182  | 
val Key_not_used = thm "Key_not_used";  | 
|
183  | 
val shrK_neq = thm "shrK_neq";  | 
|
184  | 
val Nonce_notin_initState = thm "Nonce_notin_initState";  | 
|
185  | 
val Nonce_notin_used_empty = thm "Nonce_notin_used_empty";  | 
|
186  | 
val Nonce_supply_lemma = thm "Nonce_supply_lemma";  | 
|
187  | 
val Nonce_supply1 = thm "Nonce_supply1";  | 
|
188  | 
val Nonce_supply2 = thm "Nonce_supply2";  | 
|
189  | 
val Nonce_supply3 = thm "Nonce_supply3";  | 
|
190  | 
val Nonce_supply = thm "Nonce_supply";  | 
|
191  | 
*}  | 
|
192  | 
||
| 11104 | 193  | 
|
| 13926 | 194  | 
ML  | 
195  | 
{*
 | 
|
196  | 
(*Omitting used_Says makes the tactic much faster: it leaves expressions  | 
|
197  | 
such as Nonce ?N \<notin> used evs that match Nonce_supply*)  | 
|
| 
23894
 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 
wenzelm 
parents: 
21588 
diff
changeset
 | 
198  | 
fun possibility_tac ctxt =  | 
| 13926 | 199  | 
(REPEAT  | 
| 
23894
 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 
wenzelm 
parents: 
21588 
diff
changeset
 | 
200  | 
(ALLGOALS (simp_tac (local_simpset_of ctxt delsimps [used_Says, used_Notes, used_Gets]  | 
| 13926 | 201  | 
setSolver safe_solver))  | 
202  | 
THEN  | 
|
203  | 
REPEAT_FIRST (eq_assume_tac ORELSE'  | 
|
| 
14200
 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 
paulson 
parents: 
14181 
diff
changeset
 | 
204  | 
resolve_tac [refl, conjI, Nonce_supply])))  | 
| 13926 | 205  | 
|
206  | 
(*For harder protocols (such as Recur) where we have to set up some  | 
|
207  | 
nonces and keys initially*)  | 
|
| 
23894
 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 
wenzelm 
parents: 
21588 
diff
changeset
 | 
208  | 
fun basic_possibility_tac ctxt =  | 
| 13926 | 209  | 
REPEAT  | 
| 
23894
 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 
wenzelm 
parents: 
21588 
diff
changeset
 | 
210  | 
(ALLGOALS (asm_simp_tac (local_simpset_of ctxt setSolver safe_solver))  | 
| 13926 | 211  | 
THEN  | 
212  | 
REPEAT_FIRST (resolve_tac [refl, conjI]))  | 
|
213  | 
*}  | 
|
214  | 
||
| 13956 | 215  | 
subsection{*Specialized Rewriting for Theorems About @{term analz} and Image*}
 | 
| 13926 | 216  | 
|
217  | 
lemma subset_Compl_range: "A <= - (range shrK) ==> shrK x \<notin> A"  | 
|
218  | 
by blast  | 
|
219  | 
||
220  | 
lemma insert_Key_singleton: "insert (Key K) H = Key ` {K} \<union> H"
 | 
|
221  | 
by blast  | 
|
222  | 
||
| 13956 | 223  | 
lemma insert_Key_image: "insert (Key K) (Key`KK \<union> C) = Key`(insert K KK) \<union> C"  | 
| 13926 | 224  | 
by blast  | 
225  | 
||
226  | 
(** Reverse the normal simplification of "image" to build up (not break down)  | 
|
227  | 
the set of keys. Use analz_insert_eq with (Un_upper2 RS analz_mono) to  | 
|
228  | 
erase occurrences of forwarded message components (X). **)  | 
|
229  | 
||
230  | 
lemmas analz_image_freshK_simps =  | 
|
231  | 
       simp_thms mem_simps --{*these two allow its use with @{text "only:"}*}
 | 
|
232  | 
disj_comms  | 
|
233  | 
image_insert [THEN sym] image_Un [THEN sym] empty_subsetI insert_subset  | 
|
234  | 
analz_insert_eq Un_upper2 [THEN analz_mono, THEN [2] rev_subsetD]  | 
|
235  | 
insert_Key_singleton subset_Compl_range  | 
|
236  | 
Key_not_used insert_Key_image Un_assoc [THEN sym]  | 
|
237  | 
||
238  | 
(*Lemma for the trivial direction of the if-and-only-if*)  | 
|
239  | 
lemma analz_image_freshK_lemma:  | 
|
240  | 
"(Key K \<in> analz (Key`nE \<union> H)) --> (K \<in> nE | Key K \<in> analz H) ==>  | 
|
241  | 
(Key K \<in> analz (Key`nE \<union> H)) = (K \<in> nE | Key K \<in> analz H)"  | 
|
242  | 
by (blast intro: analz_mono [THEN [2] rev_subsetD])  | 
|
243  | 
||
244  | 
ML  | 
|
245  | 
{*
 | 
|
246  | 
val analz_image_freshK_lemma = thm "analz_image_freshK_lemma";  | 
|
247  | 
||
248  | 
val analz_image_freshK_ss =  | 
|
249  | 
simpset() delsimps [image_insert, image_Un]  | 
|
250  | 
delsimps [imp_disjL] (*reduces blow-up*)  | 
|
251  | 
addsimps thms "analz_image_freshK_simps"  | 
|
252  | 
*}  | 
|
253  | 
||
254  | 
||
| 11104 | 255  | 
|
256  | 
(*Lets blast_tac perform this step without needing the simplifier*)  | 
|
257  | 
lemma invKey_shrK_iff [iff]:  | 
|
| 
11270
 
a315a3862bb4
better treatment of methods: uses Method.ctxt_args to refer to current
 
paulson 
parents: 
11230 
diff
changeset
 | 
258  | 
"(Key (invKey K) \<in> X) = (Key K \<in> X)"  | 
| 13507 | 259  | 
by auto  | 
| 11104 | 260  | 
|
261  | 
(*Specialized methods*)  | 
|
262  | 
||
263  | 
method_setup analz_freshK = {*
 | 
|
| 20048 | 264  | 
Method.ctxt_args (fn ctxt =>  | 
| 21588 | 265  | 
(Method.SIMPLE_METHOD  | 
266  | 
(EVERY [REPEAT_FIRST (resolve_tac [allI, ballI, impI]),  | 
|
| 11104 | 267  | 
REPEAT_FIRST (rtac analz_image_freshK_lemma),  | 
| 20048 | 268  | 
ALLGOALS (asm_simp_tac (Simplifier.context ctxt analz_image_freshK_ss))]))) *}  | 
| 11104 | 269  | 
"for proving the Session Key Compromise theorem"  | 
270  | 
||
271  | 
method_setup possibility = {*
 | 
|
| 
11270
 
a315a3862bb4
better treatment of methods: uses Method.ctxt_args to refer to current
 
paulson 
parents: 
11230 
diff
changeset
 | 
272  | 
Method.ctxt_args (fn ctxt =>  | 
| 
23894
 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 
wenzelm 
parents: 
21588 
diff
changeset
 | 
273  | 
Method.SIMPLE_METHOD (possibility_tac ctxt)) *}  | 
| 
 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 
wenzelm 
parents: 
21588 
diff
changeset
 | 
274  | 
"for proving possibility theorems"  | 
| 
 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 
wenzelm 
parents: 
21588 
diff
changeset
 | 
275  | 
|
| 
 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 
wenzelm 
parents: 
21588 
diff
changeset
 | 
276  | 
method_setup basic_possibility = {*
 | 
| 
 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 
wenzelm 
parents: 
21588 
diff
changeset
 | 
277  | 
Method.ctxt_args (fn ctxt =>  | 
| 
 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 
wenzelm 
parents: 
21588 
diff
changeset
 | 
278  | 
Method.SIMPLE_METHOD (basic_possibility_tac ctxt)) *}  | 
| 11104 | 279  | 
"for proving possibility theorems"  | 
| 
2516
 
4d68fbe6378b
Now with Andy Gordon's treatment of freshness to replace newN/K
 
paulson 
parents: 
2451 
diff
changeset
 | 
280  | 
|
| 
12415
 
74977582a585
Slightly generalized the agents' knowledge theorems
 
paulson 
parents: 
11270 
diff
changeset
 | 
281  | 
lemma knows_subset_knows_Cons: "knows A evs <= knows A (e # evs)"  | 
| 
23894
 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 
wenzelm 
parents: 
21588 
diff
changeset
 | 
282  | 
by (induct e) (auto simp: knows_Cons)  | 
| 
12415
 
74977582a585
Slightly generalized the agents' knowledge theorems
 
paulson 
parents: 
11270 
diff
changeset
 | 
283  | 
|
| 1934 | 284  | 
end  |