905
|
1 |
(* Title: ZF/ex/Bin.thy
|
515
|
2 |
ID: $Id$
|
905
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
515
|
4 |
Copyright 1994 University of Cambridge
|
|
5 |
|
|
6 |
Arithmetic on binary integers.
|
905
|
7 |
|
|
8 |
The sign Plus stands for an infinite string of leading 0's.
|
|
9 |
The sign Minus stands for an infinite string of leading 1's.
|
|
10 |
|
|
11 |
A number can have multiple representations, namely leading 0's with sign
|
|
12 |
Plus and leading 1's with sign Minus. See twos-compl.ML/int_of_binary for
|
|
13 |
the numerical interpretation.
|
|
14 |
|
|
15 |
The representation expects that (m mod 2) is 0 or 1, even if m is negative;
|
|
16 |
For instance, ~5 div 2 = ~3 and ~5 mod 2 = 1; thus ~5 = (~3)*2 + 1
|
|
17 |
|
|
18 |
Division is not defined yet!
|
515
|
19 |
*)
|
|
20 |
|
935
|
21 |
Bin = Integ + Datatype + "twos_compl" +
|
905
|
22 |
|
515
|
23 |
consts
|
1401
|
24 |
bin_rec :: [i, i, i, [i,i,i]=>i] => i
|
|
25 |
integ_of_bin :: i=>i
|
|
26 |
norm_Bcons :: [i,i]=>i
|
|
27 |
bin_succ :: i=>i
|
|
28 |
bin_pred :: i=>i
|
|
29 |
bin_minus :: i=>i
|
|
30 |
bin_add,bin_mult :: [i,i]=>i
|
515
|
31 |
|
1401
|
32 |
bin :: i
|
905
|
33 |
|
|
34 |
syntax
|
1401
|
35 |
"_Int" :: xnum => i ("_")
|
515
|
36 |
|
|
37 |
datatype
|
|
38 |
"bin" = Plus
|
|
39 |
| Minus
|
905
|
40 |
| Bcons ("w: bin", "b: bool")
|
515
|
41 |
type_intrs "[bool_into_univ]"
|
905
|
42 |
|
|
43 |
|
753
|
44 |
defs
|
515
|
45 |
|
|
46 |
bin_rec_def
|
1155
|
47 |
"bin_rec(z,a,b,h) ==
|
|
48 |
Vrec(z, %z g. bin_case(a, b, %w x. h(w, x, g`w), z))"
|
515
|
49 |
|
905
|
50 |
integ_of_bin_def
|
515
|
51 |
"integ_of_bin(w) == bin_rec(w, $#0, $~($#1), %w x r. $#x $+ r $+ r)"
|
|
52 |
|
905
|
53 |
(** recall that cond(1,b,c)=b and cond(0,b,c)=0 **)
|
|
54 |
|
|
55 |
(*norm_Bcons adds a bit, suppressing leading 0s and 1s*)
|
|
56 |
norm_Bcons_def
|
1155
|
57 |
"norm_Bcons(w,b) ==
|
|
58 |
bin_case(cond(b,Bcons(w,b),w), cond(b,w,Bcons(w,b)),
|
|
59 |
%w' x'. Bcons(w,b), w)"
|
905
|
60 |
|
515
|
61 |
bin_succ_def
|
1155
|
62 |
"bin_succ(w0) ==
|
|
63 |
bin_rec(w0, Bcons(Plus,1), Plus,
|
|
64 |
%w x r. cond(x, Bcons(r,0), norm_Bcons(w,1)))"
|
515
|
65 |
|
|
66 |
bin_pred_def
|
1155
|
67 |
"bin_pred(w0) ==
|
|
68 |
bin_rec(w0, Minus, Bcons(Minus,0),
|
|
69 |
%w x r. cond(x, norm_Bcons(w,0), Bcons(r,1)))"
|
515
|
70 |
|
|
71 |
bin_minus_def
|
1155
|
72 |
"bin_minus(w0) ==
|
|
73 |
bin_rec(w0, Plus, Bcons(Plus,1),
|
|
74 |
%w x r. cond(x, bin_pred(Bcons(r,0)), Bcons(r,0)))"
|
515
|
75 |
|
|
76 |
bin_add_def
|
1155
|
77 |
"bin_add(v0,w0) ==
|
|
78 |
bin_rec(v0,
|
|
79 |
lam w:bin. w,
|
|
80 |
lam w:bin. bin_pred(w),
|
|
81 |
%v x r. lam w1:bin.
|
|
82 |
bin_rec(w1, Bcons(v,x), bin_pred(Bcons(v,x)),
|
|
83 |
%w y s. norm_Bcons(r`cond(x and y, bin_succ(w), w),
|
|
84 |
x xor y))) ` w0"
|
515
|
85 |
|
|
86 |
bin_mult_def
|
1155
|
87 |
"bin_mult(v0,w) ==
|
|
88 |
bin_rec(v0, Plus, bin_minus(w),
|
|
89 |
%v x r. cond(x, bin_add(norm_Bcons(r,0),w), norm_Bcons(r,0)))"
|
515
|
90 |
end
|
905
|
91 |
|
|
92 |
|
|
93 |
ML
|
|
94 |
|
|
95 |
(** Concrete syntax for integers **)
|
|
96 |
|
|
97 |
local
|
|
98 |
open Syntax;
|
|
99 |
|
|
100 |
(* Bits *)
|
|
101 |
|
|
102 |
fun mk_bit 0 = const "0"
|
|
103 |
| mk_bit 1 = const "succ" $ const "0"
|
|
104 |
| mk_bit _ = sys_error "mk_bit";
|
|
105 |
|
|
106 |
fun dest_bit (Const ("0", _)) = 0
|
|
107 |
| dest_bit (Const ("succ", _) $ Const ("0", _)) = 1
|
|
108 |
| dest_bit _ = raise Match;
|
|
109 |
|
|
110 |
|
|
111 |
(* Bit strings *) (*we try to handle superfluous leading digits nicely*)
|
|
112 |
|
|
113 |
fun prefix_len _ [] = 0
|
|
114 |
| prefix_len pred (x :: xs) =
|
|
115 |
if pred x then 1 + prefix_len pred xs else 0;
|
|
116 |
|
|
117 |
fun mk_bin str =
|
|
118 |
let
|
|
119 |
val (sign, digs) =
|
|
120 |
(case explode str of
|
|
121 |
"#" :: "~" :: cs => (~1, cs)
|
|
122 |
| "#" :: cs => (1, cs)
|
|
123 |
| _ => raise ERROR);
|
|
124 |
|
|
125 |
val zs = prefix_len (equal "0") digs;
|
|
126 |
|
|
127 |
fun bin_of 0 = replicate zs 0
|
|
128 |
| bin_of ~1 = replicate zs 1 @ [~1]
|
|
129 |
| bin_of n = (n mod 2) :: bin_of (n div 2);
|
|
130 |
|
|
131 |
fun term_of [] = const "Plus"
|
|
132 |
| term_of [~1] = const "Minus"
|
|
133 |
| term_of (b :: bs) = const "Bcons" $ term_of bs $ mk_bit b;
|
|
134 |
in
|
|
135 |
term_of (bin_of (sign * (#1 (scan_int digs))))
|
|
136 |
end;
|
|
137 |
|
|
138 |
fun dest_bin tm =
|
|
139 |
let
|
|
140 |
fun bin_of (Const ("Plus", _)) = []
|
|
141 |
| bin_of (Const ("Minus", _)) = [~1]
|
|
142 |
| bin_of (Const ("Bcons", _) $ bs $ b) = dest_bit b :: bin_of bs
|
|
143 |
| bin_of _ = raise Match;
|
|
144 |
|
|
145 |
fun int_of [] = 0
|
|
146 |
| int_of (b :: bs) = b + 2 * int_of bs;
|
|
147 |
|
|
148 |
val rev_digs = bin_of tm;
|
|
149 |
val (sign, zs) =
|
|
150 |
(case rev rev_digs of
|
|
151 |
~1 :: bs => ("~", prefix_len (equal 1) bs)
|
|
152 |
| bs => ("", prefix_len (equal 0) bs));
|
|
153 |
val num = string_of_int (abs (int_of rev_digs));
|
|
154 |
in
|
|
155 |
"#" ^ sign ^ implode (replicate zs "0") ^ num
|
|
156 |
end;
|
|
157 |
|
|
158 |
|
|
159 |
(* translation of integer constant tokens to and from binary *)
|
|
160 |
|
|
161 |
fun int_tr (*"_Int"*) [t as Free (str, _)] =
|
|
162 |
(const "integ_of_bin" $
|
|
163 |
(mk_bin str handle ERROR => raise_term "int_tr" [t]))
|
|
164 |
| int_tr (*"_Int"*) ts = raise_term "int_tr" ts;
|
|
165 |
|
|
166 |
fun int_tr' (*"integ_of"*) [t] = const "_Int" $ free (dest_bin t)
|
|
167 |
| int_tr' (*"integ_of"*) _ = raise Match;
|
|
168 |
in
|
|
169 |
val parse_translation = [("_Int", int_tr)];
|
|
170 |
val print_translation = [("integ_of_bin", int_tr')];
|
|
171 |
end;
|