author | wenzelm |
Mon, 18 Nov 1996 17:27:59 +0100 | |
changeset 2195 | e8271379ba4b |
parent 218 | be834b9a0c72 |
permissions | -rw-r--r-- |
0 | 1 |
(* Title: ZF/perm.ML |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 |
Copyright 1991 University of Cambridge |
|
5 |
||
6 |
For perm.thy. The theory underlying permutation groups |
|
7 |
-- Composition of relations, the identity relation |
|
8 |
-- Injections, surjections, bijections |
|
9 |
-- Lemmas for the Schroeder-Bernstein Theorem |
|
10 |
*) |
|
11 |
||
12 |
open Perm; |
|
13 |
||
14 |
(** Surjective function space **) |
|
15 |
||
16 |
goalw Perm.thy [surj_def] "!!f A B. f: surj(A,B) ==> f: A->B"; |
|
17 |
by (etac CollectD1 1); |
|
18 |
val surj_is_fun = result(); |
|
19 |
||
20 |
goalw Perm.thy [surj_def] "!!f A B. f : Pi(A,B) ==> f: surj(A,range(f))"; |
|
21 |
by (fast_tac (ZF_cs addIs [apply_equality] |
|
22 |
addEs [range_of_fun,domain_type]) 1); |
|
23 |
val fun_is_surj = result(); |
|
24 |
||
25 |
goalw Perm.thy [surj_def] "!!f A B. f: surj(A,B) ==> range(f)=B"; |
|
26 |
by (best_tac (ZF_cs addIs [equalityI,apply_Pair] addEs [range_type]) 1); |
|
27 |
val surj_range = result(); |
|
28 |
||
29 |
||
30 |
(** Injective function space **) |
|
31 |
||
32 |
goalw Perm.thy [inj_def] "!!f A B. f: inj(A,B) ==> f: A->B"; |
|
33 |
by (etac CollectD1 1); |
|
34 |
val inj_is_fun = result(); |
|
35 |
||
36 |
goalw Perm.thy [inj_def] |
|
37 |
"!!f A B. [| <a,b>:f; <c,b>:f; f: inj(A,B) |] ==> a=c"; |
|
38 |
by (REPEAT (eresolve_tac [asm_rl, Pair_mem_PiE, CollectE] 1)); |
|
39 |
by (fast_tac ZF_cs 1); |
|
40 |
val inj_equality = result(); |
|
41 |
||
42 |
(** Bijections -- simple lemmas but no intro/elim rules -- use unfolding **) |
|
43 |
||
44 |
goalw Perm.thy [bij_def] "!!f A B. f: bij(A,B) ==> f: inj(A,B)"; |
|
45 |
by (etac IntD1 1); |
|
46 |
val bij_is_inj = result(); |
|
47 |
||
48 |
goalw Perm.thy [bij_def] "!!f A B. f: bij(A,B) ==> f: surj(A,B)"; |
|
49 |
by (etac IntD2 1); |
|
50 |
val bij_is_surj = result(); |
|
51 |
||
52 |
(* f: bij(A,B) ==> f: A->B *) |
|
53 |
val bij_is_fun = standard (bij_is_inj RS inj_is_fun); |
|
54 |
||
6
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
55 |
|
0 | 56 |
(** Identity function **) |
57 |
||
58 |
val [prem] = goalw Perm.thy [id_def] "a:A ==> <a,a> : id(A)"; |
|
59 |
by (rtac (prem RS lamI) 1); |
|
60 |
val idI = result(); |
|
61 |
||
62 |
val major::prems = goalw Perm.thy [id_def] |
|
63 |
"[| p: id(A); !!x.[| x:A; p=<x,x> |] ==> P \ |
|
64 |
\ |] ==> P"; |
|
65 |
by (rtac (major RS lamE) 1); |
|
66 |
by (REPEAT (ares_tac prems 1)); |
|
67 |
val idE = result(); |
|
68 |
||
69 |
goalw Perm.thy [id_def] "id(A) : A->A"; |
|
70 |
by (rtac lam_type 1); |
|
71 |
by (assume_tac 1); |
|
72 |
val id_type = result(); |
|
73 |
||
74 |
val [prem] = goalw Perm.thy [id_def] "A<=B ==> id(A) <= id(B)"; |
|
75 |
by (rtac (prem RS lam_mono) 1); |
|
76 |
val id_mono = result(); |
|
77 |
||
78 |
goalw Perm.thy [inj_def,id_def] "id(A): inj(A,A)"; |
|
79 |
by (REPEAT (ares_tac [CollectI,lam_type] 1)); |
|
6
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
80 |
by (simp_tac ZF_ss 1); |
0 | 81 |
val id_inj = result(); |
82 |
||
83 |
goalw Perm.thy [id_def,surj_def] "id(A): surj(A,A)"; |
|
84 |
by (fast_tac (ZF_cs addIs [lam_type,beta]) 1); |
|
85 |
val id_surj = result(); |
|
86 |
||
87 |
goalw Perm.thy [bij_def] "id(A): bij(A,A)"; |
|
88 |
by (fast_tac (ZF_cs addIs [id_inj,id_surj]) 1); |
|
89 |
val id_bij = result(); |
|
90 |
||
91 |
||
92 |
(** Converse of a relation **) |
|
93 |
||
94 |
val [prem] = goal Perm.thy "f: inj(A,B) ==> converse(f) : range(f)->A"; |
|
95 |
by (rtac (prem RS inj_is_fun RS PiE) 1); |
|
96 |
by (rtac (converse_type RS PiI) 1); |
|
97 |
by (fast_tac ZF_cs 1); |
|
98 |
by (fast_tac (ZF_cs addEs [prem RSN (3,inj_equality)]) 1); |
|
99 |
by flexflex_tac; |
|
100 |
val inj_converse_fun = result(); |
|
101 |
||
102 |
val prems = goalw Perm.thy [surj_def] |
|
103 |
"f: inj(A,B) ==> converse(f): surj(range(f), A)"; |
|
104 |
by (fast_tac (ZF_cs addIs (prems@[inj_converse_fun,apply_Pair,apply_equality, |
|
105 |
converseI,inj_is_fun])) 1); |
|
106 |
val inj_converse_surj = result(); |
|
107 |
||
108 |
(*The premises are equivalent to saying that f is injective...*) |
|
109 |
val prems = goal Perm.thy |
|
110 |
"[| f: A->B; converse(f): C->A; a: A |] ==> converse(f)`(f`a) = a"; |
|
111 |
by (fast_tac (ZF_cs addIs (prems@[apply_Pair,apply_equality,converseI])) 1); |
|
112 |
val left_inverse_lemma = result(); |
|
113 |
||
114 |
val prems = goal Perm.thy |
|
115 |
"[| f: inj(A,B); a: A |] ==> converse(f)`(f`a) = a"; |
|
116 |
by (fast_tac (ZF_cs addIs (prems@ |
|
117 |
[left_inverse_lemma,inj_converse_fun,inj_is_fun])) 1); |
|
118 |
val left_inverse = result(); |
|
119 |
||
120 |
val prems = goal Perm.thy |
|
121 |
"[| f: A->B; converse(f): C->A; b: C |] ==> f`(converse(f)`b) = b"; |
|
122 |
by (rtac (apply_Pair RS (converseD RS apply_equality)) 1); |
|
123 |
by (REPEAT (resolve_tac prems 1)); |
|
124 |
val right_inverse_lemma = result(); |
|
125 |
||
126 |
val prems = goal Perm.thy |
|
127 |
"[| f: inj(A,B); b: range(f) |] ==> f`(converse(f)`b) = b"; |
|
128 |
by (rtac right_inverse_lemma 1); |
|
129 |
by (REPEAT (resolve_tac (prems@ [inj_converse_fun,inj_is_fun]) 1)); |
|
130 |
val right_inverse = result(); |
|
131 |
||
132 |
val prems = goal Perm.thy |
|
133 |
"f: inj(A,B) ==> converse(f): inj(range(f), A)"; |
|
134 |
bw inj_def; (*rewrite subgoal but not prems!!*) |
|
135 |
by (cut_facts_tac prems 1); |
|
136 |
by (safe_tac ZF_cs); |
|
137 |
(*apply f to both sides and simplify using right_inverse |
|
138 |
-- could also use etac[subst_context RS box_equals] in this proof *) |
|
139 |
by (rtac simp_equals 2); |
|
140 |
by (REPEAT (eresolve_tac [inj_converse_fun, right_inverse RS sym, ssubst] 1 |
|
141 |
ORELSE ares_tac [refl,rangeI] 1)); |
|
142 |
val inj_converse_inj = result(); |
|
143 |
||
144 |
goalw Perm.thy [bij_def] "!!f A B. f: bij(A,B) ==> converse(f): bij(B,A)"; |
|
145 |
by (etac IntE 1); |
|
146 |
by (eresolve_tac [(surj_range RS subst)] 1); |
|
147 |
by (rtac IntI 1); |
|
148 |
by (etac inj_converse_inj 1); |
|
149 |
by (etac inj_converse_surj 1); |
|
150 |
val bij_converse_bij = result(); |
|
151 |
||
152 |
||
153 |
(** Composition of two relations **) |
|
154 |
||
155 |
(*The inductive definition package could derive these theorems for R o S*) |
|
156 |
||
157 |
goalw Perm.thy [comp_def] "!!r s. [| <a,b>:s; <b,c>:r |] ==> <a,c> : r O s"; |
|
158 |
by (fast_tac ZF_cs 1); |
|
159 |
val compI = result(); |
|
160 |
||
161 |
val prems = goalw Perm.thy [comp_def] |
|
162 |
"[| xz : r O s; \ |
|
163 |
\ !!x y z. [| xz=<x,z>; <x,y>:s; <y,z>:r |] ==> P \ |
|
164 |
\ |] ==> P"; |
|
165 |
by (cut_facts_tac prems 1); |
|
166 |
by (REPEAT (eresolve_tac [CollectE, exE, conjE] 1 ORELSE ares_tac prems 1)); |
|
167 |
val compE = result(); |
|
168 |
||
169 |
val compEpair = |
|
170 |
rule_by_tactic (REPEAT_FIRST (etac Pair_inject ORELSE' bound_hyp_subst_tac) |
|
171 |
THEN prune_params_tac) |
|
172 |
(read_instantiate [("xz","<a,c>")] compE); |
|
173 |
||
174 |
val comp_cs = ZF_cs addIs [compI,idI] addSEs [compE,idE]; |
|
175 |
||
176 |
(** Domain and Range -- see Suppes, section 3.1 **) |
|
177 |
||
178 |
(*Boyer et al., Set Theory in First-Order Logic, JAR 2 (1986), 287-327*) |
|
179 |
goal Perm.thy "range(r O s) <= range(r)"; |
|
180 |
by (fast_tac comp_cs 1); |
|
181 |
val range_comp = result(); |
|
182 |
||
183 |
goal Perm.thy "!!r s. domain(r) <= range(s) ==> range(r O s) = range(r)"; |
|
184 |
by (rtac (range_comp RS equalityI) 1); |
|
185 |
by (fast_tac comp_cs 1); |
|
186 |
val range_comp_eq = result(); |
|
187 |
||
188 |
goal Perm.thy "domain(r O s) <= domain(s)"; |
|
189 |
by (fast_tac comp_cs 1); |
|
190 |
val domain_comp = result(); |
|
191 |
||
192 |
goal Perm.thy "!!r s. range(s) <= domain(r) ==> domain(r O s) = domain(s)"; |
|
193 |
by (rtac (domain_comp RS equalityI) 1); |
|
194 |
by (fast_tac comp_cs 1); |
|
195 |
val domain_comp_eq = result(); |
|
196 |
||
218 | 197 |
goal Perm.thy "(r O s)``A = r``(s``A)"; |
198 |
by (fast_tac (comp_cs addIs [equalityI]) 1); |
|
199 |
val image_comp = result(); |
|
200 |
||
201 |
||
0 | 202 |
(** Other results **) |
203 |
||
204 |
goal Perm.thy "!!r s. [| r'<=r; s'<=s |] ==> (r' O s') <= (r O s)"; |
|
205 |
by (fast_tac comp_cs 1); |
|
206 |
val comp_mono = result(); |
|
207 |
||
208 |
(*composition preserves relations*) |
|
209 |
goal Perm.thy "!!r s. [| s<=A*B; r<=B*C |] ==> (r O s) <= A*C"; |
|
210 |
by (fast_tac comp_cs 1); |
|
211 |
val comp_rel = result(); |
|
212 |
||
213 |
(*associative law for composition*) |
|
214 |
goal Perm.thy "(r O s) O t = r O (s O t)"; |
|
215 |
by (fast_tac (comp_cs addIs [equalityI]) 1); |
|
216 |
val comp_assoc = result(); |
|
217 |
||
218 |
(*left identity of composition; provable inclusions are |
|
219 |
id(A) O r <= r |
|
220 |
and [| r<=A*B; B<=C |] ==> r <= id(C) O r *) |
|
221 |
goal Perm.thy "!!r A B. r<=A*B ==> id(B) O r = r"; |
|
222 |
by (fast_tac (comp_cs addIs [equalityI]) 1); |
|
223 |
val left_comp_id = result(); |
|
224 |
||
225 |
(*right identity of composition; provable inclusions are |
|
226 |
r O id(A) <= r |
|
227 |
and [| r<=A*B; A<=C |] ==> r <= r O id(C) *) |
|
228 |
goal Perm.thy "!!r A B. r<=A*B ==> r O id(A) = r"; |
|
229 |
by (fast_tac (comp_cs addIs [equalityI]) 1); |
|
230 |
val right_comp_id = result(); |
|
231 |
||
232 |
||
233 |
(** Composition preserves functions, injections, and surjections **) |
|
234 |
||
235 |
goal Perm.thy "!!f g. [| g: A->B; f: B->C |] ==> (f O g) : A->C"; |
|
236 |
by (REPEAT (ares_tac [PiI,comp_rel,ex1I,compI] 1 |
|
237 |
ORELSE eresolve_tac [fun_is_rel,apply_Pair,apply_type] 1)); |
|
238 |
by (fast_tac (comp_cs addDs [apply_equality]) 1); |
|
239 |
val comp_func = result(); |
|
240 |
||
241 |
goal Perm.thy "!!f g. [| g: A->B; f: B->C; a:A |] ==> (f O g)`a = f`(g`a)"; |
|
242 |
by (REPEAT (ares_tac [comp_func,apply_equality,compI, |
|
243 |
apply_Pair,apply_type] 1)); |
|
244 |
val comp_func_apply = result(); |
|
245 |
||
246 |
goalw Perm.thy [inj_def] |
|
247 |
"!!f g. [| g: inj(A,B); f: inj(B,C) |] ==> (f O g) : inj(A,C)"; |
|
248 |
by (REPEAT (eresolve_tac [bspec RS bspec RS mp, box_equals] 1 |
|
249 |
ORELSE step_tac (ZF_cs addSIs [comp_func,apply_type,comp_func_apply]) 1)); |
|
250 |
val comp_inj = result(); |
|
251 |
||
252 |
goalw Perm.thy [surj_def] |
|
253 |
"!!f g. [| g: surj(A,B); f: surj(B,C) |] ==> (f O g) : surj(A,C)"; |
|
254 |
by (best_tac (ZF_cs addSIs [comp_func,comp_func_apply]) 1); |
|
255 |
val comp_surj = result(); |
|
256 |
||
257 |
goalw Perm.thy [bij_def] |
|
258 |
"!!f g. [| g: bij(A,B); f: bij(B,C) |] ==> (f O g) : bij(A,C)"; |
|
259 |
by (fast_tac (ZF_cs addIs [comp_inj,comp_surj]) 1); |
|
260 |
val comp_bij = result(); |
|
261 |
||
262 |
||
263 |
(** Dual properties of inj and surj -- useful for proofs from |
|
264 |
D Pastre. Automatic theorem proving in set theory. |
|
265 |
Artificial Intelligence, 10:1--27, 1978. **) |
|
266 |
||
267 |
goalw Perm.thy [inj_def] |
|
268 |
"!!f g. [| (f O g): inj(A,C); g: A->B; f: B->C |] ==> g: inj(A,B)"; |
|
269 |
by (safe_tac comp_cs); |
|
270 |
by (REPEAT (eresolve_tac [asm_rl, bspec RS bspec RS mp] 1)); |
|
6
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
271 |
by (asm_simp_tac (FOL_ss addsimps [comp_func_apply]) 1); |
0 | 272 |
val comp_mem_injD1 = result(); |
273 |
||
274 |
goalw Perm.thy [inj_def,surj_def] |
|
275 |
"!!f g. [| (f O g): inj(A,C); g: surj(A,B); f: B->C |] ==> f: inj(B,C)"; |
|
276 |
by (safe_tac comp_cs); |
|
277 |
by (res_inst_tac [("x1", "x")] (bspec RS bexE) 1); |
|
278 |
by (eres_inst_tac [("x1", "w")] (bspec RS bexE) 3); |
|
279 |
by (REPEAT (assume_tac 1)); |
|
6
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
280 |
by (safe_tac comp_cs); |
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
281 |
by (res_inst_tac [("t", "op `(g)")] subst_context 1); |
0 | 282 |
by (REPEAT (eresolve_tac [asm_rl, bspec RS bspec RS mp] 1)); |
6
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
283 |
by (asm_simp_tac (FOL_ss addsimps [comp_func_apply]) 1); |
0 | 284 |
val comp_mem_injD2 = result(); |
285 |
||
286 |
goalw Perm.thy [surj_def] |
|
287 |
"!!f g. [| (f O g): surj(A,C); g: A->B; f: B->C |] ==> f: surj(B,C)"; |
|
288 |
by (fast_tac (comp_cs addSIs [comp_func_apply RS sym, apply_type]) 1); |
|
289 |
val comp_mem_surjD1 = result(); |
|
290 |
||
291 |
goal Perm.thy |
|
292 |
"!!f g. [| (f O g)`a = c; g: A->B; f: B->C; a:A |] ==> f`(g`a) = c"; |
|
293 |
by (REPEAT (ares_tac [comp_func_apply RS sym RS trans] 1)); |
|
294 |
val comp_func_applyD = result(); |
|
295 |
||
296 |
goalw Perm.thy [inj_def,surj_def] |
|
297 |
"!!f g. [| (f O g): surj(A,C); g: A->B; f: inj(B,C) |] ==> g: surj(A,B)"; |
|
298 |
by (safe_tac comp_cs); |
|
299 |
by (eres_inst_tac [("x1", "f`y")] (bspec RS bexE) 1); |
|
300 |
by (REPEAT (ares_tac [apply_type] 1 ORELSE dtac comp_func_applyD 1)); |
|
301 |
by (best_tac (comp_cs addSIs [apply_type]) 1); |
|
302 |
val comp_mem_surjD2 = result(); |
|
303 |
||
304 |
||
305 |
(** inverses of composition **) |
|
306 |
||
307 |
(*left inverse of composition; one inclusion is |
|
308 |
f: A->B ==> id(A) <= converse(f) O f *) |
|
309 |
val [prem] = goal Perm.thy |
|
310 |
"f: inj(A,B) ==> converse(f) O f = id(A)"; |
|
311 |
val injfD = prem RSN (3,inj_equality); |
|
312 |
by (cut_facts_tac [prem RS inj_is_fun] 1); |
|
313 |
by (fast_tac (comp_cs addIs [equalityI,apply_Pair] |
|
314 |
addEs [domain_type, make_elim injfD]) 1); |
|
315 |
val left_comp_inverse = result(); |
|
316 |
||
317 |
(*right inverse of composition; one inclusion is |
|
318 |
f: A->B ==> f O converse(f) <= id(B) *) |
|
319 |
val [prem] = goalw Perm.thy [surj_def] |
|
320 |
"f: surj(A,B) ==> f O converse(f) = id(B)"; |
|
321 |
val appfD = (prem RS CollectD1) RSN (3,apply_equality2); |
|
322 |
by (cut_facts_tac [prem] 1); |
|
323 |
by (rtac equalityI 1); |
|
324 |
by (best_tac (comp_cs addEs [domain_type, range_type, make_elim appfD]) 1); |
|
325 |
by (best_tac (comp_cs addIs [apply_Pair]) 1); |
|
326 |
val right_comp_inverse = result(); |
|
327 |
||
328 |
(*Injective case applies converse(f) to both sides then simplifies |
|
329 |
using left_inverse_lemma*) |
|
330 |
goalw Perm.thy [bij_def,inj_def,surj_def] |
|
331 |
"!!f A B. [| converse(f): B->A; f: A->B |] ==> f : bij(A,B)"; |
|
332 |
val cf_cong = read_instantiate_sg (sign_of Perm.thy) |
|
333 |
[("t","%x.?f`x")] subst_context; |
|
334 |
by (fast_tac (ZF_cs addIs [left_inverse_lemma, right_inverse_lemma, apply_type] |
|
335 |
addEs [cf_cong RS box_equals]) 1); |
|
336 |
val invertible_imp_bijective = result(); |
|
337 |
||
338 |
(** Unions of functions -- cf similar theorems on func.ML **) |
|
339 |
||
340 |
goal Perm.thy "converse(r Un s) = converse(r) Un converse(s)"; |
|
341 |
by (rtac equalityI 1); |
|
342 |
by (DEPTH_SOLVE_1 |
|
343 |
(resolve_tac [Un_least,converse_mono, Un_upper1,Un_upper2] 2)); |
|
344 |
by (fast_tac ZF_cs 1); |
|
345 |
val converse_of_Un = result(); |
|
346 |
||
347 |
goalw Perm.thy [surj_def] |
|
348 |
"!!f g. [| f: surj(A,B); g: surj(C,D); A Int C = 0 |] ==> \ |
|
349 |
\ (f Un g) : surj(A Un C, B Un D)"; |
|
350 |
by (DEPTH_SOLVE_1 (eresolve_tac [fun_disjoint_apply1, fun_disjoint_apply2] 1 |
|
351 |
ORELSE ball_tac 1 |
|
352 |
ORELSE (rtac trans 1 THEN atac 2) |
|
353 |
ORELSE step_tac (ZF_cs addIs [fun_disjoint_Un]) 1)); |
|
354 |
val surj_disjoint_Un = result(); |
|
355 |
||
356 |
(*A simple, high-level proof; the version for injections follows from it, |
|
357 |
using f:inj(A,B)<->f:bij(A,range(f)) *) |
|
358 |
goal Perm.thy |
|
359 |
"!!f g. [| f: bij(A,B); g: bij(C,D); A Int C = 0; B Int D = 0 |] ==> \ |
|
360 |
\ (f Un g) : bij(A Un C, B Un D)"; |
|
361 |
by (rtac invertible_imp_bijective 1); |
|
362 |
by (rtac (converse_of_Un RS ssubst) 1); |
|
363 |
by (REPEAT (ares_tac [fun_disjoint_Un, bij_is_fun, bij_converse_bij] 1)); |
|
364 |
val bij_disjoint_Un = result(); |
|
365 |
||
366 |
||
367 |
(** Restrictions as surjections and bijections *) |
|
368 |
||
369 |
val prems = goalw Perm.thy [surj_def] |
|
370 |
"f: Pi(A,B) ==> f: surj(A, f``A)"; |
|
371 |
val rls = apply_equality :: (prems RL [apply_Pair,Pi_type]); |
|
372 |
by (fast_tac (ZF_cs addIs rls) 1); |
|
373 |
val surj_image = result(); |
|
374 |
||
375 |
goal Perm.thy |
|
376 |
"!!f. [| f: Pi(C,B); A<=C |] ==> restrict(f,A)``A = f``A"; |
|
377 |
by (rtac equalityI 1); |
|
378 |
by (SELECT_GOAL (rewtac restrict_def) 2); |
|
379 |
by (REPEAT (eresolve_tac [imageE, apply_equality RS subst] 2 |
|
380 |
ORELSE ares_tac [subsetI,lamI,imageI] 2)); |
|
381 |
by (REPEAT (ares_tac [image_mono,restrict_subset,subset_refl] 1)); |
|
382 |
val restrict_image = result(); |
|
383 |
||
384 |
goalw Perm.thy [inj_def] |
|
385 |
"!!f. [| f: inj(A,B); C<=A |] ==> restrict(f,C): inj(C,B)"; |
|
386 |
by (safe_tac (ZF_cs addSEs [restrict_type2])); |
|
387 |
by (REPEAT (eresolve_tac [asm_rl, bspec RS bspec RS mp, subsetD, |
|
388 |
box_equals, restrict] 1)); |
|
389 |
val restrict_inj = result(); |
|
390 |
||
391 |
val prems = goal Perm.thy |
|
392 |
"[| f: Pi(A,B); C<=A |] ==> restrict(f,C): surj(C, f``C)"; |
|
393 |
by (rtac (restrict_image RS subst) 1); |
|
394 |
by (rtac (restrict_type2 RS surj_image) 3); |
|
395 |
by (REPEAT (resolve_tac prems 1)); |
|
396 |
val restrict_surj = result(); |
|
397 |
||
398 |
goalw Perm.thy [inj_def,bij_def] |
|
399 |
"!!f. [| f: inj(A,B); C<=A |] ==> restrict(f,C): bij(C, f``C)"; |
|
400 |
by (safe_tac ZF_cs); |
|
401 |
by (REPEAT (eresolve_tac [bspec RS bspec RS mp, subsetD, |
|
402 |
box_equals, restrict] 1 |
|
403 |
ORELSE ares_tac [surj_is_fun,restrict_surj] 1)); |
|
404 |
val restrict_bij = result(); |
|
405 |
||
406 |
||
407 |
(*** Lemmas for Ramsey's Theorem ***) |
|
408 |
||
409 |
goalw Perm.thy [inj_def] "!!f. [| f: inj(A,B); B<=D |] ==> f: inj(A,D)"; |
|
410 |
by (fast_tac (ZF_cs addSEs [fun_weaken_type]) 1); |
|
411 |
val inj_weaken_type = result(); |
|
412 |
||
413 |
val [major] = goal Perm.thy |
|
414 |
"[| f: inj(succ(m), A) |] ==> restrict(f,m) : inj(m, A-{f`m})"; |
|
415 |
by (rtac (major RS restrict_bij RS bij_is_inj RS inj_weaken_type) 1); |
|
416 |
by (fast_tac ZF_cs 1); |
|
417 |
by (cut_facts_tac [major] 1); |
|
418 |
by (rewtac inj_def); |
|
419 |
by (safe_tac ZF_cs); |
|
420 |
by (etac range_type 1); |
|
421 |
by (assume_tac 1); |
|
422 |
by (dtac apply_equality 1); |
|
423 |
by (assume_tac 1); |
|
424 |
by (res_inst_tac [("a","m")] mem_anti_refl 1); |
|
425 |
by (fast_tac ZF_cs 1); |
|
426 |
val inj_succ_restrict = result(); |
|
427 |
||
428 |
goalw Perm.thy [inj_def] |
|
37 | 429 |
"!!f. [| f: inj(A,B); a~:A; b~:B |] ==> \ |
0 | 430 |
\ cons(<a,b>,f) : inj(cons(a,A), cons(b,B))"; |
431 |
(*cannot use safe_tac: must preserve the implication*) |
|
432 |
by (etac CollectE 1); |
|
433 |
by (rtac CollectI 1); |
|
434 |
by (etac fun_extend 1); |
|
435 |
by (REPEAT (ares_tac [ballI] 1)); |
|
436 |
by (REPEAT_FIRST (eresolve_tac [consE,ssubst])); |
|
6
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
437 |
(*Assumption ALL w:A. ALL x:A. f`w = f`x --> w=x would make asm_simp_tac loop |
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
438 |
using ZF_ss! But FOL_ss ignores the assumption...*) |
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
439 |
by (ALLGOALS (asm_simp_tac |
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
440 |
(FOL_ss addsimps [fun_extend_apply2,fun_extend_apply1]))); |
0 | 441 |
by (ALLGOALS (fast_tac (ZF_cs addIs [apply_type]))); |
442 |
val inj_extend = result(); |