10163
|
1 |
<html>
|
|
2 |
|
2080
|
3 |
<!-- $Id$ -->
|
1339
|
4 |
|
10163
|
5 |
<head><title>HOL/README</title></head>
|
1339
|
6 |
|
10163
|
7 |
<body>
|
|
8 |
|
|
9 |
<h2>HOL: Higher-Order Logic</h2>
|
1339
|
10 |
|
10262
|
11 |
These are the main sources of the Isabelle system for Higher-Order Logic.
|
10163
|
12 |
|
|
13 |
<p>
|
2080
|
14 |
|
10163
|
15 |
There are also several example sessions:
|
|
16 |
<dl>
|
2080
|
17 |
|
10163
|
18 |
<dt>Algebra
|
|
19 |
<dd>rings and univariate polynomials
|
|
20 |
|
|
21 |
<dt>Auth
|
|
22 |
<dd>a new approach to verifying authentication protocols
|
7303
|
23 |
|
10163
|
24 |
<dt>AxClasses
|
|
25 |
<dd>a few basic examples of using axiomatic type classes
|
|
26 |
|
|
27 |
<dt>BCV
|
|
28 |
<dd>generic model of bytecode verification, i.e. data-flow analysis
|
|
29 |
for assembly languages with subtypes
|
7303
|
30 |
|
10163
|
31 |
<dt>HOL-Real
|
|
32 |
<dd>a development of the reals and hyper-reals, which are used in
|
|
33 |
non-standard analysis (builds the image HOL-Real)
|
7303
|
34 |
|
10163
|
35 |
<dt>HOL-Real-HahnBanach
|
|
36 |
<dd>the Hahn-Banach theorem for real vector spaces (in Isabelle/Isar)
|
7303
|
37 |
|
10163
|
38 |
<dt>HOL-Real-ex
|
|
39 |
<dd>miscellaneous real number examples
|
|
40 |
|
|
41 |
<dt>Hoare
|
|
42 |
<dd>verification of imperative programs (verification conditions are
|
|
43 |
generated automatically from pre/post conditions and loop invariants)
|
7691
|
44 |
|
10163
|
45 |
<dt>IMP
|
|
46 |
<dd>mechanization of a large part of a semantics text by Glynn Winskel
|
7291
|
47 |
|
10163
|
48 |
<dt>IMPP
|
|
49 |
<dd>extension of IMP with local variables and mutually recursive
|
|
50 |
procedures
|
2080
|
51 |
|
10163
|
52 |
<dt>IOA
|
|
53 |
<dd>a simple theory of Input/Output Automata
|
|
54 |
|
|
55 |
<dt>Induct
|
|
56 |
<dd>examples of (co)inductive definitions
|
3125
|
57 |
|
10163
|
58 |
<dt>Isar_examples
|
|
59 |
<dd>several introductory examples using Isabelle/Isar
|
2080
|
60 |
|
10163
|
61 |
<dt>Lambda
|
|
62 |
<dd>fundamental properties of lambda-calculus (Church-Rosser and termination)
|
2080
|
63 |
|
10163
|
64 |
<dt>Lattice
|
|
65 |
<dd>lattices and order structures (in Isabelle/Isar)
|
7303
|
66 |
|
10163
|
67 |
<dt>Lex
|
|
68 |
<dd>verification of a simple lexical analyzer generator
|
1339
|
69 |
|
10163
|
70 |
<dt>MicroJava
|
|
71 |
<dd>formalization of a fragment of Java, together with a corresponding
|
|
72 |
virtual machine and a specification of its bytecode verifier and a
|
|
73 |
lightweight bytecode verifier, including proofs of type-safety.
|
7291
|
74 |
|
10163
|
75 |
<dt>MiniML
|
|
76 |
<dd>formalization of type inference for the language Mini-ML
|
7291
|
77 |
|
10163
|
78 |
<dt>Modelcheck
|
|
79 |
<dd>basic setup for integration of some model checkers in Isabelle/HOL
|
7290
|
80 |
|
10163
|
81 |
<dt>NumberTheory
|
|
82 |
<dd>fundamental Theorem of Arithmetic, Chinese Remainder Theorem,
|
|
83 |
Fermat/Euler Theorem, Wilson's Theorem
|
7662
|
84 |
|
10163
|
85 |
<dt>Prolog
|
|
86 |
<dd>a (bare-bones) implementation of Lambda-Prolog
|
|
87 |
|
|
88 |
<dt>Subst
|
|
89 |
<dd>defines a theory of substitution and unification.
|
7290
|
90 |
|
10163
|
91 |
<dt>TLA
|
|
92 |
<dd>Lamport's Temporal Logic of Actions (with separate example sessions)
|
7291
|
93 |
|
10163
|
94 |
<dt>UNITY
|
|
95 |
<dd>Chandy and Misra's UNITY formalism
|
7290
|
96 |
|
10163
|
97 |
<dt>W0
|
|
98 |
<dd>a precursor of MiniML, without let-expressions
|
7291
|
99 |
|
10163
|
100 |
<dt>ex
|
|
101 |
<dd>miscellaneous examples
|
|
102 |
|
|
103 |
</dl>
|
1339
|
104 |
|
|
105 |
Useful references on Higher-Order Logic:
|
|
106 |
|
10163
|
107 |
<ul>
|
1339
|
108 |
|
10163
|
109 |
<li>P. B. Andrews,<br>
|
|
110 |
An Introduction to Mathematical Logic and Type Theory<br>
|
|
111 |
(Academic Press, 1986).
|
4622
|
112 |
|
10163
|
113 |
<li>A. Church,<br>
|
|
114 |
A Formulation of the Simple Theory of Types<br>
|
|
115 |
(Journal of Symbolic Logic, 1940).
|
4622
|
116 |
|
10163
|
117 |
<li>M. J. C. Gordon and T. F. Melham (editors),<br>
|
|
118 |
Introduction to HOL: A theorem proving environment for higher order logic<br>
|
|
119 |
(Cambridge University Press, 1993).
|
4622
|
120 |
|
10163
|
121 |
<li>J. Lambek and P. J. Scott,<br>
|
|
122 |
Introduction to Higher Order Categorical Logic<br>
|
|
123 |
(Cambridge University Press, 1986).
|
4622
|
124 |
|
10163
|
125 |
</ul>
|
1339
|
126 |
|
10163
|
127 |
</body>
|
|
128 |
</html>
|