author | haftmann |
Fri, 28 May 2010 13:37:28 +0200 | |
changeset 37166 | e8400e31528a |
parent 36452 | d37c6eed8117 |
child 38522 | de7984a7172b |
permissions | -rw-r--r-- |
1477 | 1 |
(* Title: FOLP/IFOLP.thy |
2 |
Author: Martin D Coen, Cambridge University Computer Laboratory |
|
1142 | 3 |
Copyright 1992 University of Cambridge |
4 |
*) |
|
5 |
||
17480 | 6 |
header {* Intuitionistic First-Order Logic with Proofs *} |
7 |
||
8 |
theory IFOLP |
|
9 |
imports Pure |
|
26322 | 10 |
uses ("hypsubst.ML") ("intprover.ML") |
17480 | 11 |
begin |
0 | 12 |
|
26956
1309a6a0a29f
setup PureThy.old_appl_syntax_setup -- theory Pure provides regular application syntax by default;
wenzelm
parents:
26480
diff
changeset
|
13 |
setup PureThy.old_appl_syntax_setup |
1309a6a0a29f
setup PureThy.old_appl_syntax_setup -- theory Pure provides regular application syntax by default;
wenzelm
parents:
26480
diff
changeset
|
14 |
|
3942 | 15 |
global |
16 |
||
17480 | 17 |
classes "term" |
36452 | 18 |
default_sort "term" |
0 | 19 |
|
17480 | 20 |
typedecl p |
21 |
typedecl o |
|
0 | 22 |
|
17480 | 23 |
consts |
0 | 24 |
(*** Judgements ***) |
1477 | 25 |
Proof :: "[o,p]=>prop" |
0 | 26 |
EqProof :: "[p,p,o]=>prop" ("(3_ /= _ :/ _)" [10,10,10] 5) |
17480 | 27 |
|
0 | 28 |
(*** Logical Connectives -- Type Formers ***) |
35128 | 29 |
"op =" :: "['a,'a] => o" (infixl "=" 50) |
17480 | 30 |
True :: "o" |
31 |
False :: "o" |
|
2714 | 32 |
Not :: "o => o" ("~ _" [40] 40) |
35128 | 33 |
"op &" :: "[o,o] => o" (infixr "&" 35) |
34 |
"op |" :: "[o,o] => o" (infixr "|" 30) |
|
35 |
"op -->" :: "[o,o] => o" (infixr "-->" 25) |
|
36 |
"op <->" :: "[o,o] => o" (infixr "<->" 25) |
|
0 | 37 |
(*Quantifiers*) |
1477 | 38 |
All :: "('a => o) => o" (binder "ALL " 10) |
39 |
Ex :: "('a => o) => o" (binder "EX " 10) |
|
40 |
Ex1 :: "('a => o) => o" (binder "EX! " 10) |
|
0 | 41 |
(*Rewriting gadgets*) |
1477 | 42 |
NORM :: "o => o" |
43 |
norm :: "'a => 'a" |
|
0 | 44 |
|
648
e27c9ec2b48b
FOLP/IFOLP.thy: tightening precedences to eliminate syntactic ambiguities.
lcp
parents:
283
diff
changeset
|
45 |
(*** Proof Term Formers: precedence must exceed 50 ***) |
1477 | 46 |
tt :: "p" |
47 |
contr :: "p=>p" |
|
17480 | 48 |
fst :: "p=>p" |
49 |
snd :: "p=>p" |
|
1477 | 50 |
pair :: "[p,p]=>p" ("(1<_,/_>)") |
51 |
split :: "[p, [p,p]=>p] =>p" |
|
17480 | 52 |
inl :: "p=>p" |
53 |
inr :: "p=>p" |
|
1477 | 54 |
when :: "[p, p=>p, p=>p]=>p" |
55 |
lambda :: "(p => p) => p" (binder "lam " 55) |
|
35128 | 56 |
"op `" :: "[p,p]=>p" (infixl "`" 60) |
648
e27c9ec2b48b
FOLP/IFOLP.thy: tightening precedences to eliminate syntactic ambiguities.
lcp
parents:
283
diff
changeset
|
57 |
alll :: "['a=>p]=>p" (binder "all " 55) |
35128 | 58 |
"op ^" :: "[p,'a]=>p" (infixl "^" 55) |
1477 | 59 |
exists :: "['a,p]=>p" ("(1[_,/_])") |
0 | 60 |
xsplit :: "[p,['a,p]=>p]=>p" |
61 |
ideq :: "'a=>p" |
|
62 |
idpeel :: "[p,'a=>p]=>p" |
|
17480 | 63 |
nrm :: p |
64 |
NRM :: p |
|
0 | 65 |
|
3942 | 66 |
local |
67 |
||
35113 | 68 |
syntax "_Proof" :: "[p,o]=>prop" ("(_ /: _)" [51, 10] 5) |
69 |
||
17480 | 70 |
ML {* |
71 |
||
72 |
(*show_proofs:=true displays the proof terms -- they are ENORMOUS*) |
|
32740 | 73 |
val show_proofs = Unsynchronized.ref false; |
17480 | 74 |
|
26322 | 75 |
fun proof_tr [p,P] = Const (@{const_name Proof}, dummyT) $ P $ p; |
17480 | 76 |
|
77 |
fun proof_tr' [P,p] = |
|
35113 | 78 |
if ! show_proofs then Const (@{syntax_const "_Proof"}, dummyT) $ p $ P |
79 |
else P (*this case discards the proof term*); |
|
17480 | 80 |
*} |
81 |
||
35113 | 82 |
parse_translation {* [(@{syntax_const "_Proof"}, proof_tr)] *} |
83 |
print_translation {* [(@{const_syntax Proof}, proof_tr')] *} |
|
17480 | 84 |
|
85 |
axioms |
|
0 | 86 |
|
87 |
(**** Propositional logic ****) |
|
88 |
||
89 |
(*Equality*) |
|
90 |
(* Like Intensional Equality in MLTT - but proofs distinct from terms *) |
|
91 |
||
17480 | 92 |
ieqI: "ideq(a) : a=a" |
93 |
ieqE: "[| p : a=b; !!x. f(x) : P(x,x) |] ==> idpeel(p,f) : P(a,b)" |
|
0 | 94 |
|
95 |
(* Truth and Falsity *) |
|
96 |
||
17480 | 97 |
TrueI: "tt : True" |
98 |
FalseE: "a:False ==> contr(a):P" |
|
0 | 99 |
|
100 |
(* Conjunction *) |
|
101 |
||
17480 | 102 |
conjI: "[| a:P; b:Q |] ==> <a,b> : P&Q" |
103 |
conjunct1: "p:P&Q ==> fst(p):P" |
|
104 |
conjunct2: "p:P&Q ==> snd(p):Q" |
|
0 | 105 |
|
106 |
(* Disjunction *) |
|
107 |
||
17480 | 108 |
disjI1: "a:P ==> inl(a):P|Q" |
109 |
disjI2: "b:Q ==> inr(b):P|Q" |
|
110 |
disjE: "[| a:P|Q; !!x. x:P ==> f(x):R; !!x. x:Q ==> g(x):R |
|
111 |
|] ==> when(a,f,g):R" |
|
0 | 112 |
|
113 |
(* Implication *) |
|
114 |
||
17480 | 115 |
impI: "(!!x. x:P ==> f(x):Q) ==> lam x. f(x):P-->Q" |
116 |
mp: "[| f:P-->Q; a:P |] ==> f`a:Q" |
|
0 | 117 |
|
118 |
(*Quantifiers*) |
|
119 |
||
17480 | 120 |
allI: "(!!x. f(x) : P(x)) ==> all x. f(x) : ALL x. P(x)" |
121 |
spec: "(f:ALL x. P(x)) ==> f^x : P(x)" |
|
0 | 122 |
|
17480 | 123 |
exI: "p : P(x) ==> [x,p] : EX x. P(x)" |
124 |
exE: "[| p: EX x. P(x); !!x u. u:P(x) ==> f(x,u) : R |] ==> xsplit(p,f):R" |
|
0 | 125 |
|
126 |
(**** Equality between proofs ****) |
|
127 |
||
17480 | 128 |
prefl: "a : P ==> a = a : P" |
129 |
psym: "a = b : P ==> b = a : P" |
|
130 |
ptrans: "[| a = b : P; b = c : P |] ==> a = c : P" |
|
0 | 131 |
|
17480 | 132 |
idpeelB: "[| !!x. f(x) : P(x,x) |] ==> idpeel(ideq(a),f) = f(a) : P(a,a)" |
0 | 133 |
|
17480 | 134 |
fstB: "a:P ==> fst(<a,b>) = a : P" |
135 |
sndB: "b:Q ==> snd(<a,b>) = b : Q" |
|
136 |
pairEC: "p:P&Q ==> p = <fst(p),snd(p)> : P&Q" |
|
0 | 137 |
|
17480 | 138 |
whenBinl: "[| a:P; !!x. x:P ==> f(x) : Q |] ==> when(inl(a),f,g) = f(a) : Q" |
139 |
whenBinr: "[| b:P; !!x. x:P ==> g(x) : Q |] ==> when(inr(b),f,g) = g(b) : Q" |
|
140 |
plusEC: "a:P|Q ==> when(a,%x. inl(x),%y. inr(y)) = a : P|Q" |
|
0 | 141 |
|
17480 | 142 |
applyB: "[| a:P; !!x. x:P ==> b(x) : Q |] ==> (lam x. b(x)) ` a = b(a) : Q" |
143 |
funEC: "f:P ==> f = lam x. f`x : P" |
|
0 | 144 |
|
17480 | 145 |
specB: "[| !!x. f(x) : P(x) |] ==> (all x. f(x)) ^ a = f(a) : P(a)" |
0 | 146 |
|
147 |
||
148 |
(**** Definitions ****) |
|
149 |
||
17480 | 150 |
not_def: "~P == P-->False" |
151 |
iff_def: "P<->Q == (P-->Q) & (Q-->P)" |
|
0 | 152 |
|
153 |
(*Unique existence*) |
|
17480 | 154 |
ex1_def: "EX! x. P(x) == EX x. P(x) & (ALL y. P(y) --> y=x)" |
0 | 155 |
|
156 |
(*Rewriting -- special constants to flag normalized terms and formulae*) |
|
17480 | 157 |
norm_eq: "nrm : norm(x) = x" |
158 |
NORM_iff: "NRM : NORM(P) <-> P" |
|
159 |
||
26322 | 160 |
(*** Sequent-style elimination rules for & --> and ALL ***) |
161 |
||
36319 | 162 |
schematic_lemma conjE: |
26322 | 163 |
assumes "p:P&Q" |
164 |
and "!!x y.[| x:P; y:Q |] ==> f(x,y):R" |
|
165 |
shows "?a:R" |
|
166 |
apply (rule assms(2)) |
|
167 |
apply (rule conjunct1 [OF assms(1)]) |
|
168 |
apply (rule conjunct2 [OF assms(1)]) |
|
169 |
done |
|
170 |
||
36319 | 171 |
schematic_lemma impE: |
26322 | 172 |
assumes "p:P-->Q" |
173 |
and "q:P" |
|
174 |
and "!!x. x:Q ==> r(x):R" |
|
175 |
shows "?p:R" |
|
176 |
apply (rule assms mp)+ |
|
177 |
done |
|
178 |
||
36319 | 179 |
schematic_lemma allE: |
26322 | 180 |
assumes "p:ALL x. P(x)" |
181 |
and "!!y. y:P(x) ==> q(y):R" |
|
182 |
shows "?p:R" |
|
183 |
apply (rule assms spec)+ |
|
184 |
done |
|
185 |
||
186 |
(*Duplicates the quantifier; for use with eresolve_tac*) |
|
36319 | 187 |
schematic_lemma all_dupE: |
26322 | 188 |
assumes "p:ALL x. P(x)" |
189 |
and "!!y z.[| y:P(x); z:ALL x. P(x) |] ==> q(y,z):R" |
|
190 |
shows "?p:R" |
|
191 |
apply (rule assms spec)+ |
|
192 |
done |
|
193 |
||
194 |
||
195 |
(*** Negation rules, which translate between ~P and P-->False ***) |
|
196 |
||
36319 | 197 |
schematic_lemma notI: |
26322 | 198 |
assumes "!!x. x:P ==> q(x):False" |
199 |
shows "?p:~P" |
|
200 |
unfolding not_def |
|
201 |
apply (assumption | rule assms impI)+ |
|
202 |
done |
|
203 |
||
36319 | 204 |
schematic_lemma notE: "p:~P \<Longrightarrow> q:P \<Longrightarrow> ?p:R" |
26322 | 205 |
unfolding not_def |
206 |
apply (drule (1) mp) |
|
207 |
apply (erule FalseE) |
|
208 |
done |
|
209 |
||
210 |
(*This is useful with the special implication rules for each kind of P. *) |
|
36319 | 211 |
schematic_lemma not_to_imp: |
26322 | 212 |
assumes "p:~P" |
213 |
and "!!x. x:(P-->False) ==> q(x):Q" |
|
214 |
shows "?p:Q" |
|
215 |
apply (assumption | rule assms impI notE)+ |
|
216 |
done |
|
217 |
||
218 |
(* For substitution int an assumption P, reduce Q to P-->Q, substitute into |
|
27150 | 219 |
this implication, then apply impI to move P back into the assumptions.*) |
36319 | 220 |
schematic_lemma rev_mp: "[| p:P; q:P --> Q |] ==> ?p:Q" |
26322 | 221 |
apply (assumption | rule mp)+ |
222 |
done |
|
223 |
||
224 |
||
225 |
(*Contrapositive of an inference rule*) |
|
36319 | 226 |
schematic_lemma contrapos: |
26322 | 227 |
assumes major: "p:~Q" |
228 |
and minor: "!!y. y:P==>q(y):Q" |
|
229 |
shows "?a:~P" |
|
230 |
apply (rule major [THEN notE, THEN notI]) |
|
231 |
apply (erule minor) |
|
232 |
done |
|
233 |
||
234 |
(** Unique assumption tactic. |
|
235 |
Ignores proof objects. |
|
236 |
Fails unless one assumption is equal and exactly one is unifiable |
|
237 |
**) |
|
238 |
||
239 |
ML {* |
|
240 |
local |
|
241 |
fun discard_proof (Const (@{const_name Proof}, _) $ P $ _) = P; |
|
242 |
in |
|
243 |
val uniq_assume_tac = |
|
244 |
SUBGOAL |
|
245 |
(fn (prem,i) => |
|
246 |
let val hyps = map discard_proof (Logic.strip_assums_hyp prem) |
|
247 |
and concl = discard_proof (Logic.strip_assums_concl prem) |
|
248 |
in |
|
249 |
if exists (fn hyp => hyp aconv concl) hyps |
|
29269
5c25a2012975
moved term order operations to structure TermOrd (cf. Pure/term_ord.ML);
wenzelm
parents:
27152
diff
changeset
|
250 |
then case distinct (op =) (filter (fn hyp => Term.could_unify (hyp, concl)) hyps) of |
26322 | 251 |
[_] => assume_tac i |
252 |
| _ => no_tac |
|
253 |
else no_tac |
|
254 |
end); |
|
255 |
end; |
|
256 |
*} |
|
257 |
||
258 |
||
259 |
(*** Modus Ponens Tactics ***) |
|
260 |
||
261 |
(*Finds P-->Q and P in the assumptions, replaces implication by Q *) |
|
262 |
ML {* |
|
263 |
fun mp_tac i = eresolve_tac [@{thm notE}, make_elim @{thm mp}] i THEN assume_tac i |
|
264 |
*} |
|
265 |
||
266 |
(*Like mp_tac but instantiates no variables*) |
|
267 |
ML {* |
|
268 |
fun int_uniq_mp_tac i = eresolve_tac [@{thm notE}, @{thm impE}] i THEN uniq_assume_tac i |
|
269 |
*} |
|
270 |
||
271 |
||
272 |
(*** If-and-only-if ***) |
|
273 |
||
36319 | 274 |
schematic_lemma iffI: |
26322 | 275 |
assumes "!!x. x:P ==> q(x):Q" |
276 |
and "!!x. x:Q ==> r(x):P" |
|
277 |
shows "?p:P<->Q" |
|
278 |
unfolding iff_def |
|
279 |
apply (assumption | rule assms conjI impI)+ |
|
280 |
done |
|
281 |
||
282 |
||
283 |
(*Observe use of rewrite_rule to unfold "<->" in meta-assumptions (prems) *) |
|
284 |
||
36319 | 285 |
schematic_lemma iffE: |
26322 | 286 |
assumes "p:P <-> Q" |
287 |
and "!!x y.[| x:P-->Q; y:Q-->P |] ==> q(x,y):R" |
|
288 |
shows "?p:R" |
|
289 |
apply (rule conjE) |
|
290 |
apply (rule assms(1) [unfolded iff_def]) |
|
291 |
apply (rule assms(2)) |
|
292 |
apply assumption+ |
|
293 |
done |
|
294 |
||
295 |
(* Destruct rules for <-> similar to Modus Ponens *) |
|
296 |
||
36319 | 297 |
schematic_lemma iffD1: "[| p:P <-> Q; q:P |] ==> ?p:Q" |
26322 | 298 |
unfolding iff_def |
299 |
apply (rule conjunct1 [THEN mp], assumption+) |
|
300 |
done |
|
301 |
||
36319 | 302 |
schematic_lemma iffD2: "[| p:P <-> Q; q:Q |] ==> ?p:P" |
26322 | 303 |
unfolding iff_def |
304 |
apply (rule conjunct2 [THEN mp], assumption+) |
|
305 |
done |
|
306 |
||
36319 | 307 |
schematic_lemma iff_refl: "?p:P <-> P" |
26322 | 308 |
apply (rule iffI) |
309 |
apply assumption+ |
|
310 |
done |
|
311 |
||
36319 | 312 |
schematic_lemma iff_sym: "p:Q <-> P ==> ?p:P <-> Q" |
26322 | 313 |
apply (erule iffE) |
314 |
apply (rule iffI) |
|
315 |
apply (erule (1) mp)+ |
|
316 |
done |
|
317 |
||
36319 | 318 |
schematic_lemma iff_trans: "[| p:P <-> Q; q:Q<-> R |] ==> ?p:P <-> R" |
26322 | 319 |
apply (rule iffI) |
320 |
apply (assumption | erule iffE | erule (1) impE)+ |
|
321 |
done |
|
322 |
||
323 |
(*** Unique existence. NOTE THAT the following 2 quantifications |
|
324 |
EX!x such that [EX!y such that P(x,y)] (sequential) |
|
325 |
EX!x,y such that P(x,y) (simultaneous) |
|
326 |
do NOT mean the same thing. The parser treats EX!x y.P(x,y) as sequential. |
|
327 |
***) |
|
328 |
||
36319 | 329 |
schematic_lemma ex1I: |
26322 | 330 |
assumes "p:P(a)" |
331 |
and "!!x u. u:P(x) ==> f(u) : x=a" |
|
332 |
shows "?p:EX! x. P(x)" |
|
333 |
unfolding ex1_def |
|
334 |
apply (assumption | rule assms exI conjI allI impI)+ |
|
335 |
done |
|
336 |
||
36319 | 337 |
schematic_lemma ex1E: |
26322 | 338 |
assumes "p:EX! x. P(x)" |
339 |
and "!!x u v. [| u:P(x); v:ALL y. P(y) --> y=x |] ==> f(x,u,v):R" |
|
340 |
shows "?a : R" |
|
341 |
apply (insert assms(1) [unfolded ex1_def]) |
|
342 |
apply (erule exE conjE | assumption | rule assms(1))+ |
|
29305 | 343 |
apply (erule assms(2), assumption) |
26322 | 344 |
done |
345 |
||
346 |
||
347 |
(*** <-> congruence rules for simplification ***) |
|
348 |
||
349 |
(*Use iffE on a premise. For conj_cong, imp_cong, all_cong, ex_cong*) |
|
350 |
ML {* |
|
351 |
fun iff_tac prems i = |
|
352 |
resolve_tac (prems RL [@{thm iffE}]) i THEN |
|
353 |
REPEAT1 (eresolve_tac [asm_rl, @{thm mp}] i) |
|
354 |
*} |
|
355 |
||
36319 | 356 |
schematic_lemma conj_cong: |
26322 | 357 |
assumes "p:P <-> P'" |
358 |
and "!!x. x:P' ==> q(x):Q <-> Q'" |
|
359 |
shows "?p:(P&Q) <-> (P'&Q')" |
|
360 |
apply (insert assms(1)) |
|
361 |
apply (assumption | rule iffI conjI | |
|
362 |
erule iffE conjE mp | tactic {* iff_tac @{thms assms} 1 *})+ |
|
363 |
done |
|
364 |
||
36319 | 365 |
schematic_lemma disj_cong: |
26322 | 366 |
"[| p:P <-> P'; q:Q <-> Q' |] ==> ?p:(P|Q) <-> (P'|Q')" |
367 |
apply (erule iffE disjE disjI1 disjI2 | assumption | rule iffI | tactic {* mp_tac 1 *})+ |
|
368 |
done |
|
369 |
||
36319 | 370 |
schematic_lemma imp_cong: |
26322 | 371 |
assumes "p:P <-> P'" |
372 |
and "!!x. x:P' ==> q(x):Q <-> Q'" |
|
373 |
shows "?p:(P-->Q) <-> (P'-->Q')" |
|
374 |
apply (insert assms(1)) |
|
375 |
apply (assumption | rule iffI impI | erule iffE | tactic {* mp_tac 1 *} | |
|
376 |
tactic {* iff_tac @{thms assms} 1 *})+ |
|
377 |
done |
|
378 |
||
36319 | 379 |
schematic_lemma iff_cong: |
26322 | 380 |
"[| p:P <-> P'; q:Q <-> Q' |] ==> ?p:(P<->Q) <-> (P'<->Q')" |
381 |
apply (erule iffE | assumption | rule iffI | tactic {* mp_tac 1 *})+ |
|
382 |
done |
|
383 |
||
36319 | 384 |
schematic_lemma not_cong: |
26322 | 385 |
"p:P <-> P' ==> ?p:~P <-> ~P'" |
386 |
apply (assumption | rule iffI notI | tactic {* mp_tac 1 *} | erule iffE notE)+ |
|
387 |
done |
|
388 |
||
36319 | 389 |
schematic_lemma all_cong: |
26322 | 390 |
assumes "!!x. f(x):P(x) <-> Q(x)" |
391 |
shows "?p:(ALL x. P(x)) <-> (ALL x. Q(x))" |
|
392 |
apply (assumption | rule iffI allI | tactic {* mp_tac 1 *} | erule allE | |
|
393 |
tactic {* iff_tac @{thms assms} 1 *})+ |
|
394 |
done |
|
395 |
||
36319 | 396 |
schematic_lemma ex_cong: |
26322 | 397 |
assumes "!!x. f(x):P(x) <-> Q(x)" |
398 |
shows "?p:(EX x. P(x)) <-> (EX x. Q(x))" |
|
399 |
apply (erule exE | assumption | rule iffI exI | tactic {* mp_tac 1 *} | |
|
400 |
tactic {* iff_tac @{thms assms} 1 *})+ |
|
401 |
done |
|
402 |
||
403 |
(*NOT PROVED |
|
404 |
bind_thm ("ex1_cong", prove_goal (the_context ()) |
|
405 |
"(!!x.f(x):P(x) <-> Q(x)) ==> ?p:(EX! x.P(x)) <-> (EX! x.Q(x))" |
|
406 |
(fn prems => |
|
407 |
[ (REPEAT (eresolve_tac [ex1E, spec RS mp] 1 ORELSE ares_tac [iffI,ex1I] 1 |
|
408 |
ORELSE mp_tac 1 |
|
409 |
ORELSE iff_tac prems 1)) ])) |
|
410 |
*) |
|
411 |
||
412 |
(*** Equality rules ***) |
|
413 |
||
414 |
lemmas refl = ieqI |
|
415 |
||
36319 | 416 |
schematic_lemma subst: |
26322 | 417 |
assumes prem1: "p:a=b" |
418 |
and prem2: "q:P(a)" |
|
419 |
shows "?p : P(b)" |
|
420 |
apply (rule prem2 [THEN rev_mp]) |
|
421 |
apply (rule prem1 [THEN ieqE]) |
|
422 |
apply (rule impI) |
|
423 |
apply assumption |
|
424 |
done |
|
425 |
||
36319 | 426 |
schematic_lemma sym: "q:a=b ==> ?c:b=a" |
26322 | 427 |
apply (erule subst) |
428 |
apply (rule refl) |
|
429 |
done |
|
430 |
||
36319 | 431 |
schematic_lemma trans: "[| p:a=b; q:b=c |] ==> ?d:a=c" |
26322 | 432 |
apply (erule (1) subst) |
433 |
done |
|
434 |
||
435 |
(** ~ b=a ==> ~ a=b **) |
|
36319 | 436 |
schematic_lemma not_sym: "p:~ b=a ==> ?q:~ a=b" |
26322 | 437 |
apply (erule contrapos) |
438 |
apply (erule sym) |
|
439 |
done |
|
440 |
||
441 |
(*calling "standard" reduces maxidx to 0*) |
|
442 |
lemmas ssubst = sym [THEN subst, standard] |
|
443 |
||
444 |
(*A special case of ex1E that would otherwise need quantifier expansion*) |
|
36319 | 445 |
schematic_lemma ex1_equalsE: "[| p:EX! x. P(x); q:P(a); r:P(b) |] ==> ?d:a=b" |
26322 | 446 |
apply (erule ex1E) |
447 |
apply (rule trans) |
|
448 |
apply (rule_tac [2] sym) |
|
449 |
apply (assumption | erule spec [THEN mp])+ |
|
450 |
done |
|
451 |
||
452 |
(** Polymorphic congruence rules **) |
|
453 |
||
36319 | 454 |
schematic_lemma subst_context: "[| p:a=b |] ==> ?d:t(a)=t(b)" |
26322 | 455 |
apply (erule ssubst) |
456 |
apply (rule refl) |
|
457 |
done |
|
458 |
||
36319 | 459 |
schematic_lemma subst_context2: "[| p:a=b; q:c=d |] ==> ?p:t(a,c)=t(b,d)" |
26322 | 460 |
apply (erule ssubst)+ |
461 |
apply (rule refl) |
|
462 |
done |
|
463 |
||
36319 | 464 |
schematic_lemma subst_context3: "[| p:a=b; q:c=d; r:e=f |] ==> ?p:t(a,c,e)=t(b,d,f)" |
26322 | 465 |
apply (erule ssubst)+ |
466 |
apply (rule refl) |
|
467 |
done |
|
468 |
||
469 |
(*Useful with eresolve_tac for proving equalties from known equalities. |
|
470 |
a = b |
|
471 |
| | |
|
472 |
c = d *) |
|
36319 | 473 |
schematic_lemma box_equals: "[| p:a=b; q:a=c; r:b=d |] ==> ?p:c=d" |
26322 | 474 |
apply (rule trans) |
475 |
apply (rule trans) |
|
476 |
apply (rule sym) |
|
477 |
apply assumption+ |
|
478 |
done |
|
479 |
||
480 |
(*Dual of box_equals: for proving equalities backwards*) |
|
36319 | 481 |
schematic_lemma simp_equals: "[| p:a=c; q:b=d; r:c=d |] ==> ?p:a=b" |
26322 | 482 |
apply (rule trans) |
483 |
apply (rule trans) |
|
484 |
apply (assumption | rule sym)+ |
|
485 |
done |
|
486 |
||
487 |
(** Congruence rules for predicate letters **) |
|
488 |
||
36319 | 489 |
schematic_lemma pred1_cong: "p:a=a' ==> ?p:P(a) <-> P(a')" |
26322 | 490 |
apply (rule iffI) |
491 |
apply (tactic {* DEPTH_SOLVE (atac 1 ORELSE eresolve_tac [@{thm subst}, @{thm ssubst}] 1) *}) |
|
492 |
done |
|
493 |
||
36319 | 494 |
schematic_lemma pred2_cong: "[| p:a=a'; q:b=b' |] ==> ?p:P(a,b) <-> P(a',b')" |
26322 | 495 |
apply (rule iffI) |
496 |
apply (tactic {* DEPTH_SOLVE (atac 1 ORELSE eresolve_tac [@{thm subst}, @{thm ssubst}] 1) *}) |
|
497 |
done |
|
498 |
||
36319 | 499 |
schematic_lemma pred3_cong: "[| p:a=a'; q:b=b'; r:c=c' |] ==> ?p:P(a,b,c) <-> P(a',b',c')" |
26322 | 500 |
apply (rule iffI) |
501 |
apply (tactic {* DEPTH_SOLVE (atac 1 ORELSE eresolve_tac [@{thm subst}, @{thm ssubst}] 1) *}) |
|
502 |
done |
|
503 |
||
27152
192954a9a549
changed pred_congs: merely cover pred1_cong pred2_cong pred3_cong;
wenzelm
parents:
27150
diff
changeset
|
504 |
lemmas pred_congs = pred1_cong pred2_cong pred3_cong |
26322 | 505 |
|
506 |
(*special case for the equality predicate!*) |
|
507 |
lemmas eq_cong = pred2_cong [where P = "op =", standard] |
|
508 |
||
509 |
||
510 |
(*** Simplifications of assumed implications. |
|
511 |
Roy Dyckhoff has proved that conj_impE, disj_impE, and imp_impE |
|
512 |
used with mp_tac (restricted to atomic formulae) is COMPLETE for |
|
513 |
intuitionistic propositional logic. See |
|
514 |
R. Dyckhoff, Contraction-free sequent calculi for intuitionistic logic |
|
515 |
(preprint, University of St Andrews, 1991) ***) |
|
516 |
||
36319 | 517 |
schematic_lemma conj_impE: |
26322 | 518 |
assumes major: "p:(P&Q)-->S" |
519 |
and minor: "!!x. x:P-->(Q-->S) ==> q(x):R" |
|
520 |
shows "?p:R" |
|
521 |
apply (assumption | rule conjI impI major [THEN mp] minor)+ |
|
522 |
done |
|
523 |
||
36319 | 524 |
schematic_lemma disj_impE: |
26322 | 525 |
assumes major: "p:(P|Q)-->S" |
526 |
and minor: "!!x y.[| x:P-->S; y:Q-->S |] ==> q(x,y):R" |
|
527 |
shows "?p:R" |
|
528 |
apply (tactic {* DEPTH_SOLVE (atac 1 ORELSE |
|
529 |
resolve_tac [@{thm disjI1}, @{thm disjI2}, @{thm impI}, |
|
530 |
@{thm major} RS @{thm mp}, @{thm minor}] 1) *}) |
|
531 |
done |
|
532 |
||
533 |
(*Simplifies the implication. Classical version is stronger. |
|
534 |
Still UNSAFE since Q must be provable -- backtracking needed. *) |
|
36319 | 535 |
schematic_lemma imp_impE: |
26322 | 536 |
assumes major: "p:(P-->Q)-->S" |
537 |
and r1: "!!x y.[| x:P; y:Q-->S |] ==> q(x,y):Q" |
|
538 |
and r2: "!!x. x:S ==> r(x):R" |
|
539 |
shows "?p:R" |
|
540 |
apply (assumption | rule impI major [THEN mp] r1 r2)+ |
|
541 |
done |
|
542 |
||
543 |
(*Simplifies the implication. Classical version is stronger. |
|
544 |
Still UNSAFE since ~P must be provable -- backtracking needed. *) |
|
36319 | 545 |
schematic_lemma not_impE: |
26322 | 546 |
assumes major: "p:~P --> S" |
547 |
and r1: "!!y. y:P ==> q(y):False" |
|
548 |
and r2: "!!y. y:S ==> r(y):R" |
|
549 |
shows "?p:R" |
|
550 |
apply (assumption | rule notI impI major [THEN mp] r1 r2)+ |
|
551 |
done |
|
552 |
||
553 |
(*Simplifies the implication. UNSAFE. *) |
|
36319 | 554 |
schematic_lemma iff_impE: |
26322 | 555 |
assumes major: "p:(P<->Q)-->S" |
556 |
and r1: "!!x y.[| x:P; y:Q-->S |] ==> q(x,y):Q" |
|
557 |
and r2: "!!x y.[| x:Q; y:P-->S |] ==> r(x,y):P" |
|
558 |
and r3: "!!x. x:S ==> s(x):R" |
|
559 |
shows "?p:R" |
|
560 |
apply (assumption | rule iffI impI major [THEN mp] r1 r2 r3)+ |
|
561 |
done |
|
562 |
||
563 |
(*What if (ALL x.~~P(x)) --> ~~(ALL x.P(x)) is an assumption? UNSAFE*) |
|
36319 | 564 |
schematic_lemma all_impE: |
26322 | 565 |
assumes major: "p:(ALL x. P(x))-->S" |
566 |
and r1: "!!x. q:P(x)" |
|
567 |
and r2: "!!y. y:S ==> r(y):R" |
|
568 |
shows "?p:R" |
|
569 |
apply (assumption | rule allI impI major [THEN mp] r1 r2)+ |
|
570 |
done |
|
571 |
||
572 |
(*Unsafe: (EX x.P(x))-->S is equivalent to ALL x.P(x)-->S. *) |
|
36319 | 573 |
schematic_lemma ex_impE: |
26322 | 574 |
assumes major: "p:(EX x. P(x))-->S" |
575 |
and r: "!!y. y:P(a)-->S ==> q(y):R" |
|
576 |
shows "?p:R" |
|
577 |
apply (assumption | rule exI impI major [THEN mp] r)+ |
|
578 |
done |
|
579 |
||
580 |
||
36319 | 581 |
schematic_lemma rev_cut_eq: |
26322 | 582 |
assumes "p:a=b" |
583 |
and "!!x. x:a=b ==> f(x):R" |
|
584 |
shows "?p:R" |
|
585 |
apply (rule assms)+ |
|
586 |
done |
|
587 |
||
588 |
lemma thin_refl: "!!X. [|p:x=x; PROP W|] ==> PROP W" . |
|
589 |
||
590 |
use "hypsubst.ML" |
|
591 |
||
592 |
ML {* |
|
593 |
||
594 |
(*** Applying HypsubstFun to generate hyp_subst_tac ***) |
|
595 |
||
596 |
structure Hypsubst_Data = |
|
597 |
struct |
|
598 |
(*Take apart an equality judgement; otherwise raise Match!*) |
|
599 |
fun dest_eq (Const (@{const_name Proof}, _) $ |
|
600 |
(Const (@{const_name "op ="}, _) $ t $ u) $ _) = (t, u); |
|
601 |
||
602 |
val imp_intr = @{thm impI} |
|
603 |
||
604 |
(*etac rev_cut_eq moves an equality to be the last premise. *) |
|
605 |
val rev_cut_eq = @{thm rev_cut_eq} |
|
606 |
||
607 |
val rev_mp = @{thm rev_mp} |
|
608 |
val subst = @{thm subst} |
|
609 |
val sym = @{thm sym} |
|
610 |
val thin_refl = @{thm thin_refl} |
|
611 |
end; |
|
612 |
||
613 |
structure Hypsubst = HypsubstFun(Hypsubst_Data); |
|
614 |
open Hypsubst; |
|
615 |
*} |
|
616 |
||
617 |
use "intprover.ML" |
|
618 |
||
619 |
||
620 |
(*** Rewrite rules ***) |
|
621 |
||
36319 | 622 |
schematic_lemma conj_rews: |
26322 | 623 |
"?p1 : P & True <-> P" |
624 |
"?p2 : True & P <-> P" |
|
625 |
"?p3 : P & False <-> False" |
|
626 |
"?p4 : False & P <-> False" |
|
627 |
"?p5 : P & P <-> P" |
|
628 |
"?p6 : P & ~P <-> False" |
|
629 |
"?p7 : ~P & P <-> False" |
|
630 |
"?p8 : (P & Q) & R <-> P & (Q & R)" |
|
631 |
apply (tactic {* fn st => IntPr.fast_tac 1 st *})+ |
|
632 |
done |
|
633 |
||
36319 | 634 |
schematic_lemma disj_rews: |
26322 | 635 |
"?p1 : P | True <-> True" |
636 |
"?p2 : True | P <-> True" |
|
637 |
"?p3 : P | False <-> P" |
|
638 |
"?p4 : False | P <-> P" |
|
639 |
"?p5 : P | P <-> P" |
|
640 |
"?p6 : (P | Q) | R <-> P | (Q | R)" |
|
641 |
apply (tactic {* IntPr.fast_tac 1 *})+ |
|
642 |
done |
|
643 |
||
36319 | 644 |
schematic_lemma not_rews: |
26322 | 645 |
"?p1 : ~ False <-> True" |
646 |
"?p2 : ~ True <-> False" |
|
647 |
apply (tactic {* IntPr.fast_tac 1 *})+ |
|
648 |
done |
|
649 |
||
36319 | 650 |
schematic_lemma imp_rews: |
26322 | 651 |
"?p1 : (P --> False) <-> ~P" |
652 |
"?p2 : (P --> True) <-> True" |
|
653 |
"?p3 : (False --> P) <-> True" |
|
654 |
"?p4 : (True --> P) <-> P" |
|
655 |
"?p5 : (P --> P) <-> True" |
|
656 |
"?p6 : (P --> ~P) <-> ~P" |
|
657 |
apply (tactic {* IntPr.fast_tac 1 *})+ |
|
658 |
done |
|
659 |
||
36319 | 660 |
schematic_lemma iff_rews: |
26322 | 661 |
"?p1 : (True <-> P) <-> P" |
662 |
"?p2 : (P <-> True) <-> P" |
|
663 |
"?p3 : (P <-> P) <-> True" |
|
664 |
"?p4 : (False <-> P) <-> ~P" |
|
665 |
"?p5 : (P <-> False) <-> ~P" |
|
666 |
apply (tactic {* IntPr.fast_tac 1 *})+ |
|
667 |
done |
|
668 |
||
36319 | 669 |
schematic_lemma quant_rews: |
26322 | 670 |
"?p1 : (ALL x. P) <-> P" |
671 |
"?p2 : (EX x. P) <-> P" |
|
672 |
apply (tactic {* IntPr.fast_tac 1 *})+ |
|
673 |
done |
|
674 |
||
675 |
(*These are NOT supplied by default!*) |
|
36319 | 676 |
schematic_lemma distrib_rews1: |
26322 | 677 |
"?p1 : ~(P|Q) <-> ~P & ~Q" |
678 |
"?p2 : P & (Q | R) <-> P&Q | P&R" |
|
679 |
"?p3 : (Q | R) & P <-> Q&P | R&P" |
|
680 |
"?p4 : (P | Q --> R) <-> (P --> R) & (Q --> R)" |
|
681 |
apply (tactic {* IntPr.fast_tac 1 *})+ |
|
682 |
done |
|
683 |
||
36319 | 684 |
schematic_lemma distrib_rews2: |
26322 | 685 |
"?p1 : ~(EX x. NORM(P(x))) <-> (ALL x. ~NORM(P(x)))" |
686 |
"?p2 : ((EX x. NORM(P(x))) --> Q) <-> (ALL x. NORM(P(x)) --> Q)" |
|
687 |
"?p3 : (EX x. NORM(P(x))) & NORM(Q) <-> (EX x. NORM(P(x)) & NORM(Q))" |
|
688 |
"?p4 : NORM(Q) & (EX x. NORM(P(x))) <-> (EX x. NORM(Q) & NORM(P(x)))" |
|
689 |
apply (tactic {* IntPr.fast_tac 1 *})+ |
|
690 |
done |
|
691 |
||
692 |
lemmas distrib_rews = distrib_rews1 distrib_rews2 |
|
693 |
||
36319 | 694 |
schematic_lemma P_Imp_P_iff_T: "p:P ==> ?p:(P <-> True)" |
26322 | 695 |
apply (tactic {* IntPr.fast_tac 1 *}) |
696 |
done |
|
697 |
||
36319 | 698 |
schematic_lemma not_P_imp_P_iff_F: "p:~P ==> ?p:(P <-> False)" |
26322 | 699 |
apply (tactic {* IntPr.fast_tac 1 *}) |
700 |
done |
|
0 | 701 |
|
702 |
end |