doc-src/TutorialI/CTL/document/CTLind.tex
author wenzelm
Tue, 06 Jun 2006 16:07:10 +0200
changeset 19792 e8e3da6d3ff7
parent 17187 45bee2f6e61f
child 23733 3f8ad7418e55
permissions -rw-r--r--
quoted "if";
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10267
325ead6d9457 updated;
wenzelm
parents:
diff changeset
     1
%
325ead6d9457 updated;
wenzelm
parents:
diff changeset
     2
\begin{isabellebody}%
325ead6d9457 updated;
wenzelm
parents:
diff changeset
     3
\def\isabellecontext{CTLind}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
     4
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
     5
\isadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
     6
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
     7
\endisadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
     8
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
     9
\isatagtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    10
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    11
\endisatagtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    12
{\isafoldtheory}%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    13
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    14
\isadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    15
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    16
\endisadelimtheory
10267
325ead6d9457 updated;
wenzelm
parents:
diff changeset
    17
%
10878
b254d5ad6dd4 auto update
paulson
parents: 10855
diff changeset
    18
\isamarkupsubsection{CTL Revisited%
10395
7ef380745743 updated;
wenzelm
parents: 10283
diff changeset
    19
}
11866
fbd097aec213 updated;
wenzelm
parents: 11706
diff changeset
    20
\isamarkuptrue%
10267
325ead6d9457 updated;
wenzelm
parents:
diff changeset
    21
%
325ead6d9457 updated;
wenzelm
parents:
diff changeset
    22
\begin{isamarkuptext}%
325ead6d9457 updated;
wenzelm
parents:
diff changeset
    23
\label{sec:CTL-revisited}
11494
23a118849801 revisions and indexing
paulson
parents: 11277
diff changeset
    24
\index{CTL|(}%
23a118849801 revisions and indexing
paulson
parents: 11277
diff changeset
    25
The purpose of this section is twofold: to demonstrate
23a118849801 revisions and indexing
paulson
parents: 11277
diff changeset
    26
some of the induction principles and heuristics discussed above and to
10283
ff003e2b790c *** empty log message ***
nipkow
parents: 10267
diff changeset
    27
show how inductive definitions can simplify proofs.
10267
325ead6d9457 updated;
wenzelm
parents:
diff changeset
    28
In \S\ref{sec:CTL} we gave a fairly involved proof of the correctness of a
10795
9e888d60d3e5 minor edits to Chapters 1-3
paulson
parents: 10696
diff changeset
    29
model checker for CTL\@. In particular the proof of the
10267
325ead6d9457 updated;
wenzelm
parents:
diff changeset
    30
\isa{infinity{\isacharunderscore}lemma} on the way to \isa{AF{\isacharunderscore}lemma{\isadigit{2}}} is not as
11494
23a118849801 revisions and indexing
paulson
parents: 11277
diff changeset
    31
simple as one might expect, due to the \isa{SOME} operator
10283
ff003e2b790c *** empty log message ***
nipkow
parents: 10267
diff changeset
    32
involved. Below we give a simpler proof of \isa{AF{\isacharunderscore}lemma{\isadigit{2}}}
ff003e2b790c *** empty log message ***
nipkow
parents: 10267
diff changeset
    33
based on an auxiliary inductive definition.
10267
325ead6d9457 updated;
wenzelm
parents:
diff changeset
    34
325ead6d9457 updated;
wenzelm
parents:
diff changeset
    35
Let us call a (finite or infinite) path \emph{\isa{A}-avoiding} if it does
325ead6d9457 updated;
wenzelm
parents:
diff changeset
    36
not touch any node in the set \isa{A}. Then \isa{AF{\isacharunderscore}lemma{\isadigit{2}}} says
325ead6d9457 updated;
wenzelm
parents:
diff changeset
    37
that if no infinite path from some state \isa{s} is \isa{A}-avoiding,
325ead6d9457 updated;
wenzelm
parents:
diff changeset
    38
then \isa{s\ {\isasymin}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}}. We prove this by inductively defining the set
325ead6d9457 updated;
wenzelm
parents:
diff changeset
    39
\isa{Avoid\ s\ A} of states reachable from \isa{s} by a finite \isa{A}-avoiding path:
325ead6d9457 updated;
wenzelm
parents:
diff changeset
    40
% Second proof of opposite direction, directly by well-founded induction
325ead6d9457 updated;
wenzelm
parents:
diff changeset
    41
% on the initial segment of M that avoids A.%
325ead6d9457 updated;
wenzelm
parents:
diff changeset
    42
\end{isamarkuptext}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    43
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    44
\isacommand{consts}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    45
\ Avoid\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}state\ {\isasymRightarrow}\ state\ set\ {\isasymRightarrow}\ state\ set{\isachardoublequoteclose}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    46
\isacommand{inductive}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    47
\ {\isachardoublequoteopen}Avoid\ s\ A{\isachardoublequoteclose}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    48
\isakeyword{intros}\ {\isachardoublequoteopen}s\ {\isasymin}\ Avoid\ s\ A{\isachardoublequoteclose}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    49
\ \ \ \ \ \ \ {\isachardoublequoteopen}{\isasymlbrakk}\ t\ {\isasymin}\ Avoid\ s\ A{\isacharsemicolon}\ t\ {\isasymnotin}\ A{\isacharsemicolon}\ {\isacharparenleft}t{\isacharcomma}u{\isacharparenright}\ {\isasymin}\ M\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ u\ {\isasymin}\ Avoid\ s\ A{\isachardoublequoteclose}%
10267
325ead6d9457 updated;
wenzelm
parents:
diff changeset
    50
\begin{isamarkuptext}%
325ead6d9457 updated;
wenzelm
parents:
diff changeset
    51
It is easy to see that for any infinite \isa{A}-avoiding path \isa{f}
12492
a4dd02e744e0 *** empty log message ***
nipkow
parents: 11866
diff changeset
    52
with \isa{f\ {\isadigit{0}}\ {\isasymin}\ Avoid\ s\ A} there is an infinite \isa{A}-avoiding path
10267
325ead6d9457 updated;
wenzelm
parents:
diff changeset
    53
starting with \isa{s} because (by definition of \isa{Avoid}) there is a
12492
a4dd02e744e0 *** empty log message ***
nipkow
parents: 11866
diff changeset
    54
finite \isa{A}-avoiding path from \isa{s} to \isa{f\ {\isadigit{0}}}.
a4dd02e744e0 *** empty log message ***
nipkow
parents: 11866
diff changeset
    55
The proof is by induction on \isa{f\ {\isadigit{0}}\ {\isasymin}\ Avoid\ s\ A}. However,
10267
325ead6d9457 updated;
wenzelm
parents:
diff changeset
    56
this requires the following
325ead6d9457 updated;
wenzelm
parents:
diff changeset
    57
reformulation, as explained in \S\ref{sec:ind-var-in-prems} above;
325ead6d9457 updated;
wenzelm
parents:
diff changeset
    58
the \isa{rule{\isacharunderscore}format} directive undoes the reformulation after the proof.%
325ead6d9457 updated;
wenzelm
parents:
diff changeset
    59
\end{isamarkuptext}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    60
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    61
\isacommand{lemma}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    62
\ ex{\isacharunderscore}infinite{\isacharunderscore}path{\isacharbrackleft}rule{\isacharunderscore}format{\isacharbrackright}{\isacharcolon}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    63
\ \ {\isachardoublequoteopen}t\ {\isasymin}\ Avoid\ s\ A\ \ {\isasymLongrightarrow}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    64
\ \ \ {\isasymforall}f{\isasymin}Paths\ t{\isachardot}\ {\isacharparenleft}{\isasymforall}i{\isachardot}\ f\ i\ {\isasymnotin}\ A{\isacharparenright}\ {\isasymlongrightarrow}\ {\isacharparenleft}{\isasymexists}p{\isasymin}Paths\ s{\isachardot}\ {\isasymforall}i{\isachardot}\ p\ i\ {\isasymnotin}\ A{\isacharparenright}{\isachardoublequoteclose}\isanewline
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    65
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    66
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    67
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    68
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    69
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    70
\isatagproof
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    71
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    72
{\isacharparenleft}erule\ Avoid{\isachardot}induct{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    73
\ \isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    74
{\isacharparenleft}blast{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    75
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    76
{\isacharparenleft}clarify{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    77
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    78
{\isacharparenleft}drule{\isacharunderscore}tac\ x\ {\isacharequal}\ {\isachardoublequoteopen}{\isasymlambda}i{\isachardot}\ case\ i\ of\ {\isadigit{0}}\ {\isasymRightarrow}\ t\ {\isacharbar}\ Suc\ i\ {\isasymRightarrow}\ f\ i{\isachardoublequoteclose}\ \isakeyword{in}\ bspec{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    79
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    80
{\isacharparenleft}simp{\isacharunderscore}all\ add{\isacharcolon}\ Paths{\isacharunderscore}def\ split{\isacharcolon}\ nat{\isachardot}split{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    81
\isacommand{done}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    82
%
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    83
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    84
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    85
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    86
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    87
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
    88
\endisadelimproof
11866
fbd097aec213 updated;
wenzelm
parents: 11706
diff changeset
    89
%
10267
325ead6d9457 updated;
wenzelm
parents:
diff changeset
    90
\begin{isamarkuptext}%
325ead6d9457 updated;
wenzelm
parents:
diff changeset
    91
\noindent
11494
23a118849801 revisions and indexing
paulson
parents: 11277
diff changeset
    92
The base case (\isa{t\ {\isacharequal}\ s}) is trivial and proved by \isa{blast}.
10267
325ead6d9457 updated;
wenzelm
parents:
diff changeset
    93
In the induction step, we have an infinite \isa{A}-avoiding path \isa{f}
325ead6d9457 updated;
wenzelm
parents:
diff changeset
    94
starting from \isa{u}, a successor of \isa{t}. Now we simply instantiate
325ead6d9457 updated;
wenzelm
parents:
diff changeset
    95
the \isa{{\isasymforall}f{\isasymin}Paths\ t} in the induction hypothesis by the path starting with
325ead6d9457 updated;
wenzelm
parents:
diff changeset
    96
\isa{t} and continuing with \isa{f}. That is what the above $\lambda$-term
10878
b254d5ad6dd4 auto update
paulson
parents: 10855
diff changeset
    97
expresses.  Simplification shows that this is a path starting with \isa{t} 
b254d5ad6dd4 auto update
paulson
parents: 10855
diff changeset
    98
and that the instantiated induction hypothesis implies the conclusion.
10267
325ead6d9457 updated;
wenzelm
parents:
diff changeset
    99
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10971
diff changeset
   100
Now we come to the key lemma. Assuming that no infinite \isa{A}-avoiding
11277
a2bff98d6e5d *** empty log message ***
nipkow
parents: 11196
diff changeset
   101
path starts from \isa{s}, we want to show \isa{s\ {\isasymin}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}}. For the
a2bff98d6e5d *** empty log message ***
nipkow
parents: 11196
diff changeset
   102
inductive proof this must be generalized to the statement that every point \isa{t}
11494
23a118849801 revisions and indexing
paulson
parents: 11277
diff changeset
   103
``between'' \isa{s} and \isa{A}, in other words all of \isa{Avoid\ s\ A},
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10971
diff changeset
   104
is contained in \isa{lfp\ {\isacharparenleft}af\ A{\isacharparenright}}:%
10267
325ead6d9457 updated;
wenzelm
parents:
diff changeset
   105
\end{isamarkuptext}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   106
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   107
\isacommand{lemma}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   108
\ Avoid{\isacharunderscore}in{\isacharunderscore}lfp{\isacharbrackleft}rule{\isacharunderscore}format{\isacharparenleft}no{\isacharunderscore}asm{\isacharparenright}{\isacharbrackright}{\isacharcolon}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   109
\ \ {\isachardoublequoteopen}{\isasymforall}p{\isasymin}Paths\ s{\isachardot}\ {\isasymexists}i{\isachardot}\ p\ i\ {\isasymin}\ A\ {\isasymLongrightarrow}\ t\ {\isasymin}\ Avoid\ s\ A\ {\isasymlongrightarrow}\ t\ {\isasymin}\ lfp{\isacharparenleft}af\ A{\isacharparenright}{\isachardoublequoteclose}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   110
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   111
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   112
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   113
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   114
\isatagproof
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   115
%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   116
\begin{isamarkuptxt}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   117
\noindent
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   118
The proof is by induction on the ``distance'' between \isa{t} and \isa{A}. Remember that \isa{lfp\ {\isacharparenleft}af\ A{\isacharparenright}\ {\isacharequal}\ A\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}}.
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   119
If \isa{t} is already in \isa{A}, then \isa{t\ {\isasymin}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}} is
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   120
trivial. If \isa{t} is not in \isa{A} but all successors are in
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   121
\isa{lfp\ {\isacharparenleft}af\ A{\isacharparenright}} (induction hypothesis), then \isa{t\ {\isasymin}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}} is
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   122
again trivial.
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   123
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   124
The formal counterpart of this proof sketch is a well-founded induction
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   125
on~\isa{M} restricted to \isa{Avoid\ s\ A\ {\isacharminus}\ A}, roughly speaking:
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   126
\begin{isabelle}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   127
\ \ \ \ \ {\isacharbraceleft}{\isacharparenleft}y{\isacharcomma}\ x{\isacharparenright}{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}\ {\isasymin}\ M\ {\isasymand}\ x\ {\isasymin}\ Avoid\ s\ A\ {\isasymand}\ x\ {\isasymnotin}\ A{\isacharbraceright}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   128
\end{isabelle}
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   129
As we shall see presently, the absence of infinite \isa{A}-avoiding paths
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   130
starting from \isa{s} implies well-foundedness of this relation. For the
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   131
moment we assume this and proceed with the induction:%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   132
\end{isamarkuptxt}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   133
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   134
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   135
{\isacharparenleft}subgoal{\isacharunderscore}tac\ {\isachardoublequoteopen}wf{\isacharbraceleft}{\isacharparenleft}y{\isacharcomma}x{\isacharparenright}{\isachardot}\ {\isacharparenleft}x{\isacharcomma}y{\isacharparenright}\ {\isasymin}\ M\ {\isasymand}\ x\ {\isasymin}\ Avoid\ s\ A\ {\isasymand}\ x\ {\isasymnotin}\ A{\isacharbraceright}{\isachardoublequoteclose}{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   136
\ \isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   137
{\isacharparenleft}erule{\isacharunderscore}tac\ a\ {\isacharequal}\ t\ \isakeyword{in}\ wf{\isacharunderscore}induct{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   138
\ \isacommand{apply}\isamarkupfalse%
17181
5f42dd5e6570 updated;
wenzelm
parents: 17175
diff changeset
   139
{\isacharparenleft}clarsimp{\isacharparenright}%
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   140
\begin{isamarkuptxt}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   141
\noindent
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   142
\begin{isabelle}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   143
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}t{\isachardot}\ {\isasymlbrakk}{\isasymforall}p{\isasymin}Paths\ s{\isachardot}\ {\isasymexists}i{\isachardot}\ p\ i\ {\isasymin}\ A{\isacharsemicolon}\isanewline
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   144
\isaindent{\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}t{\isachardot}\ \ }{\isasymforall}y{\isachardot}\ {\isacharparenleft}t{\isacharcomma}\ y{\isacharparenright}\ {\isasymin}\ M\ {\isasymand}\ t\ {\isasymnotin}\ A\ {\isasymlongrightarrow}\isanewline
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   145
\isaindent{\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}t{\isachardot}\ \ {\isasymforall}y{\isachardot}\ }y\ {\isasymin}\ Avoid\ s\ A\ {\isasymlongrightarrow}\ y\ {\isasymin}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}{\isacharsemicolon}\isanewline
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   146
\isaindent{\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}t{\isachardot}\ \ }t\ {\isasymin}\ Avoid\ s\ A{\isasymrbrakk}\isanewline
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   147
\isaindent{\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}t{\isachardot}\ }{\isasymLongrightarrow}\ t\ {\isasymin}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}\isanewline
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   148
\ {\isadigit{2}}{\isachardot}\ {\isasymforall}p{\isasymin}Paths\ s{\isachardot}\ {\isasymexists}i{\isachardot}\ p\ i\ {\isasymin}\ A\ {\isasymLongrightarrow}\isanewline
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   149
\isaindent{\ {\isadigit{2}}{\isachardot}\ }wf\ {\isacharbraceleft}{\isacharparenleft}y{\isacharcomma}\ x{\isacharparenright}{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}\ {\isasymin}\ M\ {\isasymand}\ x\ {\isasymin}\ Avoid\ s\ A\ {\isasymand}\ x\ {\isasymnotin}\ A{\isacharbraceright}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   150
\end{isabelle}
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   151
Now the induction hypothesis states that if \isa{t\ {\isasymnotin}\ A}
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   152
then all successors of \isa{t} that are in \isa{Avoid\ s\ A} are in
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   153
\isa{lfp\ {\isacharparenleft}af\ A{\isacharparenright}}. Unfolding \isa{lfp} in the conclusion of the first
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   154
subgoal once, we have to prove that \isa{t} is in \isa{A} or all successors
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   155
of \isa{t} are in \isa{lfp\ {\isacharparenleft}af\ A{\isacharparenright}}.  But if \isa{t} is not in \isa{A},
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   156
the second 
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   157
\isa{Avoid}-rule implies that all successors of \isa{t} are in
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   158
\isa{Avoid\ s\ A}, because we also assume \isa{t\ {\isasymin}\ Avoid\ s\ A}.
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   159
Hence, by the induction hypothesis, all successors of \isa{t} are indeed in
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   160
\isa{lfp\ {\isacharparenleft}af\ A{\isacharparenright}}. Mechanically:%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   161
\end{isamarkuptxt}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   162
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   163
\ \isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   164
{\isacharparenleft}subst\ lfp{\isacharunderscore}unfold{\isacharbrackleft}OF\ mono{\isacharunderscore}af{\isacharbrackright}{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   165
\ \isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   166
{\isacharparenleft}simp\ {\isacharparenleft}no{\isacharunderscore}asm{\isacharparenright}\ add{\isacharcolon}\ af{\isacharunderscore}def{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   167
\ \isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   168
{\isacharparenleft}blast\ intro{\isacharcolon}\ Avoid{\isachardot}intros{\isacharparenright}%
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   169
\begin{isamarkuptxt}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   170
Having proved the main goal, we return to the proof obligation that the 
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   171
relation used above is indeed well-founded. This is proved by contradiction: if
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   172
the relation is not well-founded then there exists an infinite \isa{A}-avoiding path all in \isa{Avoid\ s\ A}, by theorem
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   173
\isa{wf{\isacharunderscore}iff{\isacharunderscore}no{\isacharunderscore}infinite{\isacharunderscore}down{\isacharunderscore}chain}:
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   174
\begin{isabelle}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   175
\ \ \ \ \ wf\ r\ {\isacharequal}\ {\isacharparenleft}{\isasymnot}\ {\isacharparenleft}{\isasymexists}f{\isachardot}\ {\isasymforall}i{\isachardot}\ {\isacharparenleft}f\ {\isacharparenleft}Suc\ i{\isacharparenright}{\isacharcomma}\ f\ i{\isacharparenright}\ {\isasymin}\ r{\isacharparenright}{\isacharparenright}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   176
\end{isabelle}
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   177
From lemma \isa{ex{\isacharunderscore}infinite{\isacharunderscore}path} the existence of an infinite
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   178
\isa{A}-avoiding path starting in \isa{s} follows, contradiction.%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15904
diff changeset
   179
\end{isamarkuptxt}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   180
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   181
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   182
{\isacharparenleft}erule\ contrapos{\isacharunderscore}pp{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   183
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   184
{\isacharparenleft}simp\ add{\isacharcolon}\ wf{\isacharunderscore}iff{\isacharunderscore}no{\isacharunderscore}infinite{\isacharunderscore}down{\isacharunderscore}chain{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   185
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   186
{\isacharparenleft}erule\ exE{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   187
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   188
{\isacharparenleft}rule\ ex{\isacharunderscore}infinite{\isacharunderscore}path{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   189
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   190
{\isacharparenleft}auto\ simp\ add{\isacharcolon}\ Paths{\isacharunderscore}def{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   191
\isacommand{done}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   192
%
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   193
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   194
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   195
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   196
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   197
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   198
\endisadelimproof
11866
fbd097aec213 updated;
wenzelm
parents: 11706
diff changeset
   199
%
10267
325ead6d9457 updated;
wenzelm
parents:
diff changeset
   200
\begin{isamarkuptext}%
11196
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10971
diff changeset
   201
The \isa{{\isacharparenleft}no{\isacharunderscore}asm{\isacharparenright}} modifier of the \isa{rule{\isacharunderscore}format} directive in the
bb4ede27fcb7 *** empty log message ***
nipkow
parents: 10971
diff changeset
   202
statement of the lemma means
11494
23a118849801 revisions and indexing
paulson
parents: 11277
diff changeset
   203
that the assumption is left unchanged; otherwise the \isa{{\isasymforall}p} 
23a118849801 revisions and indexing
paulson
parents: 11277
diff changeset
   204
would be turned
10267
325ead6d9457 updated;
wenzelm
parents:
diff changeset
   205
into a \isa{{\isasymAnd}p}, which would complicate matters below. As it is,
325ead6d9457 updated;
wenzelm
parents:
diff changeset
   206
\isa{Avoid{\isacharunderscore}in{\isacharunderscore}lfp} is now
325ead6d9457 updated;
wenzelm
parents:
diff changeset
   207
\begin{isabelle}%
10696
76d7f6c9a14c *** empty log message ***
nipkow
parents: 10668
diff changeset
   208
\ \ \ \ \ {\isasymlbrakk}{\isasymforall}p{\isasymin}Paths\ s{\isachardot}\ {\isasymexists}i{\isachardot}\ p\ i\ {\isasymin}\ A{\isacharsemicolon}\ t\ {\isasymin}\ Avoid\ s\ A{\isasymrbrakk}\ {\isasymLongrightarrow}\ t\ {\isasymin}\ lfp\ {\isacharparenleft}af\ A{\isacharparenright}%
10267
325ead6d9457 updated;
wenzelm
parents:
diff changeset
   209
\end{isabelle}
325ead6d9457 updated;
wenzelm
parents:
diff changeset
   210
The main theorem is simply the corollary where \isa{t\ {\isacharequal}\ s},
11494
23a118849801 revisions and indexing
paulson
parents: 11277
diff changeset
   211
when the assumption \isa{t\ {\isasymin}\ Avoid\ s\ A} is trivially true
10845
3696bc935bbd *** empty log message ***
nipkow
parents: 10795
diff changeset
   212
by the first \isa{Avoid}-rule. Isabelle confirms this:%
11494
23a118849801 revisions and indexing
paulson
parents: 11277
diff changeset
   213
\index{CTL|)}%
10267
325ead6d9457 updated;
wenzelm
parents:
diff changeset
   214
\end{isamarkuptext}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   215
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   216
\isacommand{theorem}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   217
\ AF{\isacharunderscore}lemma{\isadigit{2}}{\isacharcolon}\ \ {\isachardoublequoteopen}{\isacharbraceleft}s{\isachardot}\ {\isasymforall}p\ {\isasymin}\ Paths\ s{\isachardot}\ {\isasymexists}\ i{\isachardot}\ p\ i\ {\isasymin}\ A{\isacharbraceright}\ {\isasymsubseteq}\ lfp{\isacharparenleft}af\ A{\isacharparenright}{\isachardoublequoteclose}\isanewline
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   218
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   219
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   220
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   221
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   222
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   223
\isatagproof
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   224
\isacommand{by}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   225
{\isacharparenleft}auto\ elim{\isacharcolon}\ Avoid{\isacharunderscore}in{\isacharunderscore}lfp\ intro{\isacharcolon}\ Avoid{\isachardot}intros{\isacharparenright}\isanewline
15488
7c638a46dcbb tidying of some subst/simplesubst proofs
paulson
parents: 14379
diff changeset
   226
\isanewline
17056
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   227
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   228
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   229
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   230
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   231
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   232
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   233
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   234
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   235
\isadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   236
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   237
\endisadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   238
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   239
\isatagtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   240
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   241
\endisatagtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   242
{\isafoldtheory}%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   243
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   244
\isadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   245
%
05fc32a23b8b updated;
wenzelm
parents: 16069
diff changeset
   246
\endisadelimtheory
10267
325ead6d9457 updated;
wenzelm
parents:
diff changeset
   247
\end{isabellebody}%
325ead6d9457 updated;
wenzelm
parents:
diff changeset
   248
%%% Local Variables:
325ead6d9457 updated;
wenzelm
parents:
diff changeset
   249
%%% mode: latex
325ead6d9457 updated;
wenzelm
parents:
diff changeset
   250
%%% TeX-master: "root"
325ead6d9457 updated;
wenzelm
parents:
diff changeset
   251
%%% End: