| 
24615
 | 
     1  | 
(*  ID:         $Id$
  | 
| 
 | 
     2  | 
    Author:     Tobias Nipkow
  | 
| 
 | 
     3  | 
    Copyright   1994 TU Muenchen
  | 
| 
 | 
     4  | 
*)
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
header{*Quicksort*}
 | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
theory Quicksort
  | 
| 
27368
 | 
     9  | 
imports Plain Multiset
  | 
| 
24615
 | 
    10  | 
begin
  | 
| 
 | 
    11  | 
  | 
| 
 | 
    12  | 
context linorder
  | 
| 
 | 
    13  | 
begin
  | 
| 
 | 
    14  | 
  | 
| 
28041
 | 
    15  | 
fun quicksort :: "'a list \<Rightarrow> 'a list" where
  | 
| 
24615
 | 
    16  | 
"quicksort []     = []" |
  | 
| 
25062
 | 
    17  | 
"quicksort (x#xs) = quicksort([y\<leftarrow>xs. ~ x\<le>y]) @ [x] @ quicksort([y\<leftarrow>xs. x\<le>y])"
  | 
| 
24615
 | 
    18  | 
  | 
| 
 | 
    19  | 
lemma quicksort_permutes [simp]:
  | 
| 
 | 
    20  | 
  "multiset_of (quicksort xs) = multiset_of xs"
  | 
| 
 | 
    21  | 
by (induct xs rule: quicksort.induct) (auto simp: union_ac)
  | 
| 
 | 
    22  | 
  | 
| 
 | 
    23  | 
lemma set_quicksort [simp]: "set (quicksort xs) = set xs"
  | 
| 
 | 
    24  | 
by(simp add: set_count_greater_0)
  | 
| 
 | 
    25  | 
  | 
| 
 | 
    26  | 
lemma sorted_quicksort: "sorted(quicksort xs)"
  | 
| 
 | 
    27  | 
apply (induct xs rule: quicksort.induct)
  | 
| 
 | 
    28  | 
 apply simp
  | 
| 
 | 
    29  | 
apply (simp add:sorted_Cons sorted_append not_le less_imp_le)
  | 
| 
 | 
    30  | 
apply (metis leD le_cases le_less_trans)
  | 
| 
 | 
    31  | 
done
  | 
| 
 | 
    32  | 
  | 
| 
 | 
    33  | 
end
  | 
| 
 | 
    34  | 
  | 
| 
 | 
    35  | 
end
  |