| 15346 |      1 | (*  ID:   $Id$
 | 
| 10213 |      2 |     Author:     Konrad Slind
 | 
|  |      3 |     Copyright   1995 TU Munich
 | 
|  |      4 | *)
 | 
|  |      5 | 
 | 
| 15346 |      6 | header {*Well-founded Relations*}
 | 
|  |      7 | 
 | 
|  |      8 | theory Wellfounded_Relations
 | 
|  |      9 | imports Finite_Set
 | 
|  |     10 | begin
 | 
|  |     11 | 
 | 
|  |     12 | text{*Derived WF relations such as inverse image, lexicographic product and
 | 
|  |     13 | measure. The simple relational product, in which @{term "(x',y')"} precedes
 | 
|  |     14 | @{term "(x,y)"} if @{term "x'<x"} and @{term "y'<y"}, is a subset of the
 | 
|  |     15 | lexicographic product, and therefore does not need to be defined separately.*}
 | 
| 10213 |     16 | 
 | 
|  |     17 | constdefs
 | 
|  |     18 |  less_than :: "(nat*nat)set"
 | 
| 15346 |     19 |     "less_than == trancl pred_nat"
 | 
| 10213 |     20 | 
 | 
|  |     21 |  measure   :: "('a => nat) => ('a * 'a)set"
 | 
| 15346 |     22 |     "measure == inv_image less_than"
 | 
| 10213 |     23 | 
 | 
|  |     24 |  lex_prod  :: "[('a*'a)set, ('b*'b)set] => (('a*'b)*('a*'b))set"
 | 
|  |     25 |                (infixr "<*lex*>" 80)
 | 
| 15346 |     26 |     "ra <*lex*> rb == {((a,b),(a',b')). (a,a') : ra | a=a' & (b,b') : rb}"
 | 
|  |     27 | 
 | 
|  |     28 |  finite_psubset  :: "('a set * 'a set) set"
 | 
|  |     29 |    --{* finite proper subset*}
 | 
|  |     30 |     "finite_psubset == {(A,B). A < B & finite B}"
 | 
|  |     31 | 
 | 
|  |     32 |  same_fst :: "('a => bool) => ('a => ('b * 'b)set) => (('a*'b)*('a*'b))set"
 | 
|  |     33 |     "same_fst P R == {((x',y'),(x,y)) . x'=x & P x & (y',y) : R x}"
 | 
|  |     34 |    --{*For @{text rec_def} declarations where the first n parameters
 | 
|  |     35 |        stay unchanged in the recursive call. 
 | 
|  |     36 |        See @{text "Library/While_Combinator.thy"} for an application.*}
 | 
|  |     37 | 
 | 
|  |     38 | 
 | 
|  |     39 | 
 | 
|  |     40 | 
 | 
|  |     41 | subsection{*Measure Functions make Wellfounded Relations*}
 | 
|  |     42 | 
 | 
|  |     43 | subsubsection{*`Less than' on the natural numbers*}
 | 
|  |     44 | 
 | 
|  |     45 | lemma wf_less_than [iff]: "wf less_than"
 | 
|  |     46 | by (simp add: less_than_def wf_pred_nat [THEN wf_trancl])
 | 
|  |     47 | 
 | 
|  |     48 | lemma trans_less_than [iff]: "trans less_than"
 | 
|  |     49 | by (simp add: less_than_def trans_trancl)
 | 
|  |     50 | 
 | 
|  |     51 | lemma less_than_iff [iff]: "((x,y): less_than) = (x<y)"
 | 
|  |     52 | by (simp add: less_than_def less_def)
 | 
|  |     53 | 
 | 
|  |     54 | lemma full_nat_induct:
 | 
|  |     55 |   assumes ih: "(!!n. (ALL m. Suc m <= n --> P m) ==> P n)"
 | 
|  |     56 |   shows "P n"
 | 
|  |     57 | apply (rule wf_less_than [THEN wf_induct])
 | 
|  |     58 | apply (rule ih, auto)
 | 
|  |     59 | done
 | 
|  |     60 | 
 | 
|  |     61 | subsubsection{*The Inverse Image into a Wellfounded Relation is Wellfounded.*}
 | 
|  |     62 | 
 | 
|  |     63 | lemma wf_inv_image [simp,intro!]: "wf(r) ==> wf(inv_image r (f::'a=>'b))"
 | 
|  |     64 | apply (simp (no_asm_use) add: inv_image_def wf_eq_minimal)
 | 
|  |     65 | apply clarify
 | 
|  |     66 | apply (subgoal_tac "EX (w::'b) . w : {w. EX (x::'a) . x: Q & (f x = w) }")
 | 
|  |     67 | prefer 2 apply (blast del: allE)
 | 
|  |     68 | apply (erule allE)
 | 
|  |     69 | apply (erule (1) notE impE)
 | 
|  |     70 | apply blast
 | 
|  |     71 | done
 | 
| 10213 |     72 | 
 | 
| 15346 |     73 | 
 | 
|  |     74 | subsubsection{*Finally, All Measures are Wellfounded.*}
 | 
|  |     75 | 
 | 
|  |     76 | lemma wf_measure [iff]: "wf (measure f)"
 | 
|  |     77 | apply (unfold measure_def)
 | 
|  |     78 | apply (rule wf_less_than [THEN wf_inv_image])
 | 
|  |     79 | done
 | 
|  |     80 | 
 | 
|  |     81 | lemmas measure_induct =
 | 
|  |     82 |     wf_measure [THEN wf_induct, unfolded measure_def inv_image_def, 
 | 
|  |     83 |                 simplified, standard]
 | 
|  |     84 | 
 | 
|  |     85 | 
 | 
|  |     86 | subsection{*Other Ways of Constructing Wellfounded Relations*}
 | 
|  |     87 | 
 | 
|  |     88 | text{*Wellfoundedness of lexicographic combinations*}
 | 
|  |     89 | lemma wf_lex_prod [intro!]: "[| wf(ra); wf(rb) |] ==> wf(ra <*lex*> rb)"
 | 
|  |     90 | apply (unfold wf_def lex_prod_def) 
 | 
|  |     91 | apply (rule allI, rule impI)
 | 
|  |     92 | apply (simp (no_asm_use) only: split_paired_All)
 | 
|  |     93 | apply (drule spec, erule mp) 
 | 
|  |     94 | apply (rule allI, rule impI)
 | 
|  |     95 | apply (drule spec, erule mp, blast) 
 | 
|  |     96 | done
 | 
|  |     97 | 
 | 
|  |     98 | 
 | 
|  |     99 | text{*Transitivity of WF combinators.*}
 | 
|  |    100 | lemma trans_lex_prod [intro!]: 
 | 
|  |    101 |     "[| trans R1; trans R2 |] ==> trans (R1 <*lex*> R2)"
 | 
|  |    102 | by (unfold trans_def lex_prod_def, blast) 
 | 
|  |    103 | 
 | 
|  |    104 | 
 | 
|  |    105 | subsubsection{*Wellfoundedness of proper subset on finite sets.*}
 | 
|  |    106 | lemma wf_finite_psubset: "wf(finite_psubset)"
 | 
|  |    107 | apply (unfold finite_psubset_def)
 | 
|  |    108 | apply (rule wf_measure [THEN wf_subset])
 | 
|  |    109 | apply (simp add: measure_def inv_image_def less_than_def less_def [symmetric])
 | 
|  |    110 | apply (fast elim!: psubset_card_mono)
 | 
|  |    111 | done
 | 
|  |    112 | 
 | 
|  |    113 | lemma trans_finite_psubset: "trans finite_psubset"
 | 
|  |    114 | by (simp add: finite_psubset_def psubset_def trans_def, blast)
 | 
|  |    115 | 
 | 
|  |    116 | 
 | 
|  |    117 | subsubsection{*Wellfoundedness of finite acyclic relations*}
 | 
|  |    118 | 
 | 
|  |    119 | text{*This proof belongs in this theory because it needs Finite.*}
 | 
| 10213 |    120 | 
 | 
| 15346 |    121 | lemma finite_acyclic_wf [rule_format]: "finite r ==> acyclic r --> wf r"
 | 
|  |    122 | apply (erule finite_induct, blast)
 | 
|  |    123 | apply (simp (no_asm_simp) only: split_tupled_all)
 | 
|  |    124 | apply simp
 | 
|  |    125 | done
 | 
|  |    126 | 
 | 
|  |    127 | lemma finite_acyclic_wf_converse: "[|finite r; acyclic r|] ==> wf (r^-1)"
 | 
|  |    128 | apply (erule finite_converse [THEN iffD2, THEN finite_acyclic_wf])
 | 
|  |    129 | apply (erule acyclic_converse [THEN iffD2])
 | 
|  |    130 | done
 | 
|  |    131 | 
 | 
|  |    132 | lemma wf_iff_acyclic_if_finite: "finite r ==> wf r = acyclic r"
 | 
|  |    133 | by (blast intro: finite_acyclic_wf wf_acyclic)
 | 
|  |    134 | 
 | 
|  |    135 | 
 | 
| 15352 |    136 | subsubsection{*Wellfoundedness of @{term same_fst}*}
 | 
| 15346 |    137 | 
 | 
|  |    138 | lemma same_fstI [intro!]:
 | 
|  |    139 |      "[| P x; (y',y) : R x |] ==> ((x,y'),(x,y)) : same_fst P R"
 | 
|  |    140 | by (simp add: same_fst_def)
 | 
|  |    141 | 
 | 
|  |    142 | lemma wf_same_fst:
 | 
|  |    143 |   assumes prem: "(!!x. P x ==> wf(R x))"
 | 
|  |    144 |   shows "wf(same_fst P R)"
 | 
|  |    145 | apply (simp cong del: imp_cong add: wf_def same_fst_def)
 | 
|  |    146 | apply (intro strip)
 | 
|  |    147 | apply (rename_tac a b)
 | 
|  |    148 | apply (case_tac "wf (R a)")
 | 
|  |    149 |  apply (erule_tac a = b in wf_induct, blast)
 | 
|  |    150 | apply (blast intro: prem)
 | 
|  |    151 | done
 | 
|  |    152 | 
 | 
|  |    153 | 
 | 
|  |    154 | subsection{*Weakly decreasing sequences (w.r.t. some well-founded order) 
 | 
|  |    155 |    stabilize.*}
 | 
|  |    156 | 
 | 
|  |    157 | text{*This material does not appear to be used any longer.*}
 | 
|  |    158 | 
 | 
|  |    159 | lemma lemma1: "[| ALL i. (f (Suc i), f i) : r^* |] ==> (f (i+k), f i) : r^*"
 | 
|  |    160 | apply (induct_tac "k", simp_all)
 | 
|  |    161 | apply (blast intro: rtrancl_trans)
 | 
|  |    162 | done
 | 
|  |    163 | 
 | 
|  |    164 | lemma lemma2: "[| ALL i. (f (Suc i), f i) : r^*; wf (r^+) |]  
 | 
|  |    165 |       ==> ALL m. f m = x --> (EX i. ALL k. f (m+i+k) = f (m+i))"
 | 
|  |    166 | apply (erule wf_induct, clarify)
 | 
|  |    167 | apply (case_tac "EX j. (f (m+j), f m) : r^+")
 | 
|  |    168 |  apply clarify
 | 
|  |    169 |  apply (subgoal_tac "EX i. ALL k. f ((m+j) +i+k) = f ( (m+j) +i) ")
 | 
|  |    170 |   apply clarify
 | 
|  |    171 |   apply (rule_tac x = "j+i" in exI)
 | 
|  |    172 |   apply (simp add: add_ac, blast)
 | 
|  |    173 | apply (rule_tac x = 0 in exI, clarsimp)
 | 
|  |    174 | apply (drule_tac i = m and k = k in lemma1)
 | 
|  |    175 | apply (blast elim: rtranclE dest: rtrancl_into_trancl1)
 | 
|  |    176 | done
 | 
|  |    177 | 
 | 
|  |    178 | lemma wf_weak_decr_stable: "[| ALL i. (f (Suc i), f i) : r^*; wf (r^+) |]  
 | 
|  |    179 |       ==> EX i. ALL k. f (i+k) = f i"
 | 
|  |    180 | apply (drule_tac x = 0 in lemma2 [THEN spec], auto)
 | 
|  |    181 | done
 | 
|  |    182 | 
 | 
|  |    183 | (* special case of the theorem above: <= *)
 | 
|  |    184 | lemma weak_decr_stable:
 | 
|  |    185 |      "ALL i. f (Suc i) <= ((f i)::nat) ==> EX i. ALL k. f (i+k) = f i"
 | 
|  |    186 | apply (rule_tac r = pred_nat in wf_weak_decr_stable)
 | 
|  |    187 | apply (simp add: pred_nat_trancl_eq_le)
 | 
|  |    188 | apply (intro wf_trancl wf_pred_nat)
 | 
|  |    189 | done
 | 
|  |    190 | 
 | 
|  |    191 | 
 | 
|  |    192 | ML
 | 
|  |    193 | {*
 | 
|  |    194 | val less_than_def = thm "less_than_def";
 | 
|  |    195 | val measure_def = thm "measure_def";
 | 
|  |    196 | val lex_prod_def = thm "lex_prod_def";
 | 
|  |    197 | val finite_psubset_def = thm "finite_psubset_def";
 | 
|  |    198 | 
 | 
|  |    199 | val wf_less_than = thm "wf_less_than";
 | 
|  |    200 | val trans_less_than = thm "trans_less_than";
 | 
|  |    201 | val less_than_iff = thm "less_than_iff";
 | 
|  |    202 | val full_nat_induct = thm "full_nat_induct";
 | 
|  |    203 | val wf_inv_image = thm "wf_inv_image";
 | 
|  |    204 | val wf_measure = thm "wf_measure";
 | 
|  |    205 | val measure_induct = thm "measure_induct";
 | 
|  |    206 | val wf_lex_prod = thm "wf_lex_prod";
 | 
|  |    207 | val trans_lex_prod = thm "trans_lex_prod";
 | 
|  |    208 | val wf_finite_psubset = thm "wf_finite_psubset";
 | 
|  |    209 | val trans_finite_psubset = thm "trans_finite_psubset";
 | 
|  |    210 | val finite_acyclic_wf = thm "finite_acyclic_wf";
 | 
|  |    211 | val finite_acyclic_wf_converse = thm "finite_acyclic_wf_converse";
 | 
|  |    212 | val wf_iff_acyclic_if_finite = thm "wf_iff_acyclic_if_finite";
 | 
|  |    213 | val wf_weak_decr_stable = thm "wf_weak_decr_stable";
 | 
|  |    214 | val weak_decr_stable = thm "weak_decr_stable";
 | 
|  |    215 | val same_fstI = thm "same_fstI";
 | 
|  |    216 | val wf_same_fst = thm "wf_same_fst";
 | 
|  |    217 | *}
 | 
|  |    218 | 
 | 
| 10213 |    219 | 
 | 
|  |    220 | end
 |