| 
0
 | 
     1  | 
(*  Title: 	FOL/ex/prolog.ML
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
 | 
     4  | 
    Copyright   1992  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
For ex/prolog.thy.  First-Order Logic: PROLOG examples
  | 
| 
 | 
     7  | 
*)
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
open Prolog;
  | 
| 
 | 
    10  | 
  | 
| 
 | 
    11  | 
goal Prolog.thy "app(a:b:c:Nil, d:e:Nil, ?x)";
  | 
| 
 | 
    12  | 
by (resolve_tac [appNil,appCons] 1);
  | 
| 
 | 
    13  | 
by (resolve_tac [appNil,appCons] 1);
  | 
| 
 | 
    14  | 
by (resolve_tac [appNil,appCons] 1);
  | 
| 
 | 
    15  | 
by (resolve_tac [appNil,appCons] 1);
  | 
| 
 | 
    16  | 
prth (result());
  | 
| 
 | 
    17  | 
  | 
| 
 | 
    18  | 
goal Prolog.thy "app(?x, c:d:Nil, a:b:c:d:Nil)";
  | 
| 
 | 
    19  | 
by (REPEAT (resolve_tac [appNil,appCons] 1));
  | 
| 
 | 
    20  | 
result();
  | 
| 
 | 
    21  | 
  | 
| 
 | 
    22  | 
  | 
| 
 | 
    23  | 
goal Prolog.thy "app(?x, ?y, a:b:c:d:Nil)";
  | 
| 
 | 
    24  | 
by (REPEAT (resolve_tac [appNil,appCons] 1));
  | 
| 
 | 
    25  | 
back();
  | 
| 
 | 
    26  | 
back();
  | 
| 
 | 
    27  | 
back();
  | 
| 
 | 
    28  | 
back();
  | 
| 
 | 
    29  | 
result();
  | 
| 
 | 
    30  | 
  | 
| 
 | 
    31  | 
  | 
| 
 | 
    32  | 
(*app([x1,...,xn], y, ?z) requires (n+1) inferences*)
  | 
| 
 | 
    33  | 
(*rev([x1,...,xn], ?y) requires (n+1)(n+2)/2 inferences*)
  | 
| 
 | 
    34  | 
  | 
| 
 | 
    35  | 
goal Prolog.thy "rev(a:b:c:d:Nil, ?x)";
  | 
| 
 | 
    36  | 
val rules = [appNil,appCons,revNil,revCons];
  | 
| 
 | 
    37  | 
by (REPEAT (resolve_tac rules 1));
  | 
| 
 | 
    38  | 
result();
  | 
| 
 | 
    39  | 
  | 
| 
 | 
    40  | 
goal Prolog.thy "rev(a:b:c:d:e:f:g:h:i:j:k:l:m:n:Nil, ?w)";
  | 
| 
 | 
    41  | 
by (REPEAT (resolve_tac rules 1));
  | 
| 
 | 
    42  | 
result();
  | 
| 
 | 
    43  | 
  | 
| 
 | 
    44  | 
goal Prolog.thy "rev(?x, a:b:c:Nil)";
  | 
| 
 | 
    45  | 
by (REPEAT (resolve_tac rules 1)); (*does not solve it directly!*)
  | 
| 
 | 
    46  | 
back();
  | 
| 
 | 
    47  | 
back();
  | 
| 
 | 
    48  | 
  | 
| 
 | 
    49  | 
(*backtracking version*)
  | 
| 
 | 
    50  | 
val prolog_tac = DEPTH_FIRST (has_fewer_prems 1) (resolve_tac rules 1);
  | 
| 
 | 
    51  | 
  | 
| 
 | 
    52  | 
choplev 0;
  | 
| 
 | 
    53  | 
by prolog_tac;
  | 
| 
 | 
    54  | 
result();
  | 
| 
 | 
    55  | 
  | 
| 
 | 
    56  | 
goal Prolog.thy "rev(a:?x:c:?y:Nil, d:?z:b:?u)";
  | 
| 
 | 
    57  | 
by prolog_tac;
  | 
| 
 | 
    58  | 
result();
  | 
| 
 | 
    59  | 
  | 
| 
 | 
    60  | 
(*rev([a..p], ?w) requires 153 inferences *)
  | 
| 
 | 
    61  | 
goal Prolog.thy "rev(a:b:c:d:e:f:g:h:i:j:k:l:m:n:o:p:Nil, ?w)";
  | 
| 
 | 
    62  | 
by (DEPTH_SOLVE (resolve_tac ([refl,conjI]@rules) 1));
  | 
| 
 | 
    63  | 
(*Poly/ML: 4 secs >> 38 lips*)
  | 
| 
 | 
    64  | 
result();
  | 
| 
 | 
    65  | 
  | 
| 
 | 
    66  | 
(*?x has 16, ?y has 32;  rev(?y,?w) requires 561 (rather large) inferences;
  | 
| 
 | 
    67  | 
  total inferences = 2 + 1 + 17 + 561 = 581*)
  | 
| 
 | 
    68  | 
goal Prolog.thy
  | 
| 
 | 
    69  | 
    "a:b:c:d:e:f:g:h:i:j:k:l:m:n:o:p:Nil = ?x & app(?x,?x,?y) & rev(?y,?w)";
  | 
| 
 | 
    70  | 
by (DEPTH_SOLVE (resolve_tac ([refl,conjI]@rules) 1));
  | 
| 
 | 
    71  | 
(*Poly/ML: 29 secs >> 20 lips*)
  | 
| 
 | 
    72  | 
result();
  | 
| 
 | 
    73  | 
  | 
| 
 | 
    74  | 
writeln"Reached end of file.";
  |