| author | wenzelm | 
| Thu, 01 Feb 2001 20:43:59 +0100 | |
| changeset 11019 | e968e5bfe98d | 
| parent 300 | 3fb8c0256bec | 
| permissions | -rw-r--r-- | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1 | (* Title: HOLCF/fix.ML | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 2 | ID: $Id$ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 3 | Author: Franz Regensburger | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 4 | Copyright 1993 Technische Universitaet Muenchen | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 5 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 6 | Lemmas for fix.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 7 | *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 8 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 9 | open Fix; | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 10 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 11 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 12 | (* derive inductive properties of iterate from primitive recursion *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 13 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 14 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 15 | val iterate_0 = prove_goal Fix.thy "iterate(0,F,x) = x" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 16 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 17 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 18 | (resolve_tac (nat_recs iterate_def) 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 19 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 20 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 21 | val iterate_Suc = prove_goal Fix.thy "iterate(Suc(n),F,x) = F[iterate(n,F,x)]" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 22 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 23 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 24 | (resolve_tac (nat_recs iterate_def) 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 25 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 26 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 27 | val iterate_ss = Cfun_ss addsimps [iterate_0,iterate_Suc]; | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 28 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 29 | val iterate_Suc2 = prove_goal Fix.thy "iterate(Suc(n),F,x) = iterate(n,F,F[x])" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 30 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 31 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 32 | (nat_ind_tac "n" 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 33 | (simp_tac iterate_ss 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 34 | (asm_simp_tac iterate_ss 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 35 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 36 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 37 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 38 | (* the sequence of function itertaions is a chain *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 39 | (* This property is essential since monotonicity of iterate makes no sense *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 40 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 41 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 42 | val is_chain_iterate2 = prove_goalw Fix.thy [is_chain] | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 43 | " x << F[x] ==> is_chain(%i.iterate(i,F,x))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 44 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 45 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 46 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 47 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 48 | (simp_tac iterate_ss 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 49 | (nat_ind_tac "i" 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 50 | (asm_simp_tac iterate_ss 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 51 | (asm_simp_tac iterate_ss 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 52 | (etac monofun_cfun_arg 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 53 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 54 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 55 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 56 | val is_chain_iterate = prove_goal Fix.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 57 | "is_chain(%i.iterate(i,F,UU))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 58 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 59 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 60 | (rtac is_chain_iterate2 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 61 | (rtac minimal 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 62 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 63 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 64 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 65 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 66 | (* Kleene's fixed point theorems for continuous functions in pointed *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 67 | (* omega cpo's *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 68 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 69 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 70 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 71 | val Ifix_eq = prove_goalw Fix.thy [Ifix_def] "Ifix(F)=F[Ifix(F)]" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 72 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 73 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 74 | (rtac (contlub_cfun_arg RS ssubst) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 75 | (rtac is_chain_iterate 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 76 | (rtac antisym_less 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 77 | (rtac lub_mono 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 78 | (rtac is_chain_iterate 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 79 | (rtac ch2ch_fappR 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 80 | (rtac is_chain_iterate 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 81 | (rtac allI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 82 | (rtac (iterate_Suc RS subst) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 83 | (rtac (is_chain_iterate RS is_chainE RS spec) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 84 | (rtac is_lub_thelub 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 85 | (rtac ch2ch_fappR 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 86 | (rtac is_chain_iterate 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 87 | (rtac ub_rangeI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 88 | (rtac allI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 89 | (rtac (iterate_Suc RS subst) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 90 | (rtac is_ub_thelub 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 91 | (rtac is_chain_iterate 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 92 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 93 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 94 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 95 | val Ifix_least = prove_goalw Fix.thy [Ifix_def] "F[x]=x ==> Ifix(F) << x" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 96 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 97 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 98 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 99 | (rtac is_lub_thelub 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 100 | (rtac is_chain_iterate 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 101 | (rtac ub_rangeI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 102 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 103 | (nat_ind_tac "i" 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 104 | (asm_simp_tac iterate_ss 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 105 | (asm_simp_tac iterate_ss 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 106 | 	(res_inst_tac [("t","x")] subst 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 107 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 108 | (etac monofun_cfun_arg 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 109 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 110 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 111 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 112 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 113 | (* monotonicity and continuity of iterate *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 114 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 115 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 116 | val monofun_iterate = prove_goalw Fix.thy [monofun] "monofun(iterate(i))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 117 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 118 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 119 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 120 | (nat_ind_tac "i" 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 121 | (asm_simp_tac iterate_ss 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 122 | (asm_simp_tac iterate_ss 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 123 | (rtac (less_fun RS iffD2) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 124 | (rtac allI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 125 | (rtac monofun_cfun 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 126 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 127 | (rtac (less_fun RS iffD1 RS spec) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 128 | (atac 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 129 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 130 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 131 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 132 | (* the following lemma uses contlub_cfun which itself is based on a *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 133 | (* diagonalisation lemma for continuous functions with two arguments. *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 134 | (* In this special case it is the application function fapp *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 135 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 136 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 137 | val contlub_iterate = prove_goalw Fix.thy [contlub] "contlub(iterate(i))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 138 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 139 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 140 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 141 | (nat_ind_tac "i" 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 142 | (asm_simp_tac iterate_ss 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 143 | (rtac (lub_const RS thelubI RS sym) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 144 | (asm_simp_tac iterate_ss 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 145 | (rtac ext 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 146 | (rtac (thelub_fun RS ssubst) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 147 | (rtac is_chainI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 148 | (rtac allI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 149 | (rtac (less_fun RS iffD2) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 150 | (rtac allI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 151 | (rtac (is_chainE RS spec) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 152 | (rtac (monofun_fapp1 RS ch2ch_MF2LR) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 153 | (rtac allI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 154 | (rtac monofun_fapp2 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 155 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 156 | (rtac ch2ch_fun 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 157 | (rtac (monofun_iterate RS ch2ch_monofun) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 158 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 159 | (rtac (thelub_fun RS ssubst) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 160 | (rtac (monofun_iterate RS ch2ch_monofun) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 161 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 162 | (rtac contlub_cfun 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 163 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 164 | (etac (monofun_iterate RS ch2ch_monofun RS ch2ch_fun) 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 165 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 166 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 167 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 168 | val contX_iterate = prove_goal Fix.thy "contX(iterate(i))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 169 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 170 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 171 | (rtac monocontlub2contX 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 172 | (rtac monofun_iterate 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 173 | (rtac contlub_iterate 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 174 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 175 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 176 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 177 | (* a lemma about continuity of iterate in its third argument *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 178 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 179 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 180 | val monofun_iterate2 = prove_goal Fix.thy "monofun(iterate(n,F))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 181 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 182 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 183 | (rtac monofunI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 184 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 185 | (nat_ind_tac "n" 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 186 | (asm_simp_tac iterate_ss 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 187 | (asm_simp_tac iterate_ss 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 188 | (etac monofun_cfun_arg 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 189 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 190 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 191 | val contlub_iterate2 = prove_goal Fix.thy "contlub(iterate(n,F))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 192 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 193 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 194 | (rtac contlubI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 195 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 196 | (nat_ind_tac "n" 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 197 | (simp_tac iterate_ss 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 198 | (simp_tac iterate_ss 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 199 | 	(res_inst_tac [("t","iterate(n1, F, lub(range(%u. Y(u))))"),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 200 | 	("s","lub(range(%i. iterate(n1, F, Y(i))))")] ssubst 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 201 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 202 | (rtac contlub_cfun_arg 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 203 | (etac (monofun_iterate2 RS ch2ch_monofun) 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 204 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 205 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 206 | val contX_iterate2 = prove_goal Fix.thy "contX(iterate(n,F))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 207 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 208 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 209 | (rtac monocontlub2contX 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 210 | (rtac monofun_iterate2 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 211 | (rtac contlub_iterate2 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 212 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 213 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 214 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 215 | (* monotonicity and continuity of Ifix *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 216 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 217 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 218 | val monofun_Ifix = prove_goalw Fix.thy [monofun,Ifix_def] "monofun(Ifix)" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 219 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 220 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 221 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 222 | (rtac lub_mono 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 223 | (rtac is_chain_iterate 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 224 | (rtac is_chain_iterate 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 225 | (rtac allI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 226 | (rtac (less_fun RS iffD1 RS spec) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 227 | (etac (monofun_iterate RS monofunE RS spec RS spec RS mp) 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 228 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 229 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 230 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 231 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 232 | (* since iterate is not monotone in its first argument, special lemmas must *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 233 | (* be derived for lubs in this argument *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 234 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 235 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 236 | val is_chain_iterate_lub = prove_goal Fix.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 237 | "is_chain(Y) ==> is_chain(%i. lub(range(%ia. iterate(ia,Y(i),UU))))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 238 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 239 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 240 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 241 | (rtac is_chainI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 242 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 243 | (rtac lub_mono 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 244 | (rtac is_chain_iterate 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 245 | (rtac is_chain_iterate 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 246 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 247 | (etac (monofun_iterate RS ch2ch_monofun RS ch2ch_fun RS is_chainE | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 248 | RS spec) 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 249 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 250 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 251 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 252 | (* this exchange lemma is analog to the one for monotone functions *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 253 | (* observe that monotonicity is not really needed. The propagation of *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 254 | (* chains is the essential argument which is usually derived from monot. *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 255 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 256 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 257 | val contlub_Ifix_lemma1 = prove_goal Fix.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 258 | "is_chain(Y) ==> iterate(n,lub(range(Y)),y) = lub(range(%i. iterate(n,Y(i),y)))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 259 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 260 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 261 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 262 | (rtac (thelub_fun RS subst) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 263 | (rtac (monofun_iterate RS ch2ch_monofun) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 264 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 265 | (rtac fun_cong 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 266 | (rtac (contlub_iterate RS contlubE RS spec RS mp RS ssubst) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 267 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 268 | (rtac refl 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 269 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 270 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 271 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 272 | val ex_lub_iterate = prove_goal Fix.thy "is_chain(Y) ==>\ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 273 | \ lub(range(%i. lub(range(%ia. iterate(i,Y(ia),UU))))) =\ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 274 | \ lub(range(%i. lub(range(%ia. iterate(ia,Y(i),UU)))))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 275 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 276 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 277 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 278 | (rtac antisym_less 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 279 | (rtac is_lub_thelub 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 280 | (rtac (contlub_Ifix_lemma1 RS ext RS subst) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 281 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 282 | (rtac is_chain_iterate 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 283 | (rtac ub_rangeI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 284 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 285 | (rtac lub_mono 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 286 | (etac (monofun_iterate RS ch2ch_monofun RS ch2ch_fun) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 287 | (etac is_chain_iterate_lub 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 288 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 289 | (rtac is_ub_thelub 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 290 | (rtac is_chain_iterate 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 291 | (rtac is_lub_thelub 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 292 | (etac is_chain_iterate_lub 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 293 | (rtac ub_rangeI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 294 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 295 | (rtac lub_mono 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 296 | (rtac is_chain_iterate 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 297 | (rtac (contlub_Ifix_lemma1 RS ext RS subst) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 298 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 299 | (rtac is_chain_iterate 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 300 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 301 | (rtac is_ub_thelub 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 302 | (etac (monofun_iterate RS ch2ch_monofun RS ch2ch_fun) 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 303 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 304 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 305 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 306 | val contlub_Ifix = prove_goalw Fix.thy [contlub,Ifix_def] "contlub(Ifix)" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 307 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 308 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 309 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 310 | (rtac (contlub_Ifix_lemma1 RS ext RS ssubst) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 311 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 312 | (etac ex_lub_iterate 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 313 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 314 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 315 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 316 | val contX_Ifix = prove_goal Fix.thy "contX(Ifix)" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 317 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 318 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 319 | (rtac monocontlub2contX 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 320 | (rtac monofun_Ifix 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 321 | (rtac contlub_Ifix 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 322 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 323 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 324 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 325 | (* propagate properties of Ifix to its continuous counterpart *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 326 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 327 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 328 | val fix_eq = prove_goalw Fix.thy [fix_def] "fix[F]=F[fix[F]]" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 329 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 330 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 331 | (asm_simp_tac (Cfun_ss addsimps [contX_Ifix]) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 332 | (rtac Ifix_eq 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 333 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 334 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 335 | val fix_least = prove_goalw Fix.thy [fix_def] "F[x]=x ==> fix[F] << x" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 336 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 337 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 338 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 339 | (asm_simp_tac (Cfun_ss addsimps [contX_Ifix]) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 340 | (etac Ifix_least 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 341 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 342 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 343 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 344 | val fix_eq2 = prove_goal Fix.thy "f == fix[F] ==> f = F[f]" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 345 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 346 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 347 | (rewrite_goals_tac prems), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 348 | (rtac fix_eq 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 349 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 350 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 351 | val fix_eq3 = prove_goal Fix.thy "f == fix[F] ==> f[x] = F[f][x]" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 352 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 353 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 354 | (rtac trans 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 355 | (rtac ((hd prems) RS fix_eq2 RS cfun_fun_cong) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 356 | (rtac refl 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 357 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 358 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 359 | fun fix_tac3 thm i = ((rtac trans i) THEN (rtac (thm RS fix_eq3) i)); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 360 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 361 | val fix_eq4 = prove_goal Fix.thy "f = fix[F] ==> f = F[f]" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 362 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 363 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 364 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 365 | (hyp_subst_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 366 | (rtac fix_eq 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 367 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 368 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 369 | val fix_eq5 = prove_goal Fix.thy "f = fix[F] ==> f[x] = F[f][x]" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 370 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 371 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 372 | (rtac trans 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 373 | (rtac ((hd prems) RS fix_eq4 RS cfun_fun_cong) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 374 | (rtac refl 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 375 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 376 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 377 | fun fix_tac5 thm i = ((rtac trans i) THEN (rtac (thm RS fix_eq5) i)); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 378 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 379 | fun fix_prover thy fixdef thm = prove_goal thy thm | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 380 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 381 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 382 | (rtac trans 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 383 | (rtac (fixdef RS fix_eq4) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 384 | (rtac trans 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 385 | (rtac beta_cfun 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 386 | (contX_tacR 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 387 | (rtac refl 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 388 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 389 | |
| 297 | 390 | (* ------------------------------------------------------------------------ | 
| 391 | ||
| 392 | given the definition | |
| 393 | ||
| 394 | smap_def | |
| 395 | "smap = fix[LAM h f s. stream_when[LAM x l.scons[f[x]][h[f][l]]][s]]" | |
| 396 | ||
| 397 | use fix_prover for | |
| 398 | ||
| 399 | val smap_def2 = fix_prover Stream2.thy smap_def | |
| 400 | "smap = (LAM f s. stream_when[LAM x l.scons[f[x]][smap[f][l]]][s])"; | |
| 401 | ||
| 402 | ------------------------------------------------------------------------ *) | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 403 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 404 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 405 | (* better access to definitions *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 406 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 407 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 408 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 409 | val Ifix_def2 = prove_goal Fix.thy "Ifix=(%x. lub(range(%i. iterate(i,x,UU))))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 410 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 411 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 412 | (rtac ext 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 413 | (rewrite_goals_tac [Ifix_def]), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 414 | (rtac refl 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 415 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 416 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 417 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 418 | (* direct connection between fix and iteration without Ifix *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 419 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 420 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 421 | val fix_def2 = prove_goalw Fix.thy [fix_def] | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 422 | "fix[F] = lub(range(%i. iterate(i,F,UU)))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 423 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 424 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 425 | (fold_goals_tac [Ifix_def]), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 426 | (asm_simp_tac (Cfun_ss addsimps [contX_Ifix]) 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 427 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 428 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 429 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 430 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 431 | (* Lemmas about admissibility and fixed point induction *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 432 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 433 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 434 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 435 | (* access to definitions *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 436 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 437 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 438 | val adm_def2 = prove_goalw Fix.thy [adm_def] | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 439 | "adm(P) = (!Y. is_chain(Y) --> (!i.P(Y(i))) --> P(lub(range(Y))))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 440 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 441 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 442 | (rtac refl 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 443 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 444 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 445 | val admw_def2 = prove_goalw Fix.thy [admw_def] | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 446 | "admw(P) = (!F.((!n.P(iterate(n,F,UU)))-->\ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 447 | \ P(lub(range(%i.iterate(i,F,UU))))))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 448 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 449 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 450 | (rtac refl 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 451 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 452 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 453 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 454 | (* an admissible formula is also weak admissible *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 455 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 456 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 457 | val adm_impl_admw = prove_goalw Fix.thy [admw_def] "adm(P)==>admw(P)" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 458 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 459 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 460 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 461 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 462 | (rtac (adm_def2 RS iffD1 RS spec RS mp RS mp) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 463 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 464 | (rtac is_chain_iterate 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 465 | (atac 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 466 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 467 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 468 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 469 | (* fixed point induction *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 470 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 471 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 472 | val fix_ind = prove_goal Fix.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 473 | "[| adm(P);P(UU);!!x. P(x) ==> P(F[x])|] ==> P(fix[F])" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 474 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 475 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 476 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 477 | (rtac (fix_def2 RS ssubst) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 478 | (rtac (adm_def2 RS iffD1 RS spec RS mp RS mp) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 479 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 480 | (rtac is_chain_iterate 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 481 | (rtac allI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 482 | (nat_ind_tac "i" 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 483 | (rtac (iterate_0 RS ssubst) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 484 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 485 | (rtac (iterate_Suc RS ssubst) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 486 | (resolve_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 487 | (atac 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 488 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 489 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 490 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 491 | (* computational induction for weak admissible formulae *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 492 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 493 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 494 | val wfix_ind = prove_goal Fix.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 495 | "[| admw(P); !n. P(iterate(n,F,UU))|] ==> P(fix[F])" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 496 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 497 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 498 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 499 | (rtac (fix_def2 RS ssubst) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 500 | (rtac (admw_def2 RS iffD1 RS spec RS mp) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 501 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 502 | (rtac allI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 503 | (etac spec 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 504 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 505 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 506 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 507 | (* for chain-finite (easy) types every formula is admissible *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 508 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 509 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 510 | val adm_max_in_chain = prove_goalw Fix.thy [adm_def] | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 511 | "!Y. is_chain(Y::nat=>'a) --> (? n.max_in_chain(n,Y)) ==> adm(P::'a=>bool)" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 512 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 513 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 514 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 515 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 516 | (rtac exE 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 517 | (rtac mp 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 518 | (etac spec 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 519 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 520 | (rtac (lub_finch1 RS thelubI RS ssubst) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 521 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 522 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 523 | (etac spec 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 524 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 525 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 526 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 527 | val adm_chain_finite = prove_goalw Fix.thy [chain_finite_def] | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 528 | "chain_finite(x::'a) ==> adm(P::'a=>bool)" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 529 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 530 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 531 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 532 | (etac adm_max_in_chain 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 533 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 534 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 535 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 536 | (* flat types are chain_finite *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 537 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 538 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 539 | val flat_imp_chain_finite = prove_goalw Fix.thy [flat_def,chain_finite_def] | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 540 | "flat(x::'a)==>chain_finite(x::'a)" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 541 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 542 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 543 | (rewrite_goals_tac [max_in_chain_def]), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 544 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 545 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 546 | 	(res_inst_tac [("Q","!i.Y(i)=UU")] classical2 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 547 | 	(res_inst_tac [("x","0")] exI 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 548 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 549 | (rtac trans 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 550 | (etac spec 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 551 | (rtac sym 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 552 | (etac spec 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 553 | (rtac (chain_mono2 RS exE) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 554 | (fast_tac HOL_cs 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 555 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 556 | 	(res_inst_tac [("x","Suc(x)")] exI 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 557 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 558 | (rtac disjE 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 559 | (atac 3), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 560 | (rtac mp 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 561 | (dtac spec 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 562 | (etac spec 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 563 | (etac (le_imp_less_or_eq RS disjE) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 564 | (etac (chain_mono RS mp) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 565 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 566 | (hyp_subst_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 567 | (rtac refl_less 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 568 | 	(res_inst_tac [("P","Y(Suc(x)) = UU")] notE 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 569 | (atac 2), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 570 | (rtac mp 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 571 | (etac spec 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 572 | (asm_simp_tac nat_ss 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 573 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 574 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 575 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 576 | val adm_flat = flat_imp_chain_finite RS adm_chain_finite; | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 577 | (* flat(?x::?'a) ==> adm(?P::?'a => bool) *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 578 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 579 | val flat_void = prove_goalw Fix.thy [flat_def] "flat(UU::void)" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 580 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 581 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 582 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 583 | (rtac disjI1 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 584 | (rtac unique_void2 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 585 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 586 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 587 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 588 | (* continuous isomorphisms are strict *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 589 | (* a prove for embedding projection pairs is similar *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 590 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 591 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 592 | val iso_strict = prove_goal Fix.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 593 | "!!f g.[|!y.f[g[y]]=(y::'b) ; !x.g[f[x]]=(x::'a) |] \ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 594 | \ ==> f[UU]=UU & g[UU]=UU" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 595 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 596 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 597 | (rtac conjI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 598 | (rtac UU_I 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 599 | 	(res_inst_tac [("s","f[g[UU::'b]]"),("t","UU::'b")] subst 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 600 | (etac spec 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 601 | (rtac (minimal RS monofun_cfun_arg) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 602 | (rtac UU_I 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 603 | 	(res_inst_tac [("s","g[f[UU::'a]]"),("t","UU::'a")] subst 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 604 | (etac spec 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 605 | (rtac (minimal RS monofun_cfun_arg) 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 606 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 607 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 608 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 609 | val isorep_defined = prove_goal Fix.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 610 | "[|!x.rep[abs[x]]=x;!y.abs[rep[y]]=y;z~=UU|] ==> rep[z]~=UU" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 611 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 612 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 613 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 614 | (etac swap 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 615 | (dtac notnotD 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 616 | 	(dres_inst_tac [("f","abs")] cfun_arg_cong 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 617 | (etac box_equals 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 618 | (fast_tac HOL_cs 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 619 | (etac (iso_strict RS conjunct1) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 620 | (atac 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 621 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 622 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 623 | val isoabs_defined = prove_goal Fix.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 624 | "[|!x.rep[abs[x]]=x;!y.abs[rep[y]]=y;z~=UU|] ==> abs[z]~=UU" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 625 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 626 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 627 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 628 | (etac swap 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 629 | (dtac notnotD 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 630 | 	(dres_inst_tac [("f","rep")] cfun_arg_cong 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 631 | (etac box_equals 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 632 | (fast_tac HOL_cs 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 633 | (etac (iso_strict RS conjunct2) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 634 | (atac 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 635 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 636 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 637 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 638 | (* propagation of flatness and chainfiniteness by continuous isomorphisms *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 639 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 640 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 641 | val chfin2chfin = prove_goalw Fix.thy [chain_finite_def] | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 642 | "!!f g.[|chain_finite(x::'a); !y.f[g[y]]=(y::'b) ; !x.g[f[x]]=(x::'a) |] \ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 643 | \ ==> chain_finite(y::'b)" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 644 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 645 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 646 | (rewrite_goals_tac [max_in_chain_def]), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 647 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 648 | (rtac exE 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 649 | 	(res_inst_tac [("P","is_chain(%i.g[Y(i)])")] mp 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 650 | (etac spec 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 651 | (etac ch2ch_fappR 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 652 | (rtac exI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 653 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 654 | 	(res_inst_tac [("s","f[g[Y(x)]]"),("t","Y(x)")] subst 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 655 | (etac spec 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 656 | 	(res_inst_tac [("s","f[g[Y(j)]]"),("t","Y(j)")] subst 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 657 | (etac spec 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 658 | (rtac cfun_arg_cong 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 659 | (rtac mp 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 660 | (etac spec 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 661 | (atac 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 662 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 663 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 664 | val flat2flat = prove_goalw Fix.thy [flat_def] | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 665 | "!!f g.[|flat(x::'a); !y.f[g[y]]=(y::'b) ; !x.g[f[x]]=(x::'a) |] \ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 666 | \ ==> flat(y::'b)" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 667 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 668 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 669 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 670 | (rtac disjE 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 671 | 	(res_inst_tac [("P","g[x]<<g[y]")] mp 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 672 | (etac monofun_cfun_arg 2), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 673 | (dtac spec 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 674 | (etac spec 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 675 | (rtac disjI1 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 676 | (rtac trans 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 677 | 	(res_inst_tac [("s","f[g[x]]"),("t","x")] subst 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 678 | (etac spec 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 679 | (etac cfun_arg_cong 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 680 | (rtac (iso_strict RS conjunct1) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 681 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 682 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 683 | (rtac disjI2 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 684 | 	(res_inst_tac [("s","f[g[x]]"),("t","x")] subst 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 685 | (etac spec 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 686 | 	(res_inst_tac [("s","f[g[y]]"),("t","y")] subst 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 687 | (etac spec 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 688 | (etac cfun_arg_cong 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 689 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 690 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 691 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 692 | (* admissibility of special formulae and propagation *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 693 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 694 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 695 | val adm_less = prove_goalw Fix.thy [adm_def] | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 696 | "[|contX(u);contX(v)|]==> adm(%x.u(x)<<v(x))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 697 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 698 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 699 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 700 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 701 | (etac (contX2contlub RS contlubE RS spec RS mp RS ssubst) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 702 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 703 | (etac (contX2contlub RS contlubE RS spec RS mp RS ssubst) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 704 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 705 | (rtac lub_mono 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 706 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 707 | (etac (contX2mono RS ch2ch_monofun) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 708 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 709 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 710 | (etac (contX2mono RS ch2ch_monofun) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 711 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 712 | (atac 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 713 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 714 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 715 | val adm_conj = prove_goal Fix.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 716 | "[| adm(P); adm(Q) |] ==> adm(%x.P(x)&Q(x))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 717 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 718 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 719 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 720 | (rtac (adm_def2 RS iffD2) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 721 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 722 | (rtac conjI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 723 | (rtac (adm_def2 RS iffD1 RS spec RS mp RS mp) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 724 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 725 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 726 | (fast_tac HOL_cs 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 727 | (rtac (adm_def2 RS iffD1 RS spec RS mp RS mp) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 728 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 729 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 730 | (fast_tac HOL_cs 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 731 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 732 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 733 | val adm_cong = prove_goal Fix.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 734 | "(!x. P(x) = Q(x)) ==> adm(P)=adm(Q)" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 735 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 736 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 737 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 738 | 	(res_inst_tac [("s","P"),("t","Q")] subst 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 739 | (rtac refl 2), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 740 | (rtac ext 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 741 | (etac spec 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 742 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 743 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 744 | val adm_not_free = prove_goalw Fix.thy [adm_def] "adm(%x.t)" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 745 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 746 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 747 | (fast_tac HOL_cs 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 748 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 749 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 750 | val adm_not_less = prove_goalw Fix.thy [adm_def] | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 751 | "contX(t) ==> adm(%x.~ t(x) << u)" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 752 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 753 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 754 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 755 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 756 | (rtac contrapos 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 757 | (etac spec 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 758 | (rtac trans_less 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 759 | (atac 2), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 760 | (etac (contX2mono RS monofun_fun_arg) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 761 | (rtac is_ub_thelub 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 762 | (atac 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 763 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 764 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 765 | val adm_all = prove_goal Fix.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 766 | " !y.adm(P(y)) ==> adm(%x.!y.P(y,x))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 767 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 768 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 769 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 770 | (rtac (adm_def2 RS iffD2) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 771 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 772 | (rtac (adm_def2 RS iffD1 RS spec RS mp RS mp) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 773 | (etac spec 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 774 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 775 | (rtac allI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 776 | (dtac spec 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 777 | (etac spec 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 778 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 779 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 780 | val adm_subst = prove_goal Fix.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 781 | "[|contX(t); adm(P)|] ==> adm(%x.P(t(x)))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 782 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 783 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 784 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 785 | (rtac (adm_def2 RS iffD2) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 786 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 787 | (rtac (contX2contlub RS contlubE RS spec RS mp RS ssubst) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 788 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 789 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 790 | (rtac (adm_def2 RS iffD1 RS spec RS mp RS mp) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 791 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 792 | (rtac (contX2mono RS ch2ch_monofun) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 793 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 794 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 795 | (atac 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 796 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 797 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 798 | val adm_UU_not_less = prove_goal Fix.thy "adm(%x.~ UU << t(x))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 799 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 800 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 801 | 	(res_inst_tac [("P2","%x.False")] (adm_cong RS iffD1) 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 802 | (asm_simp_tac Cfun_ss 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 803 | (rtac adm_not_free 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 804 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 805 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 806 | val adm_not_UU = prove_goalw Fix.thy [adm_def] | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 807 | "contX(t)==> adm(%x.~ t(x) = UU)" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 808 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 809 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 810 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 811 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 812 | (rtac contrapos 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 813 | (etac spec 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 814 | (rtac (chain_UU_I RS spec) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 815 | (rtac (contX2mono RS ch2ch_monofun) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 816 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 817 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 818 | (rtac (contX2contlub RS contlubE RS spec RS mp RS subst) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 819 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 820 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 821 | (atac 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 822 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 823 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 824 | val adm_eq = prove_goal Fix.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 825 | "[|contX(u);contX(v)|]==> adm(%x.u(x)= v(x))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 826 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 827 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 828 | (rtac (adm_cong RS iffD1) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 829 | (rtac allI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 830 | (rtac iffI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 831 | (rtac antisym_less 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 832 | (rtac antisym_less_inverse 3), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 833 | (atac 3), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 834 | (etac conjunct1 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 835 | (etac conjunct2 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 836 | (rtac adm_conj 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 837 | (rtac adm_less 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 838 | (resolve_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 839 | (resolve_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 840 | (rtac adm_less 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 841 | (resolve_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 842 | (resolve_tac prems 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 843 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 844 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 845 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 846 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 847 | (* admissibility for disjunction is hard to prove. It takes 10 Lemmas *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 848 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 849 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 850 | val adm_disj_lemma1 = prove_goal Pcpo.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 851 | "[| is_chain(Y); !n.P(Y(n))|Q(Y(n))|]\ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 852 | \ ==> (? i.!j. i<j --> Q(Y(j))) | (!i.? j.i<j & P(Y(j)))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 853 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 854 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 855 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 856 | (fast_tac HOL_cs 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 857 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 858 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 859 | val adm_disj_lemma2 = prove_goal Fix.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 860 | "[| adm(Q); ? X.is_chain(X) & (!n.Q(X(n))) &\ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 861 | \ lub(range(Y))=lub(range(X))|] ==> Q(lub(range(Y)))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 862 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 863 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 864 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 865 | (etac exE 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 866 | (etac conjE 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 867 | (etac conjE 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 868 | 	(res_inst_tac [("s","lub(range(X))"),("t","lub(range(Y))")] ssubst 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 869 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 870 | (rtac (adm_def2 RS iffD1 RS spec RS mp RS mp) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 871 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 872 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 873 | (atac 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 874 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 875 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 876 | val adm_disj_lemma3 = prove_goal Fix.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 877 | "[| is_chain(Y); ! j. i < j --> Q(Y(j)) |] ==>\ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 878 | \ is_chain(%m. if(m < Suc(i),Y(Suc(i)),Y(m)))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 879 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 880 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 881 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 882 | (rtac is_chainI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 883 | (rtac allI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 884 | 	(res_inst_tac [("m","i"),("n","ia")] nat_less_cases 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 885 | 	(res_inst_tac [("s","False"),("t","ia < Suc(i)")] ssubst 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 886 | (rtac iffI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 887 | (etac FalseE 2), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 888 | (rtac notE 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 889 | (rtac (not_less_eq RS iffD2) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 890 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 891 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 892 | 	(res_inst_tac [("s","False"),("t","Suc(ia) < Suc(i)")] ssubst 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 893 | (asm_simp_tac nat_ss 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 894 | (rtac iffI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 895 | (etac FalseE 2), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 896 | (rtac notE 1), | 
| 300 | 897 | (etac less_not_sym 1), | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 898 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 899 | (asm_simp_tac Cfun_ss 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 900 | (etac (is_chainE RS spec) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 901 | (hyp_subst_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 902 | (asm_simp_tac nat_ss 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 903 | (rtac refl_less 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 904 | (asm_simp_tac nat_ss 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 905 | (rtac refl_less 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 906 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 907 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 908 | val adm_disj_lemma4 = prove_goal Fix.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 909 | "[| ! j. i < j --> Q(Y(j)) |] ==>\ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 910 | \ ! n. Q(if(n < Suc(i),Y(Suc(i)),Y(n)))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 911 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 912 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 913 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 914 | (rtac allI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 915 | 	(res_inst_tac [("m","n"),("n","Suc(i)")] nat_less_cases 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 916 | 	(res_inst_tac[("s","Y(Suc(i))"),("t","if(n<Suc(i),Y(Suc(i)),Y(n))")]
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 917 | ssubst 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 918 | (asm_simp_tac nat_ss 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 919 | (etac allE 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 920 | (rtac mp 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 921 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 922 | (asm_simp_tac nat_ss 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 923 | 	(res_inst_tac[("s","Y(n)"),("t","if(n<Suc(i),Y(Suc(i)),Y(n))")] 
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 924 | ssubst 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 925 | (asm_simp_tac nat_ss 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 926 | (hyp_subst_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 927 | (dtac spec 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 928 | (rtac mp 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 929 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 930 | (asm_simp_tac nat_ss 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 931 | 	(res_inst_tac [("s","Y(n)"),("t","if(n < Suc(i),Y(Suc(i)),Y(n))")] 
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 932 | ssubst 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 933 | 	(res_inst_tac [("s","False"),("t","n < Suc(i)")] ssubst 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 934 | (rtac iffI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 935 | (etac FalseE 2), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 936 | (rtac notE 1), | 
| 300 | 937 | (etac less_not_sym 1), | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 938 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 939 | (asm_simp_tac nat_ss 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 940 | (dtac spec 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 941 | (rtac mp 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 942 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 943 | (etac Suc_lessD 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 944 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 945 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 946 | val adm_disj_lemma5 = prove_goal Fix.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 947 | "[| is_chain(Y::nat=>'a); ! j. i < j --> Q(Y(j)) |] ==>\ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 948 | \ lub(range(Y)) = lub(range(%m. if(m < Suc(i),Y(Suc(i)),Y(m))))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 949 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 950 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 951 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 952 | (rtac lub_equal2 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 953 | (atac 2), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 954 | (rtac adm_disj_lemma3 2), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 955 | (atac 2), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 956 | (atac 2), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 957 | 	(res_inst_tac [("x","i")] exI 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 958 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 959 | 	(res_inst_tac [("s","False"),("t","ia < Suc(i)")] ssubst 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 960 | (rtac iffI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 961 | (etac FalseE 2), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 962 | (rtac notE 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 963 | (rtac (not_less_eq RS iffD2) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 964 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 965 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 966 | (rtac (if_False RS ssubst) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 967 | (rtac refl 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 968 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 969 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 970 | val adm_disj_lemma6 = prove_goal Fix.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 971 | "[| is_chain(Y::nat=>'a); ? i. ! j. i < j --> Q(Y(j)) |] ==>\ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 972 | \ ? X. is_chain(X) & (! n. Q(X(n))) & lub(range(Y)) = lub(range(X))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 973 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 974 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 975 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 976 | (etac exE 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 977 | 	(res_inst_tac [("x","%m.if(m< Suc(i),Y(Suc(i)),Y(m))")] exI 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 978 | (rtac conjI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 979 | (rtac adm_disj_lemma3 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 980 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 981 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 982 | (rtac conjI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 983 | (rtac adm_disj_lemma4 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 984 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 985 | (rtac adm_disj_lemma5 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 986 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 987 | (atac 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 988 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 989 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 990 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 991 | val adm_disj_lemma7 = prove_goal Fix.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 992 | "[| is_chain(Y::nat=>'a); ! i. ? j. i < j & P(Y(j)) |] ==>\ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 993 | \ is_chain(%m. Y(theleast(%j. m<j & P(Y(j)))))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 994 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 995 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 996 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 997 | (rtac is_chainI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 998 | (rtac allI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 999 | (rtac chain_mono3 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1000 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1001 | (rtac theleast2 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1002 | (rtac conjI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1003 | (rtac Suc_lessD 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1004 | (etac allE 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1005 | (etac exE 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1006 | (rtac (theleast1 RS conjunct1) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1007 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1008 | (etac allE 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1009 | (etac exE 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1010 | (rtac (theleast1 RS conjunct2) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1011 | (atac 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1012 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1013 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1014 | val adm_disj_lemma8 = prove_goal Fix.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1015 | "[| ! i. ? j. i < j & P(Y(j)) |] ==> ! m. P(Y(theleast(%j. m<j & P(Y(j)))))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1016 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1017 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1018 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1019 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1020 | (etac allE 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1021 | (etac exE 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1022 | (etac (theleast1 RS conjunct2) 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1023 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1024 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1025 | val adm_disj_lemma9 = prove_goal Fix.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1026 | "[| is_chain(Y::nat=>'a); ! i. ? j. i < j & P(Y(j)) |] ==>\ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1027 | \ lub(range(Y)) = lub(range(%m. Y(theleast(%j. m<j & P(Y(j))))))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1028 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1029 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1030 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1031 | (rtac antisym_less 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1032 | (rtac lub_mono 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1033 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1034 | (rtac adm_disj_lemma7 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1035 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1036 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1037 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1038 | (rtac (chain_mono RS mp) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1039 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1040 | (etac allE 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1041 | (etac exE 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1042 | (rtac (theleast1 RS conjunct1) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1043 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1044 | (rtac lub_mono3 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1045 | (rtac adm_disj_lemma7 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1046 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1047 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1048 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1049 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1050 | (rtac exI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1051 | (rtac (chain_mono RS mp) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1052 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1053 | (rtac lessI 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1054 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1055 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1056 | val adm_disj_lemma10 = prove_goal Fix.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1057 | "[| is_chain(Y::nat=>'a); ! i. ? j. i < j & P(Y(j)) |] ==>\ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1058 | \ ? X. is_chain(X) & (! n. P(X(n))) & lub(range(Y)) = lub(range(X))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1059 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1060 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1061 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1062 | 	(res_inst_tac [("x","%m. Y(theleast(%j. m<j & P(Y(j))))")] exI 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1063 | (rtac conjI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1064 | (rtac adm_disj_lemma7 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1065 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1066 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1067 | (rtac conjI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1068 | (rtac adm_disj_lemma8 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1069 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1070 | (rtac adm_disj_lemma9 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1071 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1072 | (atac 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1073 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1074 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1075 | val adm_disj = prove_goal Fix.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1076 | "[| adm(P); adm(Q) |] ==> adm(%x.P(x)|Q(x))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1077 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1078 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1079 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1080 | (rtac (adm_def2 RS iffD2) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1081 | (strip_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1082 | (rtac (adm_disj_lemma1 RS disjE) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1083 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1084 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1085 | (rtac disjI2 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1086 | (rtac adm_disj_lemma2 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1087 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1088 | (rtac adm_disj_lemma6 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1089 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1090 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1091 | (rtac disjI1 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1092 | (rtac adm_disj_lemma2 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1093 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1094 | (rtac adm_disj_lemma10 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1095 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1096 | (atac 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1097 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1098 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1099 | val adm_impl = prove_goal Fix.thy | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1100 | "[| adm(%x.~P(x)); adm(Q) |] ==> adm(%x.P(x)-->Q(x))" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1101 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1102 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1103 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1104 | 	(res_inst_tac [("P2","%x.~P(x)|Q(x)")] (adm_cong RS iffD1) 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1105 | (fast_tac HOL_cs 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1106 | (rtac adm_disj 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1107 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1108 | (atac 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1109 | ]); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1110 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1111 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1112 | val adm_all2 = (allI RS adm_all); | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1113 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1114 | val adm_thms = [adm_impl,adm_disj,adm_eq,adm_not_UU,adm_UU_not_less, | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1115 | adm_all2,adm_not_less,adm_not_free,adm_conj,adm_less | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1116 | ]; | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1117 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1118 | (* ------------------------------------------------------------------------- *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1119 | (* a result about functions with flat codomain *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1120 | (* ------------------------------------------------------------------------- *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1121 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1122 | val flat_codom = prove_goalw Fix.thy [flat_def] | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1123 | "[|flat(y::'b);f[x::'a]=(c::'b)|] ==> f[UU::'a]=UU::'b | (!z.f[z::'a]=c)" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1124 | (fn prems => | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1125 | [ | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1126 | (cut_facts_tac prems 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1127 | 	(res_inst_tac [("Q","f[x::'a]=UU::'b")] classical2 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1128 | (rtac disjI1 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1129 | (rtac UU_I 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1130 | 	(res_inst_tac [("s","f[x]"),("t","UU::'b")] subst 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1131 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1132 | (rtac (minimal RS monofun_cfun_arg) 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1133 | 	(res_inst_tac [("Q","f[UU::'a]=UU::'b")] classical2 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1134 | (etac disjI1 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1135 | (rtac disjI2 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1136 | (rtac allI 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1137 | 	(res_inst_tac [("s","f[x]"),("t","c")] subst 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1138 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1139 | 	(res_inst_tac [("a","f[UU::'a]")] (refl RS box_equals) 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1140 | (etac allE 1),(etac allE 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1141 | (dtac mp 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1142 | 	(res_inst_tac [("fo5","f")] (minimal RS monofun_cfun_arg) 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1143 | (etac disjE 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1144 | (contr_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1145 | (atac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1146 | (etac allE 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1147 | (etac allE 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1148 | (dtac mp 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1149 | 	(res_inst_tac [("fo5","f")] (minimal RS monofun_cfun_arg) 1),
 | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1150 | (etac disjE 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1151 | (contr_tac 1), | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1152 | (atac 1) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 1153 | ]); |