src/HOL/Set.thy
author paulson
Sun, 15 Feb 2004 10:46:37 +0100
changeset 14387 e96d5c42c4b0
parent 14381 1189a8212a12
child 14398 c5c47703f763
permissions -rw-r--r--
Polymorphic treatment of binary arithmetic using axclasses
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     1
(*  Title:      HOL/Set.thy
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     2
    ID:         $Id$
12257
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
     3
    Author:     Tobias Nipkow, Lawrence C Paulson and Markus Wenzel
12020
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
     4
    License:    GPL (GNU GENERAL PUBLIC LICENSE)
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     5
*)
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     6
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
     7
header {* Set theory for higher-order logic *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
     8
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
     9
theory Set = HOL:
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    10
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    11
text {* A set in HOL is simply a predicate. *}
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    12
2261
d926157c0a6a added "op :", "op ~:" syntax;
wenzelm
parents: 2006
diff changeset
    13
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    14
subsection {* Basic syntax *}
2261
d926157c0a6a added "op :", "op ~:" syntax;
wenzelm
parents: 2006
diff changeset
    15
3947
eb707467f8c5 adapted to qualified names;
wenzelm
parents: 3842
diff changeset
    16
global
eb707467f8c5 adapted to qualified names;
wenzelm
parents: 3842
diff changeset
    17
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    18
typedecl 'a set
12338
de0f4a63baa5 renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents: 12257
diff changeset
    19
arities set :: (type) type
3820
46b255e140dc fixed infix syntax;
wenzelm
parents: 3370
diff changeset
    20
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    21
consts
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    22
  "{}"          :: "'a set"                             ("{}")
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    23
  UNIV          :: "'a set"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    24
  insert        :: "'a => 'a set => 'a set"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    25
  Collect       :: "('a => bool) => 'a set"              -- "comprehension"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    26
  Int           :: "'a set => 'a set => 'a set"          (infixl 70)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    27
  Un            :: "'a set => 'a set => 'a set"          (infixl 65)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    28
  UNION         :: "'a set => ('a => 'b set) => 'b set"  -- "general union"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    29
  INTER         :: "'a set => ('a => 'b set) => 'b set"  -- "general intersection"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    30
  Union         :: "'a set set => 'a set"                -- "union of a set"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    31
  Inter         :: "'a set set => 'a set"                -- "intersection of a set"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    32
  Pow           :: "'a set => 'a set set"                -- "powerset"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    33
  Ball          :: "'a set => ('a => bool) => bool"      -- "bounded universal quantifiers"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    34
  Bex           :: "'a set => ('a => bool) => bool"      -- "bounded existential quantifiers"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    35
  image         :: "('a => 'b) => 'a set => 'b set"      (infixr "`" 90)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    36
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    37
syntax
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    38
  "op :"        :: "'a => 'a set => bool"                ("op :")
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    39
consts
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    40
  "op :"        :: "'a => 'a set => bool"                ("(_/ : _)" [50, 51] 50)  -- "membership"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    41
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    42
local
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    43
12338
de0f4a63baa5 renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents: 12257
diff changeset
    44
instance set :: (type) ord ..
de0f4a63baa5 renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents: 12257
diff changeset
    45
instance set :: (type) minus ..
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    46
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    47
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    48
subsection {* Additional concrete syntax *}
2261
d926157c0a6a added "op :", "op ~:" syntax;
wenzelm
parents: 2006
diff changeset
    49
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    50
syntax
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    51
  range         :: "('a => 'b) => 'b set"             -- "of function"
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    52
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    53
  "op ~:"       :: "'a => 'a set => bool"                 ("op ~:")  -- "non-membership"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    54
  "op ~:"       :: "'a => 'a set => bool"                 ("(_/ ~: _)" [50, 51] 50)
7238
36e58620ffc8 replaced HOL_quantifiers flag by "HOL" print mode;
wenzelm
parents: 5931
diff changeset
    55
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    56
  "@Finset"     :: "args => 'a set"                       ("{(_)}")
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    57
  "@Coll"       :: "pttrn => bool => 'a set"              ("(1{_./ _})")
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    58
  "@SetCompr"   :: "'a => idts => bool => 'a set"         ("(1{_ |/_./ _})")
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    59
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    60
  "@INTER1"     :: "pttrns => 'b set => 'b set"           ("(3INT _./ _)" 10)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    61
  "@UNION1"     :: "pttrns => 'b set => 'b set"           ("(3UN _./ _)" 10)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    62
  "@INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3INT _:_./ _)" 10)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    63
  "@UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3UN _:_./ _)" 10)
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    64
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    65
  "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3ALL _:_./ _)" [0, 0, 10] 10)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    66
  "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3EX _:_./ _)" [0, 0, 10] 10)
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    67
7238
36e58620ffc8 replaced HOL_quantifiers flag by "HOL" print mode;
wenzelm
parents: 5931
diff changeset
    68
syntax (HOL)
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    69
  "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3! _:_./ _)" [0, 0, 10] 10)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    70
  "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3? _:_./ _)" [0, 0, 10] 10)
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    71
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    72
translations
10832
e33b47e4246d `` -> and ``` -> ``
nipkow
parents: 10131
diff changeset
    73
  "range f"     == "f`UNIV"
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    74
  "x ~: y"      == "~ (x : y)"
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    75
  "{x, xs}"     == "insert x {xs}"
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    76
  "{x}"         == "insert x {}"
13764
3e180bf68496 removed some problems with print translations
nipkow
parents: 13763
diff changeset
    77
  "{x. P}"      == "Collect (%x. P)"
4159
4aff9b7e5597 UNIV now a constant; UNION1, INTER1 now translations and no longer have
paulson
parents: 4151
diff changeset
    78
  "UN x y. B"   == "UN x. UN y. B"
4aff9b7e5597 UNIV now a constant; UNION1, INTER1 now translations and no longer have
paulson
parents: 4151
diff changeset
    79
  "UN x. B"     == "UNION UNIV (%x. B)"
13858
a077513c9a07 *** empty log message ***
nipkow
parents: 13831
diff changeset
    80
  "UN x. B"     == "UN x:UNIV. B"
7238
36e58620ffc8 replaced HOL_quantifiers flag by "HOL" print mode;
wenzelm
parents: 5931
diff changeset
    81
  "INT x y. B"  == "INT x. INT y. B"
4159
4aff9b7e5597 UNIV now a constant; UNION1, INTER1 now translations and no longer have
paulson
parents: 4151
diff changeset
    82
  "INT x. B"    == "INTER UNIV (%x. B)"
13858
a077513c9a07 *** empty log message ***
nipkow
parents: 13831
diff changeset
    83
  "INT x. B"    == "INT x:UNIV. B"
13764
3e180bf68496 removed some problems with print translations
nipkow
parents: 13763
diff changeset
    84
  "UN x:A. B"   == "UNION A (%x. B)"
3e180bf68496 removed some problems with print translations
nipkow
parents: 13763
diff changeset
    85
  "INT x:A. B"  == "INTER A (%x. B)"
3e180bf68496 removed some problems with print translations
nipkow
parents: 13763
diff changeset
    86
  "ALL x:A. P"  == "Ball A (%x. P)"
3e180bf68496 removed some problems with print translations
nipkow
parents: 13763
diff changeset
    87
  "EX x:A. P"   == "Bex A (%x. P)"
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    88
12633
ad9277743664 tuned ``syntax (output)'';
wenzelm
parents: 12338
diff changeset
    89
syntax (output)
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    90
  "_setle"      :: "'a set => 'a set => bool"             ("op <=")
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    91
  "_setle"      :: "'a set => 'a set => bool"             ("(_/ <= _)" [50, 51] 50)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    92
  "_setless"    :: "'a set => 'a set => bool"             ("op <")
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    93
  "_setless"    :: "'a set => 'a set => bool"             ("(_/ < _)" [50, 51] 50)
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    94
12114
a8e860c86252 eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents: 12023
diff changeset
    95
syntax (xsymbols)
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    96
  "_setle"      :: "'a set => 'a set => bool"             ("op \<subseteq>")
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    97
  "_setle"      :: "'a set => 'a set => bool"             ("(_/ \<subseteq> _)" [50, 51] 50)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    98
  "_setless"    :: "'a set => 'a set => bool"             ("op \<subset>")
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
    99
  "_setless"    :: "'a set => 'a set => bool"             ("(_/ \<subset> _)" [50, 51] 50)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   100
  "op Int"      :: "'a set => 'a set => 'a set"           (infixl "\<inter>" 70)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   101
  "op Un"       :: "'a set => 'a set => 'a set"           (infixl "\<union>" 65)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   102
  "op :"        :: "'a => 'a set => bool"                 ("op \<in>")
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   103
  "op :"        :: "'a => 'a set => bool"                 ("(_/ \<in> _)" [50, 51] 50)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   104
  "op ~:"       :: "'a => 'a set => bool"                 ("op \<notin>")
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   105
  "op ~:"       :: "'a => 'a set => bool"                 ("(_/ \<notin> _)" [50, 51] 50)
14381
1189a8212a12 Modified UN and INT xsymbol syntax: made index subscript
nipkow
parents: 14335
diff changeset
   106
  Union         :: "'a set set => 'a set"                 ("\<Union>_" [90] 90)
1189a8212a12 Modified UN and INT xsymbol syntax: made index subscript
nipkow
parents: 14335
diff changeset
   107
  Inter         :: "'a set set => 'a set"                 ("\<Inter>_" [90] 90)
1189a8212a12 Modified UN and INT xsymbol syntax: made index subscript
nipkow
parents: 14335
diff changeset
   108
  "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3\<forall>_\<in>_./ _)" [0, 0, 10] 10)
1189a8212a12 Modified UN and INT xsymbol syntax: made index subscript
nipkow
parents: 14335
diff changeset
   109
  "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3\<exists>_\<in>_./ _)" [0, 0, 10] 10)
1189a8212a12 Modified UN and INT xsymbol syntax: made index subscript
nipkow
parents: 14335
diff changeset
   110
1189a8212a12 Modified UN and INT xsymbol syntax: made index subscript
nipkow
parents: 14335
diff changeset
   111
syntax (input)
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   112
  "@UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>_./ _)" 10)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   113
  "@INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>_./ _)" 10)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   114
  "@UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>_\<in>_./ _)" 10)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   115
  "@INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>_\<in>_./ _)" 10)
14381
1189a8212a12 Modified UN and INT xsymbol syntax: made index subscript
nipkow
parents: 14335
diff changeset
   116
1189a8212a12 Modified UN and INT xsymbol syntax: made index subscript
nipkow
parents: 14335
diff changeset
   117
syntax (xsymbols)
1189a8212a12 Modified UN and INT xsymbol syntax: made index subscript
nipkow
parents: 14335
diff changeset
   118
  "@UNION1"     :: "pttrns => 'b set => 'b set"           ("(3\<Union>\<^bsub>_\<^esub>/ _)" 10)
1189a8212a12 Modified UN and INT xsymbol syntax: made index subscript
nipkow
parents: 14335
diff changeset
   119
  "@INTER1"     :: "pttrns => 'b set => 'b set"           ("(3\<Inter>\<^bsub>_\<^esub>/ _)" 10)
1189a8212a12 Modified UN and INT xsymbol syntax: made index subscript
nipkow
parents: 14335
diff changeset
   120
  "@UNION"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Union>\<^bsub>_\<in>_\<^esub>/ _)" 10)
1189a8212a12 Modified UN and INT xsymbol syntax: made index subscript
nipkow
parents: 14335
diff changeset
   121
  "@INTER"      :: "pttrn => 'a set => 'b set => 'b set"  ("(3\<Inter>\<^bsub>_\<in>_\<^esub>/ _)" 10)
2261
d926157c0a6a added "op :", "op ~:" syntax;
wenzelm
parents: 2006
diff changeset
   122
2412
025e80ed698d fixed \<subseteq> input;
wenzelm
parents: 2393
diff changeset
   123
translations
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   124
  "op \<subseteq>" => "op <= :: _ set => _ set => bool"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   125
  "op \<subset>" => "op <  :: _ set => _ set => bool"
2261
d926157c0a6a added "op :", "op ~:" syntax;
wenzelm
parents: 2006
diff changeset
   126
d926157c0a6a added "op :", "op ~:" syntax;
wenzelm
parents: 2006
diff changeset
   127
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   128
typed_print_translation {*
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   129
  let
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   130
    fun le_tr' _ (Type ("fun", (Type ("set", _) :: _))) ts =
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   131
          list_comb (Syntax.const "_setle", ts)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   132
      | le_tr' _ _ _ = raise Match;
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   133
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   134
    fun less_tr' _ (Type ("fun", (Type ("set", _) :: _))) ts =
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   135
          list_comb (Syntax.const "_setless", ts)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   136
      | less_tr' _ _ _ = raise Match;
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   137
  in [("op <=", le_tr'), ("op <", less_tr')] end
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   138
*}
2261
d926157c0a6a added "op :", "op ~:" syntax;
wenzelm
parents: 2006
diff changeset
   139
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   140
text {*
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   141
  \medskip Translate between @{text "{e | x1...xn. P}"} and @{text
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   142
  "{u. EX x1..xn. u = e & P}"}; @{text "{y. EX x1..xn. y = e & P}"} is
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   143
  only translated if @{text "[0..n] subset bvs(e)"}.
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   144
*}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   145
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   146
parse_translation {*
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   147
  let
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   148
    val ex_tr = snd (mk_binder_tr ("EX ", "Ex"));
3947
eb707467f8c5 adapted to qualified names;
wenzelm
parents: 3842
diff changeset
   149
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   150
    fun nvars (Const ("_idts", _) $ _ $ idts) = nvars idts + 1
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   151
      | nvars _ = 1;
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   152
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   153
    fun setcompr_tr [e, idts, b] =
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   154
      let
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   155
        val eq = Syntax.const "op =" $ Bound (nvars idts) $ e;
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   156
        val P = Syntax.const "op &" $ eq $ b;
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   157
        val exP = ex_tr [idts, P];
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   158
      in Syntax.const "Collect" $ Abs ("", dummyT, exP) end;
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   159
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   160
  in [("@SetCompr", setcompr_tr)] end;
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   161
*}
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   162
13763
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13653
diff changeset
   163
(* To avoid eta-contraction of body: *)
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   164
print_translation {*
13763
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13653
diff changeset
   165
let
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13653
diff changeset
   166
  fun btr' syn [A,Abs abs] =
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13653
diff changeset
   167
    let val (x,t) = atomic_abs_tr' abs
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13653
diff changeset
   168
    in Syntax.const syn $ x $ A $ t end
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13653
diff changeset
   169
in
13858
a077513c9a07 *** empty log message ***
nipkow
parents: 13831
diff changeset
   170
[("Ball", btr' "_Ball"),("Bex", btr' "_Bex"),
a077513c9a07 *** empty log message ***
nipkow
parents: 13831
diff changeset
   171
 ("UNION", btr' "@UNION"),("INTER", btr' "@INTER")]
13763
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13653
diff changeset
   172
end
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13653
diff changeset
   173
*}
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13653
diff changeset
   174
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13653
diff changeset
   175
print_translation {*
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13653
diff changeset
   176
let
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13653
diff changeset
   177
  val ex_tr' = snd (mk_binder_tr' ("Ex", "DUMMY"));
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13653
diff changeset
   178
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13653
diff changeset
   179
  fun setcompr_tr' [Abs (abs as (_, _, P))] =
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13653
diff changeset
   180
    let
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13653
diff changeset
   181
      fun check (Const ("Ex", _) $ Abs (_, _, P), n) = check (P, n + 1)
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13653
diff changeset
   182
        | check (Const ("op &", _) $ (Const ("op =", _) $ Bound m $ e) $ P, n) =
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13653
diff changeset
   183
            n > 0 andalso m = n andalso not (loose_bvar1 (P, n)) andalso
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13653
diff changeset
   184
            ((0 upto (n - 1)) subset add_loose_bnos (e, 0, []))
13764
3e180bf68496 removed some problems with print translations
nipkow
parents: 13763
diff changeset
   185
        | check _ = false
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   186
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   187
        fun tr' (_ $ abs) =
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   188
          let val _ $ idts $ (_ $ (_ $ _ $ e) $ Q) = ex_tr' [abs]
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   189
          in Syntax.const "@SetCompr" $ e $ idts $ Q end;
13763
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13653
diff changeset
   190
    in if check (P, 0) then tr' P
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13653
diff changeset
   191
       else let val (x,t) = atomic_abs_tr' abs
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13653
diff changeset
   192
            in Syntax.const "@Coll" $ x $ t end
f94b569cd610 added print translations tha avoid eta contraction for important binders.
nipkow
parents: 13653
diff changeset
   193
    end;
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   194
  in [("Collect", setcompr_tr')] end;
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   195
*}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   196
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   197
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   198
subsection {* Rules and definitions *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   199
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   200
text {* Isomorphisms between predicates and sets. *}
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   201
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   202
axioms
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   203
  mem_Collect_eq [iff]: "(a : {x. P(x)}) = P(a)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   204
  Collect_mem_eq [simp]: "{x. x:A} = A"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   205
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   206
defs
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   207
  Ball_def:     "Ball A P       == ALL x. x:A --> P(x)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   208
  Bex_def:      "Bex A P        == EX x. x:A & P(x)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   209
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   210
defs (overloaded)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   211
  subset_def:   "A <= B         == ALL x:A. x:B"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   212
  psubset_def:  "A < B          == (A::'a set) <= B & ~ A=B"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   213
  Compl_def:    "- A            == {x. ~x:A}"
12257
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
   214
  set_diff_def: "A - B          == {x. x:A & ~x:B}"
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   215
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   216
defs
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   217
  Un_def:       "A Un B         == {x. x:A | x:B}"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   218
  Int_def:      "A Int B        == {x. x:A & x:B}"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   219
  INTER_def:    "INTER A B      == {y. ALL x:A. y: B(x)}"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   220
  UNION_def:    "UNION A B      == {y. EX x:A. y: B(x)}"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   221
  Inter_def:    "Inter S        == (INT x:S. x)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   222
  Union_def:    "Union S        == (UN x:S. x)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   223
  Pow_def:      "Pow A          == {B. B <= A}"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   224
  empty_def:    "{}             == {x. False}"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   225
  UNIV_def:     "UNIV           == {x. True}"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   226
  insert_def:   "insert a B     == {x. x=a} Un B"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   227
  image_def:    "f`A            == {y. EX x:A. y = f(x)}"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   228
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   229
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   230
subsection {* Lemmas and proof tool setup *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   231
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   232
subsubsection {* Relating predicates and sets *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   233
12257
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
   234
lemma CollectI: "P(a) ==> a : {x. P(x)}"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   235
  by simp
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   236
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   237
lemma CollectD: "a : {x. P(x)} ==> P(a)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   238
  by simp
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   239
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   240
lemma Collect_cong: "(!!x. P x = Q x) ==> {x. P(x)} = {x. Q(x)}"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   241
  by simp
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   242
12257
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
   243
lemmas CollectE = CollectD [elim_format]
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   244
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   245
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   246
subsubsection {* Bounded quantifiers *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   247
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   248
lemma ballI [intro!]: "(!!x. x:A ==> P x) ==> ALL x:A. P x"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   249
  by (simp add: Ball_def)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   250
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   251
lemmas strip = impI allI ballI
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   252
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   253
lemma bspec [dest?]: "ALL x:A. P x ==> x:A ==> P x"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   254
  by (simp add: Ball_def)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   255
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   256
lemma ballE [elim]: "ALL x:A. P x ==> (P x ==> Q) ==> (x ~: A ==> Q) ==> Q"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   257
  by (unfold Ball_def) blast
14098
54f130df1136 added rev_ballE
oheimb
parents: 13865
diff changeset
   258
ML {* bind_thm("rev_ballE",permute_prems 1 1 (thm "ballE")) *}
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   259
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   260
text {*
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   261
  \medskip This tactic takes assumptions @{prop "ALL x:A. P x"} and
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   262
  @{prop "a:A"}; creates assumption @{prop "P a"}.
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   263
*}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   264
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   265
ML {*
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   266
  local val ballE = thm "ballE"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   267
  in fun ball_tac i = etac ballE i THEN contr_tac (i + 1) end;
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   268
*}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   269
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   270
text {*
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   271
  Gives better instantiation for bound:
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   272
*}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   273
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   274
ML_setup {*
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   275
  claset_ref() := claset() addbefore ("bspec", datac (thm "bspec") 1);
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   276
*}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   277
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   278
lemma bexI [intro]: "P x ==> x:A ==> EX x:A. P x"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   279
  -- {* Normally the best argument order: @{prop "P x"} constrains the
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   280
    choice of @{prop "x:A"}. *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   281
  by (unfold Bex_def) blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   282
13113
5eb9be7b72a5 rev_bexI [intro?];
wenzelm
parents: 13103
diff changeset
   283
lemma rev_bexI [intro?]: "x:A ==> P x ==> EX x:A. P x"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   284
  -- {* The best argument order when there is only one @{prop "x:A"}. *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   285
  by (unfold Bex_def) blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   286
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   287
lemma bexCI: "(ALL x:A. ~P x ==> P a) ==> a:A ==> EX x:A. P x"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   288
  by (unfold Bex_def) blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   289
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   290
lemma bexE [elim!]: "EX x:A. P x ==> (!!x. x:A ==> P x ==> Q) ==> Q"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   291
  by (unfold Bex_def) blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   292
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   293
lemma ball_triv [simp]: "(ALL x:A. P) = ((EX x. x:A) --> P)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   294
  -- {* Trival rewrite rule. *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   295
  by (simp add: Ball_def)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   296
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   297
lemma bex_triv [simp]: "(EX x:A. P) = ((EX x. x:A) & P)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   298
  -- {* Dual form for existentials. *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   299
  by (simp add: Bex_def)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   300
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   301
lemma bex_triv_one_point1 [simp]: "(EX x:A. x = a) = (a:A)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   302
  by blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   303
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   304
lemma bex_triv_one_point2 [simp]: "(EX x:A. a = x) = (a:A)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   305
  by blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   306
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   307
lemma bex_one_point1 [simp]: "(EX x:A. x = a & P x) = (a:A & P a)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   308
  by blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   309
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   310
lemma bex_one_point2 [simp]: "(EX x:A. a = x & P x) = (a:A & P a)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   311
  by blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   312
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   313
lemma ball_one_point1 [simp]: "(ALL x:A. x = a --> P x) = (a:A --> P a)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   314
  by blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   315
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   316
lemma ball_one_point2 [simp]: "(ALL x:A. a = x --> P x) = (a:A --> P a)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   317
  by blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   318
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   319
ML_setup {*
13462
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13421
diff changeset
   320
  local
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   321
    val Ball_def = thm "Ball_def";
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   322
    val Bex_def = thm "Bex_def";
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   323
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   324
    val prove_bex_tac =
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   325
      rewrite_goals_tac [Bex_def] THEN Quantifier1.prove_one_point_ex_tac;
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   326
    val rearrange_bex = Quantifier1.rearrange_bex prove_bex_tac;
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   327
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   328
    val prove_ball_tac =
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   329
      rewrite_goals_tac [Ball_def] THEN Quantifier1.prove_one_point_all_tac;
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   330
    val rearrange_ball = Quantifier1.rearrange_ball prove_ball_tac;
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   331
  in
13462
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13421
diff changeset
   332
    val defBEX_regroup = Simplifier.simproc (Theory.sign_of (the_context ()))
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13421
diff changeset
   333
      "defined BEX" ["EX x:A. P x & Q x"] rearrange_bex;
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13421
diff changeset
   334
    val defBALL_regroup = Simplifier.simproc (Theory.sign_of (the_context ()))
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13421
diff changeset
   335
      "defined BALL" ["ALL x:A. P x --> Q x"] rearrange_ball;
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   336
  end;
13462
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13421
diff changeset
   337
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13421
diff changeset
   338
  Addsimprocs [defBALL_regroup, defBEX_regroup];
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   339
*}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   340
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   341
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   342
subsubsection {* Congruence rules *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   343
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   344
lemma ball_cong [cong]:
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   345
  "A = B ==> (!!x. x:B ==> P x = Q x) ==>
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   346
    (ALL x:A. P x) = (ALL x:B. Q x)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   347
  by (simp add: Ball_def)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   348
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   349
lemma bex_cong [cong]:
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   350
  "A = B ==> (!!x. x:B ==> P x = Q x) ==>
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   351
    (EX x:A. P x) = (EX x:B. Q x)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   352
  by (simp add: Bex_def cong: conj_cong)
1273
6960ec882bca added 8bit pragmas
regensbu
parents: 1068
diff changeset
   353
7238
36e58620ffc8 replaced HOL_quantifiers flag by "HOL" print mode;
wenzelm
parents: 5931
diff changeset
   354
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   355
subsubsection {* Subsets *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   356
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   357
lemma subsetI [intro!]: "(!!x. x:A ==> x:B) ==> A \<subseteq> B"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   358
  by (simp add: subset_def)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   359
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   360
text {*
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   361
  \medskip Map the type @{text "'a set => anything"} to just @{typ
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   362
  'a}; for overloading constants whose first argument has type @{typ
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   363
  "'a set"}.
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   364
*}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   365
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   366
lemma subsetD [elim]: "A \<subseteq> B ==> c \<in> A ==> c \<in> B"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   367
  -- {* Rule in Modus Ponens style. *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   368
  by (unfold subset_def) blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   369
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   370
declare subsetD [intro?] -- FIXME
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   371
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   372
lemma rev_subsetD: "c \<in> A ==> A \<subseteq> B ==> c \<in> B"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   373
  -- {* The same, with reversed premises for use with @{text erule} --
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   374
      cf @{text rev_mp}. *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   375
  by (rule subsetD)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   376
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   377
declare rev_subsetD [intro?] -- FIXME
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   378
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   379
text {*
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   380
  \medskip Converts @{prop "A \<subseteq> B"} to @{prop "x \<in> A ==> x \<in> B"}.
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   381
*}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   382
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   383
ML {*
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   384
  local val rev_subsetD = thm "rev_subsetD"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   385
  in fun impOfSubs th = th RSN (2, rev_subsetD) end;
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   386
*}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   387
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   388
lemma subsetCE [elim]: "A \<subseteq>  B ==> (c \<notin> A ==> P) ==> (c \<in> B ==> P) ==> P"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   389
  -- {* Classical elimination rule. *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   390
  by (unfold subset_def) blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   391
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   392
text {*
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   393
  \medskip Takes assumptions @{prop "A \<subseteq> B"}; @{prop "c \<in> A"} and
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   394
  creates the assumption @{prop "c \<in> B"}.
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   395
*}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   396
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   397
ML {*
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   398
  local val subsetCE = thm "subsetCE"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   399
  in fun set_mp_tac i = etac subsetCE i THEN mp_tac i end;
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   400
*}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   401
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   402
lemma contra_subsetD: "A \<subseteq> B ==> c \<notin> B ==> c \<notin> A"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   403
  by blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   404
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   405
lemma subset_refl: "A \<subseteq> A"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   406
  by fast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   407
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   408
lemma subset_trans: "A \<subseteq> B ==> B \<subseteq> C ==> A \<subseteq> C"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   409
  by blast
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   410
2261
d926157c0a6a added "op :", "op ~:" syntax;
wenzelm
parents: 2006
diff changeset
   411
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   412
subsubsection {* Equality *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   413
13865
0a6bf71955b0 moved one proof, added another
paulson
parents: 13860
diff changeset
   414
lemma set_ext: assumes prem: "(!!x. (x:A) = (x:B))" shows "A = B"
0a6bf71955b0 moved one proof, added another
paulson
parents: 13860
diff changeset
   415
  apply (rule prem [THEN ext, THEN arg_cong, THEN box_equals])
0a6bf71955b0 moved one proof, added another
paulson
parents: 13860
diff changeset
   416
   apply (rule Collect_mem_eq)
0a6bf71955b0 moved one proof, added another
paulson
parents: 13860
diff changeset
   417
  apply (rule Collect_mem_eq)
0a6bf71955b0 moved one proof, added another
paulson
parents: 13860
diff changeset
   418
  done
0a6bf71955b0 moved one proof, added another
paulson
parents: 13860
diff changeset
   419
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   420
lemma subset_antisym [intro!]: "A \<subseteq> B ==> B \<subseteq> A ==> A = B"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   421
  -- {* Anti-symmetry of the subset relation. *}
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   422
  by (rules intro: set_ext subsetD)
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   423
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   424
lemmas equalityI [intro!] = subset_antisym
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   425
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   426
text {*
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   427
  \medskip Equality rules from ZF set theory -- are they appropriate
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   428
  here?
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   429
*}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   430
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   431
lemma equalityD1: "A = B ==> A \<subseteq> B"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   432
  by (simp add: subset_refl)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   433
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   434
lemma equalityD2: "A = B ==> B \<subseteq> A"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   435
  by (simp add: subset_refl)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   436
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   437
text {*
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   438
  \medskip Be careful when adding this to the claset as @{text
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   439
  subset_empty} is in the simpset: @{prop "A = {}"} goes to @{prop "{}
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   440
  \<subseteq> A"} and @{prop "A \<subseteq> {}"} and then back to @{prop "A = {}"}!
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   441
*}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   442
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   443
lemma equalityE: "A = B ==> (A \<subseteq> B ==> B \<subseteq> A ==> P) ==> P"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   444
  by (simp add: subset_refl)
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   445
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   446
lemma equalityCE [elim]:
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   447
    "A = B ==> (c \<in> A ==> c \<in> B ==> P) ==> (c \<notin> A ==> c \<notin> B ==> P) ==> P"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   448
  by blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   449
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   450
text {*
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   451
  \medskip Lemma for creating induction formulae -- for "pattern
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   452
  matching" on @{text p}.  To make the induction hypotheses usable,
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   453
  apply @{text spec} or @{text bspec} to put universal quantifiers over the free
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   454
  variables in @{text p}.
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   455
*}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   456
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   457
lemma setup_induction: "p:A ==> (!!z. z:A ==> p = z --> R) ==> R"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   458
  by simp
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   459
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   460
lemma eqset_imp_iff: "A = B ==> (x : A) = (x : B)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   461
  by simp
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   462
13865
0a6bf71955b0 moved one proof, added another
paulson
parents: 13860
diff changeset
   463
lemma eqelem_imp_iff: "x = y ==> (x : A) = (y : A)"
0a6bf71955b0 moved one proof, added another
paulson
parents: 13860
diff changeset
   464
  by simp
0a6bf71955b0 moved one proof, added another
paulson
parents: 13860
diff changeset
   465
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   466
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   467
subsubsection {* The universal set -- UNIV *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   468
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   469
lemma UNIV_I [simp]: "x : UNIV"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   470
  by (simp add: UNIV_def)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   471
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   472
declare UNIV_I [intro]  -- {* unsafe makes it less likely to cause problems *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   473
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   474
lemma UNIV_witness [intro?]: "EX x. x : UNIV"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   475
  by simp
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   476
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   477
lemma subset_UNIV: "A \<subseteq> UNIV"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   478
  by (rule subsetI) (rule UNIV_I)
2388
d1f0505fc602 added set inclusion symbol syntax;
wenzelm
parents: 2372
diff changeset
   479
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   480
text {*
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   481
  \medskip Eta-contracting these two rules (to remove @{text P})
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   482
  causes them to be ignored because of their interaction with
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   483
  congruence rules.
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   484
*}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   485
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   486
lemma ball_UNIV [simp]: "Ball UNIV P = All P"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   487
  by (simp add: Ball_def)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   488
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   489
lemma bex_UNIV [simp]: "Bex UNIV P = Ex P"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   490
  by (simp add: Bex_def)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   491
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   492
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   493
subsubsection {* The empty set *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   494
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   495
lemma empty_iff [simp]: "(c : {}) = False"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   496
  by (simp add: empty_def)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   497
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   498
lemma emptyE [elim!]: "a : {} ==> P"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   499
  by simp
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   500
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   501
lemma empty_subsetI [iff]: "{} \<subseteq> A"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   502
    -- {* One effect is to delete the ASSUMPTION @{prop "{} <= A"} *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   503
  by blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   504
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   505
lemma equals0I: "(!!y. y \<in> A ==> False) ==> A = {}"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   506
  by blast
2388
d1f0505fc602 added set inclusion symbol syntax;
wenzelm
parents: 2372
diff changeset
   507
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   508
lemma equals0D: "A = {} ==> a \<notin> A"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   509
    -- {* Use for reasoning about disjointness: @{prop "A Int B = {}"} *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   510
  by blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   511
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   512
lemma ball_empty [simp]: "Ball {} P = True"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   513
  by (simp add: Ball_def)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   514
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   515
lemma bex_empty [simp]: "Bex {} P = False"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   516
  by (simp add: Bex_def)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   517
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   518
lemma UNIV_not_empty [iff]: "UNIV ~= {}"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   519
  by (blast elim: equalityE)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   520
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   521
12023
wenzelm
parents: 12020
diff changeset
   522
subsubsection {* The Powerset operator -- Pow *}
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   523
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   524
lemma Pow_iff [iff]: "(A \<in> Pow B) = (A \<subseteq> B)"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   525
  by (simp add: Pow_def)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   526
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   527
lemma PowI: "A \<subseteq> B ==> A \<in> Pow B"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   528
  by (simp add: Pow_def)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   529
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   530
lemma PowD: "A \<in> Pow B ==> A \<subseteq> B"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   531
  by (simp add: Pow_def)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   532
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   533
lemma Pow_bottom: "{} \<in> Pow B"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   534
  by simp
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   535
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   536
lemma Pow_top: "A \<in> Pow A"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   537
  by (simp add: subset_refl)
2684
9781d63ef063 added proper subset symbols syntax;
wenzelm
parents: 2412
diff changeset
   538
2388
d1f0505fc602 added set inclusion symbol syntax;
wenzelm
parents: 2372
diff changeset
   539
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   540
subsubsection {* Set complement *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   541
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   542
lemma Compl_iff [simp]: "(c \<in> -A) = (c \<notin> A)"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   543
  by (unfold Compl_def) blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   544
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   545
lemma ComplI [intro!]: "(c \<in> A ==> False) ==> c \<in> -A"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   546
  by (unfold Compl_def) blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   547
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   548
text {*
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   549
  \medskip This form, with negated conclusion, works well with the
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   550
  Classical prover.  Negated assumptions behave like formulae on the
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   551
  right side of the notional turnstile ... *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   552
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   553
lemma ComplD: "c : -A ==> c~:A"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   554
  by (unfold Compl_def) blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   555
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   556
lemmas ComplE [elim!] = ComplD [elim_format]
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   557
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   558
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   559
subsubsection {* Binary union -- Un *}
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   560
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   561
lemma Un_iff [simp]: "(c : A Un B) = (c:A | c:B)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   562
  by (unfold Un_def) blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   563
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   564
lemma UnI1 [elim?]: "c:A ==> c : A Un B"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   565
  by simp
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   566
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   567
lemma UnI2 [elim?]: "c:B ==> c : A Un B"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   568
  by simp
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   569
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   570
text {*
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   571
  \medskip Classical introduction rule: no commitment to @{prop A} vs
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   572
  @{prop B}.
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   573
*}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   574
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   575
lemma UnCI [intro!]: "(c~:B ==> c:A) ==> c : A Un B"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   576
  by auto
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   577
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   578
lemma UnE [elim!]: "c : A Un B ==> (c:A ==> P) ==> (c:B ==> P) ==> P"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   579
  by (unfold Un_def) blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   580
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   581
12023
wenzelm
parents: 12020
diff changeset
   582
subsubsection {* Binary intersection -- Int *}
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   583
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   584
lemma Int_iff [simp]: "(c : A Int B) = (c:A & c:B)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   585
  by (unfold Int_def) blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   586
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   587
lemma IntI [intro!]: "c:A ==> c:B ==> c : A Int B"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   588
  by simp
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   589
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   590
lemma IntD1: "c : A Int B ==> c:A"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   591
  by simp
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   592
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   593
lemma IntD2: "c : A Int B ==> c:B"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   594
  by simp
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   595
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   596
lemma IntE [elim!]: "c : A Int B ==> (c:A ==> c:B ==> P) ==> P"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   597
  by simp
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   598
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   599
12023
wenzelm
parents: 12020
diff changeset
   600
subsubsection {* Set difference *}
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   601
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   602
lemma Diff_iff [simp]: "(c : A - B) = (c:A & c~:B)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   603
  by (unfold set_diff_def) blast
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   604
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   605
lemma DiffI [intro!]: "c : A ==> c ~: B ==> c : A - B"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   606
  by simp
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   607
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   608
lemma DiffD1: "c : A - B ==> c : A"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   609
  by simp
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   610
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   611
lemma DiffD2: "c : A - B ==> c : B ==> P"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   612
  by simp
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   613
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   614
lemma DiffE [elim!]: "c : A - B ==> (c:A ==> c~:B ==> P) ==> P"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   615
  by simp
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   616
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   617
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   618
subsubsection {* Augmenting a set -- insert *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   619
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   620
lemma insert_iff [simp]: "(a : insert b A) = (a = b | a:A)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   621
  by (unfold insert_def) blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   622
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   623
lemma insertI1: "a : insert a B"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   624
  by simp
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   625
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   626
lemma insertI2: "a : B ==> a : insert b B"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   627
  by simp
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   628
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   629
lemma insertE [elim!]: "a : insert b A ==> (a = b ==> P) ==> (a:A ==> P) ==> P"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   630
  by (unfold insert_def) blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   631
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   632
lemma insertCI [intro!]: "(a~:B ==> a = b) ==> a: insert b B"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   633
  -- {* Classical introduction rule. *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   634
  by auto
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   635
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   636
lemma subset_insert_iff: "(A \<subseteq> insert x B) = (if x:A then A - {x} \<subseteq> B else A \<subseteq> B)"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   637
  by auto
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   638
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   639
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   640
subsubsection {* Singletons, using insert *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   641
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   642
lemma singletonI [intro!]: "a : {a}"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   643
    -- {* Redundant? But unlike @{text insertCI}, it proves the subgoal immediately! *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   644
  by (rule insertI1)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   645
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   646
lemma singletonD: "b : {a} ==> b = a"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   647
  by blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   648
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   649
lemmas singletonE [elim!] = singletonD [elim_format]
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   650
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   651
lemma singleton_iff: "(b : {a}) = (b = a)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   652
  by blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   653
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   654
lemma singleton_inject [dest!]: "{a} = {b} ==> a = b"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   655
  by blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   656
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   657
lemma singleton_insert_inj_eq [iff]: "({b} = insert a A) = (a = b & A \<subseteq> {b})"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   658
  by blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   659
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   660
lemma singleton_insert_inj_eq' [iff]: "(insert a A = {b}) = (a = b & A \<subseteq> {b})"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   661
  by blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   662
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   663
lemma subset_singletonD: "A \<subseteq> {x} ==> A = {} | A = {x}"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   664
  by fast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   665
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   666
lemma singleton_conv [simp]: "{x. x = a} = {a}"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   667
  by blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   668
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   669
lemma singleton_conv2 [simp]: "{x. a = x} = {a}"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   670
  by blast
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   671
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   672
lemma diff_single_insert: "A - {x} \<subseteq> B ==> x \<in> A ==> A \<subseteq> insert x B"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   673
  by blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   674
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   675
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   676
subsubsection {* Unions of families *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   677
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   678
text {*
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   679
  @{term [source] "UN x:A. B x"} is @{term "Union (B`A)"}.
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   680
*}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   681
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   682
lemma UN_iff [simp]: "(b: (UN x:A. B x)) = (EX x:A. b: B x)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   683
  by (unfold UNION_def) blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   684
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   685
lemma UN_I [intro]: "a:A ==> b: B a ==> b: (UN x:A. B x)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   686
  -- {* The order of the premises presupposes that @{term A} is rigid;
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   687
    @{term b} may be flexible. *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   688
  by auto
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   689
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   690
lemma UN_E [elim!]: "b : (UN x:A. B x) ==> (!!x. x:A ==> b: B x ==> R) ==> R"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   691
  by (unfold UNION_def) blast
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   692
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   693
lemma UN_cong [cong]:
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   694
    "A = B ==> (!!x. x:B ==> C x = D x) ==> (UN x:A. C x) = (UN x:B. D x)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   695
  by (simp add: UNION_def)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   696
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   697
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   698
subsubsection {* Intersections of families *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   699
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   700
text {* @{term [source] "INT x:A. B x"} is @{term "Inter (B`A)"}. *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   701
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   702
lemma INT_iff [simp]: "(b: (INT x:A. B x)) = (ALL x:A. b: B x)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   703
  by (unfold INTER_def) blast
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   704
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   705
lemma INT_I [intro!]: "(!!x. x:A ==> b: B x) ==> b : (INT x:A. B x)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   706
  by (unfold INTER_def) blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   707
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   708
lemma INT_D [elim]: "b : (INT x:A. B x) ==> a:A ==> b: B a"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   709
  by auto
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   710
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   711
lemma INT_E [elim]: "b : (INT x:A. B x) ==> (b: B a ==> R) ==> (a~:A ==> R) ==> R"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   712
  -- {* "Classical" elimination -- by the Excluded Middle on @{prop "a:A"}. *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   713
  by (unfold INTER_def) blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   714
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   715
lemma INT_cong [cong]:
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   716
    "A = B ==> (!!x. x:B ==> C x = D x) ==> (INT x:A. C x) = (INT x:B. D x)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   717
  by (simp add: INTER_def)
7238
36e58620ffc8 replaced HOL_quantifiers flag by "HOL" print mode;
wenzelm
parents: 5931
diff changeset
   718
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   719
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   720
subsubsection {* Union *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   721
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   722
lemma Union_iff [simp]: "(A : Union C) = (EX X:C. A:X)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   723
  by (unfold Union_def) blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   724
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   725
lemma UnionI [intro]: "X:C ==> A:X ==> A : Union C"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   726
  -- {* The order of the premises presupposes that @{term C} is rigid;
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   727
    @{term A} may be flexible. *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   728
  by auto
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   729
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   730
lemma UnionE [elim!]: "A : Union C ==> (!!X. A:X ==> X:C ==> R) ==> R"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   731
  by (unfold Union_def) blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   732
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   733
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   734
subsubsection {* Inter *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   735
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   736
lemma Inter_iff [simp]: "(A : Inter C) = (ALL X:C. A:X)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   737
  by (unfold Inter_def) blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   738
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   739
lemma InterI [intro!]: "(!!X. X:C ==> A:X) ==> A : Inter C"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   740
  by (simp add: Inter_def)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   741
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   742
text {*
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   743
  \medskip A ``destruct'' rule -- every @{term X} in @{term C}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   744
  contains @{term A} as an element, but @{prop "A:X"} can hold when
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   745
  @{prop "X:C"} does not!  This rule is analogous to @{text spec}.
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   746
*}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   747
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   748
lemma InterD [elim]: "A : Inter C ==> X:C ==> A:X"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   749
  by auto
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   750
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   751
lemma InterE [elim]: "A : Inter C ==> (X~:C ==> R) ==> (A:X ==> R) ==> R"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   752
  -- {* ``Classical'' elimination rule -- does not require proving
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   753
    @{prop "X:C"}. *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   754
  by (unfold Inter_def) blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   755
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   756
text {*
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   757
  \medskip Image of a set under a function.  Frequently @{term b} does
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   758
  not have the syntactic form of @{term "f x"}.
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   759
*}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   760
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   761
lemma image_eqI [simp, intro]: "b = f x ==> x:A ==> b : f`A"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   762
  by (unfold image_def) blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   763
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   764
lemma imageI: "x : A ==> f x : f ` A"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   765
  by (rule image_eqI) (rule refl)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   766
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   767
lemma rev_image_eqI: "x:A ==> b = f x ==> b : f`A"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   768
  -- {* This version's more effective when we already have the
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   769
    required @{term x}. *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   770
  by (unfold image_def) blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   771
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   772
lemma imageE [elim!]:
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   773
  "b : (%x. f x)`A ==> (!!x. b = f x ==> x:A ==> P) ==> P"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   774
  -- {* The eta-expansion gives variable-name preservation. *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   775
  by (unfold image_def) blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   776
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   777
lemma image_Un: "f`(A Un B) = f`A Un f`B"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   778
  by blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   779
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   780
lemma image_iff: "(z : f`A) = (EX x:A. z = f x)"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   781
  by blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   782
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   783
lemma image_subset_iff: "(f`A \<subseteq> B) = (\<forall>x\<in>A. f x \<in> B)"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   784
  -- {* This rewrite rule would confuse users if made default. *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   785
  by blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   786
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   787
lemma subset_image_iff: "(B \<subseteq> f`A) = (EX AA. AA \<subseteq> A & B = f`AA)"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   788
  apply safe
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   789
   prefer 2 apply fast
14208
144f45277d5a misc tidying
paulson
parents: 14098
diff changeset
   790
  apply (rule_tac x = "{a. a : A & f a : B}" in exI, fast)
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   791
  done
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   792
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   793
lemma image_subsetI: "(!!x. x \<in> A ==> f x \<in> B) ==> f`A \<subseteq> B"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   794
  -- {* Replaces the three steps @{text subsetI}, @{text imageE},
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   795
    @{text hypsubst}, but breaks too many existing proofs. *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   796
  by blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   797
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   798
text {*
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   799
  \medskip Range of a function -- just a translation for image!
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   800
*}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   801
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   802
lemma range_eqI: "b = f x ==> b \<in> range f"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   803
  by simp
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   804
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   805
lemma rangeI: "f x \<in> range f"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   806
  by simp
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   807
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   808
lemma rangeE [elim?]: "b \<in> range (\<lambda>x. f x) ==> (!!x. b = f x ==> P) ==> P"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   809
  by blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   810
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   811
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   812
subsubsection {* Set reasoning tools *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   813
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   814
text {*
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   815
  Rewrite rules for boolean case-splitting: faster than @{text
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   816
  "split_if [split]"}.
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   817
*}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   818
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   819
lemma split_if_eq1: "((if Q then x else y) = b) = ((Q --> x = b) & (~ Q --> y = b))"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   820
  by (rule split_if)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   821
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   822
lemma split_if_eq2: "(a = (if Q then x else y)) = ((Q --> a = x) & (~ Q --> a = y))"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   823
  by (rule split_if)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   824
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   825
text {*
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   826
  Split ifs on either side of the membership relation.  Not for @{text
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   827
  "[simp]"} -- can cause goals to blow up!
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   828
*}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   829
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   830
lemma split_if_mem1: "((if Q then x else y) : b) = ((Q --> x : b) & (~ Q --> y : b))"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   831
  by (rule split_if)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   832
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   833
lemma split_if_mem2: "(a : (if Q then x else y)) = ((Q --> a : x) & (~ Q --> a : y))"
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   834
  by (rule split_if)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   835
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   836
lemmas split_ifs = if_bool_eq_conj split_if_eq1 split_if_eq2 split_if_mem1 split_if_mem2
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   837
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   838
lemmas mem_simps =
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   839
  insert_iff empty_iff Un_iff Int_iff Compl_iff Diff_iff
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   840
  mem_Collect_eq UN_iff Union_iff INT_iff Inter_iff
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   841
  -- {* Each of these has ALREADY been added @{text "[simp]"} above. *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   842
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   843
(*Would like to add these, but the existing code only searches for the
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   844
  outer-level constant, which in this case is just "op :"; we instead need
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   845
  to use term-nets to associate patterns with rules.  Also, if a rule fails to
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   846
  apply, then the formula should be kept.
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   847
  [("uminus", Compl_iff RS iffD1), ("op -", [Diff_iff RS iffD1]),
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   848
   ("op Int", [IntD1,IntD2]),
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   849
   ("Collect", [CollectD]), ("Inter", [InterD]), ("INTER", [INT_D])]
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   850
 *)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   851
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   852
ML_setup {*
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   853
  val mksimps_pairs = [("Ball", [thm "bspec"])] @ mksimps_pairs;
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   854
  simpset_ref() := simpset() setmksimps (mksimps mksimps_pairs);
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   855
*}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   856
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   857
declare subset_UNIV [simp] subset_refl [simp]
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   858
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   859
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   860
subsubsection {* The ``proper subset'' relation *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   861
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   862
lemma psubsetI [intro!]: "A \<subseteq> B ==> A \<noteq> B ==> A \<subset> B"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   863
  by (unfold psubset_def) blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   864
13624
17684cf64fda added the new elim rule psubsetE
paulson
parents: 13550
diff changeset
   865
lemma psubsetE [elim!]: 
17684cf64fda added the new elim rule psubsetE
paulson
parents: 13550
diff changeset
   866
    "[|A \<subset> B;  [|A \<subseteq> B; ~ (B\<subseteq>A)|] ==> R|] ==> R"
17684cf64fda added the new elim rule psubsetE
paulson
parents: 13550
diff changeset
   867
  by (unfold psubset_def) blast
17684cf64fda added the new elim rule psubsetE
paulson
parents: 13550
diff changeset
   868
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   869
lemma psubset_insert_iff:
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   870
  "(A \<subset> insert x B) = (if x \<in> B then A \<subset> B else if x \<in> A then A - {x} \<subset> B else A \<subseteq> B)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   871
  by (auto simp add: psubset_def subset_insert_iff)
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   872
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   873
lemma psubset_eq: "(A \<subset> B) = (A \<subseteq> B & A \<noteq> B)"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   874
  by (simp only: psubset_def)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   875
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   876
lemma psubset_imp_subset: "A \<subset> B ==> A \<subseteq> B"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   877
  by (simp add: psubset_eq)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   878
14335
9c0b5e081037 conversion of Real/PReal to Isar script;
paulson
parents: 14302
diff changeset
   879
lemma psubset_trans: "[| A \<subset> B; B \<subset> C |] ==> A \<subset> C"
9c0b5e081037 conversion of Real/PReal to Isar script;
paulson
parents: 14302
diff changeset
   880
apply (unfold psubset_def)
9c0b5e081037 conversion of Real/PReal to Isar script;
paulson
parents: 14302
diff changeset
   881
apply (auto dest: subset_antisym)
9c0b5e081037 conversion of Real/PReal to Isar script;
paulson
parents: 14302
diff changeset
   882
done
9c0b5e081037 conversion of Real/PReal to Isar script;
paulson
parents: 14302
diff changeset
   883
9c0b5e081037 conversion of Real/PReal to Isar script;
paulson
parents: 14302
diff changeset
   884
lemma psubsetD: "[| A \<subset> B; c \<in> A |] ==> c \<in> B"
9c0b5e081037 conversion of Real/PReal to Isar script;
paulson
parents: 14302
diff changeset
   885
apply (unfold psubset_def)
9c0b5e081037 conversion of Real/PReal to Isar script;
paulson
parents: 14302
diff changeset
   886
apply (auto dest: subsetD)
9c0b5e081037 conversion of Real/PReal to Isar script;
paulson
parents: 14302
diff changeset
   887
done
9c0b5e081037 conversion of Real/PReal to Isar script;
paulson
parents: 14302
diff changeset
   888
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   889
lemma psubset_subset_trans: "A \<subset> B ==> B \<subseteq> C ==> A \<subset> C"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   890
  by (auto simp add: psubset_eq)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   891
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   892
lemma subset_psubset_trans: "A \<subseteq> B ==> B \<subset> C ==> A \<subset> C"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   893
  by (auto simp add: psubset_eq)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   894
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   895
lemma psubset_imp_ex_mem: "A \<subset> B ==> \<exists>b. b \<in> (B - A)"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   896
  by (unfold psubset_def) blast
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   897
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   898
lemma atomize_ball:
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   899
    "(!!x. x \<in> A ==> P x) == Trueprop (\<forall>x\<in>A. P x)"
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   900
  by (simp only: Ball_def atomize_all atomize_imp)
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   901
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   902
declare atomize_ball [symmetric, rulify]
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   903
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   904
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   905
subsection {* Further set-theory lemmas *}
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
   906
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   907
subsubsection {* Derived rules involving subsets. *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   908
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   909
text {* @{text insert}. *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   910
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   911
lemma subset_insertI: "B \<subseteq> insert a B"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   912
  apply (rule subsetI)
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   913
  apply (erule insertI2)
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   914
  done
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   915
14302
6c24235e8d5d *** empty log message ***
nipkow
parents: 14208
diff changeset
   916
lemma subset_insertI2: "A \<subseteq> B \<Longrightarrow> A \<subseteq> insert b B"
6c24235e8d5d *** empty log message ***
nipkow
parents: 14208
diff changeset
   917
by blast
6c24235e8d5d *** empty log message ***
nipkow
parents: 14208
diff changeset
   918
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   919
lemma subset_insert: "x \<notin> A ==> (A \<subseteq> insert x B) = (A \<subseteq> B)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   920
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   921
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   922
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   923
text {* \medskip Big Union -- least upper bound of a set. *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   924
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   925
lemma Union_upper: "B \<in> A ==> B \<subseteq> Union A"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   926
  by (rules intro: subsetI UnionI)
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   927
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   928
lemma Union_least: "(!!X. X \<in> A ==> X \<subseteq> C) ==> Union A \<subseteq> C"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   929
  by (rules intro: subsetI elim: UnionE dest: subsetD)
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   930
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   931
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   932
text {* \medskip General union. *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   933
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   934
lemma UN_upper: "a \<in> A ==> B a \<subseteq> (\<Union>x\<in>A. B x)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   935
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   936
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   937
lemma UN_least: "(!!x. x \<in> A ==> B x \<subseteq> C) ==> (\<Union>x\<in>A. B x) \<subseteq> C"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   938
  by (rules intro: subsetI elim: UN_E dest: subsetD)
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   939
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   940
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   941
text {* \medskip Big Intersection -- greatest lower bound of a set. *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   942
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   943
lemma Inter_lower: "B \<in> A ==> Inter A \<subseteq> B"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   944
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   945
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   946
lemma Inter_greatest: "(!!X. X \<in> A ==> C \<subseteq> X) ==> C \<subseteq> Inter A"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   947
  by (rules intro: InterI subsetI dest: subsetD)
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   948
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   949
lemma INT_lower: "a \<in> A ==> (\<Inter>x\<in>A. B x) \<subseteq> B a"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   950
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   951
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   952
lemma INT_greatest: "(!!x. x \<in> A ==> C \<subseteq> B x) ==> C \<subseteq> (\<Inter>x\<in>A. B x)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   953
  by (rules intro: INT_I subsetI dest: subsetD)
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   954
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   955
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   956
text {* \medskip Finite Union -- the least upper bound of two sets. *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   957
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   958
lemma Un_upper1: "A \<subseteq> A \<union> B"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   959
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   960
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   961
lemma Un_upper2: "B \<subseteq> A \<union> B"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   962
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   963
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   964
lemma Un_least: "A \<subseteq> C ==> B \<subseteq> C ==> A \<union> B \<subseteq> C"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   965
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   966
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   967
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   968
text {* \medskip Finite Intersection -- the greatest lower bound of two sets. *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   969
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   970
lemma Int_lower1: "A \<inter> B \<subseteq> A"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   971
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   972
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   973
lemma Int_lower2: "A \<inter> B \<subseteq> B"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   974
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   975
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   976
lemma Int_greatest: "C \<subseteq> A ==> C \<subseteq> B ==> C \<subseteq> A \<inter> B"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   977
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   978
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   979
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   980
text {* \medskip Set difference. *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   981
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   982
lemma Diff_subset: "A - B \<subseteq> A"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   983
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   984
14302
6c24235e8d5d *** empty log message ***
nipkow
parents: 14208
diff changeset
   985
lemma Diff_subset_conv: "(A - B \<subseteq> C) = (A \<subseteq> B \<union> C)"
6c24235e8d5d *** empty log message ***
nipkow
parents: 14208
diff changeset
   986
by blast
6c24235e8d5d *** empty log message ***
nipkow
parents: 14208
diff changeset
   987
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   988
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   989
text {* \medskip Monotonicity. *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   990
13421
8fcdf4a26468 simplified locale predicates;
wenzelm
parents: 13113
diff changeset
   991
lemma mono_Un: includes mono shows "f A \<union> f B \<subseteq> f (A \<union> B)"
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   992
  apply (rule Un_least)
13421
8fcdf4a26468 simplified locale predicates;
wenzelm
parents: 13113
diff changeset
   993
   apply (rule Un_upper1 [THEN mono])
8fcdf4a26468 simplified locale predicates;
wenzelm
parents: 13113
diff changeset
   994
  apply (rule Un_upper2 [THEN mono])
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   995
  done
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   996
13421
8fcdf4a26468 simplified locale predicates;
wenzelm
parents: 13113
diff changeset
   997
lemma mono_Int: includes mono shows "f (A \<inter> B) \<subseteq> f A \<inter> f B"
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
   998
  apply (rule Int_greatest)
13421
8fcdf4a26468 simplified locale predicates;
wenzelm
parents: 13113
diff changeset
   999
   apply (rule Int_lower1 [THEN mono])
8fcdf4a26468 simplified locale predicates;
wenzelm
parents: 13113
diff changeset
  1000
  apply (rule Int_lower2 [THEN mono])
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1001
  done
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1002
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1003
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1004
subsubsection {* Equalities involving union, intersection, inclusion, etc. *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1005
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1006
text {* @{text "{}"}. *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1007
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1008
lemma Collect_const [simp]: "{s. P} = (if P then UNIV else {})"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1009
  -- {* supersedes @{text "Collect_False_empty"} *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1010
  by auto
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1011
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1012
lemma subset_empty [simp]: "(A \<subseteq> {}) = (A = {})"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1013
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1014
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1015
lemma not_psubset_empty [iff]: "\<not> (A < {})"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1016
  by (unfold psubset_def) blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1017
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1018
lemma Collect_empty_eq [simp]: "(Collect P = {}) = (\<forall>x. \<not> P x)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1019
  by auto
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1020
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1021
lemma Collect_neg_eq: "{x. \<not> P x} = - {x. P x}"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1022
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1023
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1024
lemma Collect_disj_eq: "{x. P x | Q x} = {x. P x} \<union> {x. Q x}"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1025
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1026
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1027
lemma Collect_conj_eq: "{x. P x & Q x} = {x. P x} \<inter> {x. Q x}"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1028
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1029
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1030
lemma Collect_all_eq: "{x. \<forall>y. P x y} = (\<Inter>y. {x. P x y})"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1031
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1032
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1033
lemma Collect_ball_eq: "{x. \<forall>y\<in>A. P x y} = (\<Inter>y\<in>A. {x. P x y})"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1034
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1035
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1036
lemma Collect_ex_eq: "{x. \<exists>y. P x y} = (\<Union>y. {x. P x y})"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1037
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1038
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1039
lemma Collect_bex_eq: "{x. \<exists>y\<in>A. P x y} = (\<Union>y\<in>A. {x. P x y})"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1040
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1041
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1042
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1043
text {* \medskip @{text insert}. *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1044
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1045
lemma insert_is_Un: "insert a A = {a} Un A"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1046
  -- {* NOT SUITABLE FOR REWRITING since @{text "{a} == insert a {}"} *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1047
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1048
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1049
lemma insert_not_empty [simp]: "insert a A \<noteq> {}"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1050
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1051
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1052
lemmas empty_not_insert [simp] = insert_not_empty [symmetric, standard]
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1053
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1054
lemma insert_absorb: "a \<in> A ==> insert a A = A"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1055
  -- {* @{text "[simp]"} causes recursive calls when there are nested inserts *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1056
  -- {* with \emph{quadratic} running time *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1057
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1058
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1059
lemma insert_absorb2 [simp]: "insert x (insert x A) = insert x A"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1060
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1061
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1062
lemma insert_commute: "insert x (insert y A) = insert y (insert x A)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1063
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1064
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1065
lemma insert_subset [simp]: "(insert x A \<subseteq> B) = (x \<in> B & A \<subseteq> B)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1066
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1067
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1068
lemma mk_disjoint_insert: "a \<in> A ==> \<exists>B. A = insert a B & a \<notin> B"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1069
  -- {* use new @{text B} rather than @{text "A - {a}"} to avoid infinite unfolding *}
14208
144f45277d5a misc tidying
paulson
parents: 14098
diff changeset
  1070
  apply (rule_tac x = "A - {a}" in exI, blast)
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1071
  done
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1072
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1073
lemma insert_Collect: "insert a (Collect P) = {u. u \<noteq> a --> P u}"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1074
  by auto
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1075
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1076
lemma UN_insert_distrib: "u \<in> A ==> (\<Union>x\<in>A. insert a (B x)) = insert a (\<Union>x\<in>A. B x)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1077
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1078
14302
6c24235e8d5d *** empty log message ***
nipkow
parents: 14208
diff changeset
  1079
lemma insert_inter_insert[simp]: "insert a A \<inter> insert a B = insert a (A \<inter> B)"
6c24235e8d5d *** empty log message ***
nipkow
parents: 14208
diff changeset
  1080
by blast
6c24235e8d5d *** empty log message ***
nipkow
parents: 14208
diff changeset
  1081
13103
66659a4b16f6 Added insert_disjoint and disjoint_insert [simp], and simplified proofs
nipkow
parents: 12937
diff changeset
  1082
lemma insert_disjoint[simp]:
66659a4b16f6 Added insert_disjoint and disjoint_insert [simp], and simplified proofs
nipkow
parents: 12937
diff changeset
  1083
 "(insert a A \<inter> B = {}) = (a \<notin> B \<and> A \<inter> B = {})"
66659a4b16f6 Added insert_disjoint and disjoint_insert [simp], and simplified proofs
nipkow
parents: 12937
diff changeset
  1084
by blast
66659a4b16f6 Added insert_disjoint and disjoint_insert [simp], and simplified proofs
nipkow
parents: 12937
diff changeset
  1085
66659a4b16f6 Added insert_disjoint and disjoint_insert [simp], and simplified proofs
nipkow
parents: 12937
diff changeset
  1086
lemma disjoint_insert[simp]:
66659a4b16f6 Added insert_disjoint and disjoint_insert [simp], and simplified proofs
nipkow
parents: 12937
diff changeset
  1087
 "(B \<inter> insert a A = {}) = (a \<notin> B \<and> B \<inter> A = {})"
66659a4b16f6 Added insert_disjoint and disjoint_insert [simp], and simplified proofs
nipkow
parents: 12937
diff changeset
  1088
by blast
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1089
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1090
text {* \medskip @{text image}. *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1091
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1092
lemma image_empty [simp]: "f`{} = {}"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1093
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1094
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1095
lemma image_insert [simp]: "f ` insert a B = insert (f a) (f`B)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1096
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1097
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1098
lemma image_constant: "x \<in> A ==> (\<lambda>x. c) ` A = {c}"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1099
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1100
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1101
lemma image_image: "f ` (g ` A) = (\<lambda>x. f (g x)) ` A"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1102
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1103
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1104
lemma insert_image [simp]: "x \<in> A ==> insert (f x) (f`A) = f`A"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1105
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1106
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1107
lemma image_is_empty [iff]: "(f`A = {}) = (A = {})"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1108
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1109
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1110
lemma image_Collect: "f ` {x. P x} = {f x | x. P x}"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1111
  -- {* NOT suitable as a default simprule: the RHS isn't simpler than the LHS, *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1112
  -- {* with its implicit quantifier and conjunction.  Also image enjoys better *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1113
  -- {* equational properties than does the RHS. *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1114
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1115
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1116
lemma if_image_distrib [simp]:
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1117
  "(\<lambda>x. if P x then f x else g x) ` S
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1118
    = (f ` (S \<inter> {x. P x})) \<union> (g ` (S \<inter> {x. \<not> P x}))"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1119
  by (auto simp add: image_def)
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1120
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1121
lemma image_cong: "M = N ==> (!!x. x \<in> N ==> f x = g x) ==> f`M = g`N"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1122
  by (simp add: image_def)
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1123
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1124
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1125
text {* \medskip @{text range}. *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1126
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1127
lemma full_SetCompr_eq: "{u. \<exists>x. u = f x} = range f"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1128
  by auto
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1129
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1130
lemma range_composition [simp]: "range (\<lambda>x. f (g x)) = f`range g"
14208
144f45277d5a misc tidying
paulson
parents: 14098
diff changeset
  1131
by (subst image_image, simp)
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1132
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1133
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1134
text {* \medskip @{text Int} *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1135
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1136
lemma Int_absorb [simp]: "A \<inter> A = A"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1137
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1138
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1139
lemma Int_left_absorb: "A \<inter> (A \<inter> B) = A \<inter> B"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1140
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1141
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1142
lemma Int_commute: "A \<inter> B = B \<inter> A"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1143
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1144
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1145
lemma Int_left_commute: "A \<inter> (B \<inter> C) = B \<inter> (A \<inter> C)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1146
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1147
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1148
lemma Int_assoc: "(A \<inter> B) \<inter> C = A \<inter> (B \<inter> C)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1149
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1150
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1151
lemmas Int_ac = Int_assoc Int_left_absorb Int_commute Int_left_commute
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1152
  -- {* Intersection is an AC-operator *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1153
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1154
lemma Int_absorb1: "B \<subseteq> A ==> A \<inter> B = B"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1155
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1156
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1157
lemma Int_absorb2: "A \<subseteq> B ==> A \<inter> B = A"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1158
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1159
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1160
lemma Int_empty_left [simp]: "{} \<inter> B = {}"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1161
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1162
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1163
lemma Int_empty_right [simp]: "A \<inter> {} = {}"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1164
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1165
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1166
lemma disjoint_eq_subset_Compl: "(A \<inter> B = {}) = (A \<subseteq> -B)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1167
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1168
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1169
lemma disjoint_iff_not_equal: "(A \<inter> B = {}) = (\<forall>x\<in>A. \<forall>y\<in>B. x \<noteq> y)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1170
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1171
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1172
lemma Int_UNIV_left [simp]: "UNIV \<inter> B = B"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1173
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1174
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1175
lemma Int_UNIV_right [simp]: "A \<inter> UNIV = A"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1176
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1177
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1178
lemma Int_eq_Inter: "A \<inter> B = \<Inter>{A, B}"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1179
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1180
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1181
lemma Int_Un_distrib: "A \<inter> (B \<union> C) = (A \<inter> B) \<union> (A \<inter> C)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1182
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1183
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1184
lemma Int_Un_distrib2: "(B \<union> C) \<inter> A = (B \<inter> A) \<union> (C \<inter> A)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1185
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1186
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1187
lemma Int_UNIV [simp]: "(A \<inter> B = UNIV) = (A = UNIV & B = UNIV)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1188
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1189
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1190
lemma Int_subset_iff: "(C \<subseteq> A \<inter> B) = (C \<subseteq> A & C \<subseteq> B)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1191
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1192
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1193
lemma Int_Collect: "(x \<in> A \<inter> {x. P x}) = (x \<in> A & P x)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1194
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1195
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1196
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1197
text {* \medskip @{text Un}. *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1198
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1199
lemma Un_absorb [simp]: "A \<union> A = A"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1200
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1201
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1202
lemma Un_left_absorb: "A \<union> (A \<union> B) = A \<union> B"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1203
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1204
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1205
lemma Un_commute: "A \<union> B = B \<union> A"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1206
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1207
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1208
lemma Un_left_commute: "A \<union> (B \<union> C) = B \<union> (A \<union> C)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1209
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1210
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1211
lemma Un_assoc: "(A \<union> B) \<union> C = A \<union> (B \<union> C)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1212
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1213
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1214
lemmas Un_ac = Un_assoc Un_left_absorb Un_commute Un_left_commute
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1215
  -- {* Union is an AC-operator *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1216
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1217
lemma Un_absorb1: "A \<subseteq> B ==> A \<union> B = B"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1218
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1219
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1220
lemma Un_absorb2: "B \<subseteq> A ==> A \<union> B = A"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1221
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1222
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1223
lemma Un_empty_left [simp]: "{} \<union> B = B"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1224
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1225
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1226
lemma Un_empty_right [simp]: "A \<union> {} = A"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1227
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1228
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1229
lemma Un_UNIV_left [simp]: "UNIV \<union> B = UNIV"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1230
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1231
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1232
lemma Un_UNIV_right [simp]: "A \<union> UNIV = UNIV"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1233
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1234
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1235
lemma Un_eq_Union: "A \<union> B = \<Union>{A, B}"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1236
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1237
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1238
lemma Un_insert_left [simp]: "(insert a B) \<union> C = insert a (B \<union> C)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1239
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1240
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1241
lemma Un_insert_right [simp]: "A \<union> (insert a B) = insert a (A \<union> B)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1242
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1243
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1244
lemma Int_insert_left:
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1245
    "(insert a B) Int C = (if a \<in> C then insert a (B \<inter> C) else B \<inter> C)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1246
  by auto
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1247
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1248
lemma Int_insert_right:
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1249
    "A \<inter> (insert a B) = (if a \<in> A then insert a (A \<inter> B) else A \<inter> B)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1250
  by auto
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1251
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1252
lemma Un_Int_distrib: "A \<union> (B \<inter> C) = (A \<union> B) \<inter> (A \<union> C)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1253
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1254
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1255
lemma Un_Int_distrib2: "(B \<inter> C) \<union> A = (B \<union> A) \<inter> (C \<union> A)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1256
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1257
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1258
lemma Un_Int_crazy:
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1259
    "(A \<inter> B) \<union> (B \<inter> C) \<union> (C \<inter> A) = (A \<union> B) \<inter> (B \<union> C) \<inter> (C \<union> A)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1260
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1261
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1262
lemma subset_Un_eq: "(A \<subseteq> B) = (A \<union> B = B)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1263
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1264
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1265
lemma Un_empty [iff]: "(A \<union> B = {}) = (A = {} & B = {})"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1266
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1267
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1268
lemma Un_subset_iff: "(A \<union> B \<subseteq> C) = (A \<subseteq> C & B \<subseteq> C)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1269
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1270
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1271
lemma Un_Diff_Int: "(A - B) \<union> (A \<inter> B) = A"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1272
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1273
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1274
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1275
text {* \medskip Set complement *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1276
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1277
lemma Compl_disjoint [simp]: "A \<inter> -A = {}"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1278
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1279
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1280
lemma Compl_disjoint2 [simp]: "-A \<inter> A = {}"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1281
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1282
13818
274fda8cca4b new theorem Compl_partition2
paulson
parents: 13764
diff changeset
  1283
lemma Compl_partition: "A \<union> -A = UNIV"
274fda8cca4b new theorem Compl_partition2
paulson
parents: 13764
diff changeset
  1284
  by blast
274fda8cca4b new theorem Compl_partition2
paulson
parents: 13764
diff changeset
  1285
274fda8cca4b new theorem Compl_partition2
paulson
parents: 13764
diff changeset
  1286
lemma Compl_partition2: "-A \<union> A = UNIV"
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1287
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1288
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1289
lemma double_complement [simp]: "- (-A) = (A::'a set)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1290
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1291
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1292
lemma Compl_Un [simp]: "-(A \<union> B) = (-A) \<inter> (-B)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1293
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1294
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1295
lemma Compl_Int [simp]: "-(A \<inter> B) = (-A) \<union> (-B)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1296
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1297
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1298
lemma Compl_UN [simp]: "-(\<Union>x\<in>A. B x) = (\<Inter>x\<in>A. -B x)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1299
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1300
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1301
lemma Compl_INT [simp]: "-(\<Inter>x\<in>A. B x) = (\<Union>x\<in>A. -B x)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1302
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1303
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1304
lemma subset_Compl_self_eq: "(A \<subseteq> -A) = (A = {})"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1305
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1306
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1307
lemma Un_Int_assoc_eq: "((A \<inter> B) \<union> C = A \<inter> (B \<union> C)) = (C \<subseteq> A)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1308
  -- {* Halmos, Naive Set Theory, page 16. *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1309
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1310
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1311
lemma Compl_UNIV_eq [simp]: "-UNIV = {}"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1312
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1313
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1314
lemma Compl_empty_eq [simp]: "-{} = UNIV"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1315
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1316
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1317
lemma Compl_subset_Compl_iff [iff]: "(-A \<subseteq> -B) = (B \<subseteq> A)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1318
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1319
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1320
lemma Compl_eq_Compl_iff [iff]: "(-A = -B) = (A = (B::'a set))"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1321
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1322
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1323
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1324
text {* \medskip @{text Union}. *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1325
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1326
lemma Union_empty [simp]: "Union({}) = {}"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1327
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1328
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1329
lemma Union_UNIV [simp]: "Union UNIV = UNIV"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1330
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1331
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1332
lemma Union_insert [simp]: "Union (insert a B) = a \<union> \<Union>B"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1333
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1334
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1335
lemma Union_Un_distrib [simp]: "\<Union>(A Un B) = \<Union>A \<union> \<Union>B"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1336
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1337
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1338
lemma Union_Int_subset: "\<Union>(A \<inter> B) \<subseteq> \<Union>A \<inter> \<Union>B"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1339
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1340
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1341
lemma Union_empty_conv [iff]: "(\<Union>A = {}) = (\<forall>x\<in>A. x = {})"
13653
ef123b9e8089 Added a few thms about UN/INT/{}/UNIV
nipkow
parents: 13624
diff changeset
  1342
  by blast
ef123b9e8089 Added a few thms about UN/INT/{}/UNIV
nipkow
parents: 13624
diff changeset
  1343
ef123b9e8089 Added a few thms about UN/INT/{}/UNIV
nipkow
parents: 13624
diff changeset
  1344
lemma empty_Union_conv [iff]: "({} = \<Union>A) = (\<forall>x\<in>A. x = {})"
ef123b9e8089 Added a few thms about UN/INT/{}/UNIV
nipkow
parents: 13624
diff changeset
  1345
  by blast
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1346
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1347
lemma Union_disjoint: "(\<Union>C \<inter> A = {}) = (\<forall>B\<in>C. B \<inter> A = {})"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1348
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1349
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1350
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1351
text {* \medskip @{text Inter}. *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1352
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1353
lemma Inter_empty [simp]: "\<Inter>{} = UNIV"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1354
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1355
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1356
lemma Inter_UNIV [simp]: "\<Inter>UNIV = {}"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1357
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1358
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1359
lemma Inter_insert [simp]: "\<Inter>(insert a B) = a \<inter> \<Inter>B"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1360
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1361
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1362
lemma Inter_Un_subset: "\<Inter>A \<union> \<Inter>B \<subseteq> \<Inter>(A \<inter> B)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1363
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1364
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1365
lemma Inter_Un_distrib: "\<Inter>(A \<union> B) = \<Inter>A \<inter> \<Inter>B"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1366
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1367
13653
ef123b9e8089 Added a few thms about UN/INT/{}/UNIV
nipkow
parents: 13624
diff changeset
  1368
lemma Inter_UNIV_conv [iff]:
ef123b9e8089 Added a few thms about UN/INT/{}/UNIV
nipkow
parents: 13624
diff changeset
  1369
  "(\<Inter>A = UNIV) = (\<forall>x\<in>A. x = UNIV)"
ef123b9e8089 Added a few thms about UN/INT/{}/UNIV
nipkow
parents: 13624
diff changeset
  1370
  "(UNIV = \<Inter>A) = (\<forall>x\<in>A. x = UNIV)"
14208
144f45277d5a misc tidying
paulson
parents: 14098
diff changeset
  1371
  by blast+
13653
ef123b9e8089 Added a few thms about UN/INT/{}/UNIV
nipkow
parents: 13624
diff changeset
  1372
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1373
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1374
text {*
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1375
  \medskip @{text UN} and @{text INT}.
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1376
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1377
  Basic identities: *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1378
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1379
lemma UN_empty [simp]: "(\<Union>x\<in>{}. B x) = {}"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1380
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1381
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1382
lemma UN_empty2 [simp]: "(\<Union>x\<in>A. {}) = {}"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1383
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1384
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1385
lemma UN_singleton [simp]: "(\<Union>x\<in>A. {x}) = A"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1386
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1387
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1388
lemma UN_absorb: "k \<in> I ==> A k \<union> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. A i)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1389
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1390
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1391
lemma INT_empty [simp]: "(\<Inter>x\<in>{}. B x) = UNIV"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1392
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1393
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1394
lemma INT_absorb: "k \<in> I ==> A k \<inter> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. A i)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1395
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1396
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1397
lemma UN_insert [simp]: "(\<Union>x\<in>insert a A. B x) = B a \<union> UNION A B"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1398
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1399
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1400
lemma UN_Un: "(\<Union>i \<in> A \<union> B. M i) = (\<Union>i\<in>A. M i) \<union> (\<Union>i\<in>B. M i)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1401
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1402
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1403
lemma UN_UN_flatten: "(\<Union>x \<in> (\<Union>y\<in>A. B y). C x) = (\<Union>y\<in>A. \<Union>x\<in>B y. C x)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1404
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1405
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1406
lemma UN_subset_iff: "((\<Union>i\<in>I. A i) \<subseteq> B) = (\<forall>i\<in>I. A i \<subseteq> B)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1407
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1408
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1409
lemma INT_subset_iff: "(B \<subseteq> (\<Inter>i\<in>I. A i)) = (\<forall>i\<in>I. B \<subseteq> A i)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1410
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1411
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1412
lemma INT_insert [simp]: "(\<Inter>x \<in> insert a A. B x) = B a \<inter> INTER A B"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1413
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1414
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1415
lemma INT_Un: "(\<Inter>i \<in> A \<union> B. M i) = (\<Inter>i \<in> A. M i) \<inter> (\<Inter>i\<in>B. M i)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1416
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1417
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1418
lemma INT_insert_distrib:
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1419
    "u \<in> A ==> (\<Inter>x\<in>A. insert a (B x)) = insert a (\<Inter>x\<in>A. B x)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1420
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1421
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1422
lemma Union_image_eq [simp]: "\<Union>(B`A) = (\<Union>x\<in>A. B x)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1423
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1424
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1425
lemma image_Union: "f ` \<Union>S = (\<Union>x\<in>S. f ` x)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1426
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1427
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1428
lemma Inter_image_eq [simp]: "\<Inter>(B`A) = (\<Inter>x\<in>A. B x)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1429
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1430
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1431
lemma UN_constant [simp]: "(\<Union>y\<in>A. c) = (if A = {} then {} else c)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1432
  by auto
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1433
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1434
lemma INT_constant [simp]: "(\<Inter>y\<in>A. c) = (if A = {} then UNIV else c)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1435
  by auto
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1436
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1437
lemma UN_eq: "(\<Union>x\<in>A. B x) = \<Union>({Y. \<exists>x\<in>A. Y = B x})"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1438
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1439
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1440
lemma INT_eq: "(\<Inter>x\<in>A. B x) = \<Inter>({Y. \<exists>x\<in>A. Y = B x})"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1441
  -- {* Look: it has an \emph{existential} quantifier *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1442
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1443
13653
ef123b9e8089 Added a few thms about UN/INT/{}/UNIV
nipkow
parents: 13624
diff changeset
  1444
lemma UNION_empty_conv[iff]:
ef123b9e8089 Added a few thms about UN/INT/{}/UNIV
nipkow
parents: 13624
diff changeset
  1445
  "({} = (UN x:A. B x)) = (\<forall>x\<in>A. B x = {})"
ef123b9e8089 Added a few thms about UN/INT/{}/UNIV
nipkow
parents: 13624
diff changeset
  1446
  "((UN x:A. B x) = {}) = (\<forall>x\<in>A. B x = {})"
ef123b9e8089 Added a few thms about UN/INT/{}/UNIV
nipkow
parents: 13624
diff changeset
  1447
by blast+
ef123b9e8089 Added a few thms about UN/INT/{}/UNIV
nipkow
parents: 13624
diff changeset
  1448
ef123b9e8089 Added a few thms about UN/INT/{}/UNIV
nipkow
parents: 13624
diff changeset
  1449
lemma INTER_UNIV_conv[iff]:
ef123b9e8089 Added a few thms about UN/INT/{}/UNIV
nipkow
parents: 13624
diff changeset
  1450
 "(UNIV = (INT x:A. B x)) = (\<forall>x\<in>A. B x = UNIV)"
ef123b9e8089 Added a few thms about UN/INT/{}/UNIV
nipkow
parents: 13624
diff changeset
  1451
 "((INT x:A. B x) = UNIV) = (\<forall>x\<in>A. B x = UNIV)"
ef123b9e8089 Added a few thms about UN/INT/{}/UNIV
nipkow
parents: 13624
diff changeset
  1452
by blast+
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1453
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1454
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1455
text {* \medskip Distributive laws: *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1456
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1457
lemma Int_Union: "A \<inter> \<Union>B = (\<Union>C\<in>B. A \<inter> C)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1458
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1459
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1460
lemma Int_Union2: "\<Union>B \<inter> A = (\<Union>C\<in>B. C \<inter> A)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1461
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1462
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1463
lemma Un_Union_image: "(\<Union>x\<in>C. A x \<union> B x) = \<Union>(A`C) \<union> \<Union>(B`C)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1464
  -- {* Devlin, Fundamentals of Contemporary Set Theory, page 12, exercise 5: *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1465
  -- {* Union of a family of unions *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1466
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1467
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1468
lemma UN_Un_distrib: "(\<Union>i\<in>I. A i \<union> B i) = (\<Union>i\<in>I. A i) \<union> (\<Union>i\<in>I. B i)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1469
  -- {* Equivalent version *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1470
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1471
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1472
lemma Un_Inter: "A \<union> \<Inter>B = (\<Inter>C\<in>B. A \<union> C)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1473
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1474
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1475
lemma Int_Inter_image: "(\<Inter>x\<in>C. A x \<inter> B x) = \<Inter>(A`C) \<inter> \<Inter>(B`C)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1476
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1477
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1478
lemma INT_Int_distrib: "(\<Inter>i\<in>I. A i \<inter> B i) = (\<Inter>i\<in>I. A i) \<inter> (\<Inter>i\<in>I. B i)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1479
  -- {* Equivalent version *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1480
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1481
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1482
lemma Int_UN_distrib: "B \<inter> (\<Union>i\<in>I. A i) = (\<Union>i\<in>I. B \<inter> A i)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1483
  -- {* Halmos, Naive Set Theory, page 35. *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1484
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1485
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1486
lemma Un_INT_distrib: "B \<union> (\<Inter>i\<in>I. A i) = (\<Inter>i\<in>I. B \<union> A i)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1487
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1488
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1489
lemma Int_UN_distrib2: "(\<Union>i\<in>I. A i) \<inter> (\<Union>j\<in>J. B j) = (\<Union>i\<in>I. \<Union>j\<in>J. A i \<inter> B j)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1490
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1491
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1492
lemma Un_INT_distrib2: "(\<Inter>i\<in>I. A i) \<union> (\<Inter>j\<in>J. B j) = (\<Inter>i\<in>I. \<Inter>j\<in>J. A i \<union> B j)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1493
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1494
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1495
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1496
text {* \medskip Bounded quantifiers.
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1497
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1498
  The following are not added to the default simpset because
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1499
  (a) they duplicate the body and (b) there are no similar rules for @{text Int}. *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1500
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1501
lemma ball_Un: "(\<forall>x \<in> A \<union> B. P x) = ((\<forall>x\<in>A. P x) & (\<forall>x\<in>B. P x))"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1502
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1503
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1504
lemma bex_Un: "(\<exists>x \<in> A \<union> B. P x) = ((\<exists>x\<in>A. P x) | (\<exists>x\<in>B. P x))"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1505
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1506
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1507
lemma ball_UN: "(\<forall>z \<in> UNION A B. P z) = (\<forall>x\<in>A. \<forall>z \<in> B x. P z)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1508
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1509
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1510
lemma bex_UN: "(\<exists>z \<in> UNION A B. P z) = (\<exists>x\<in>A. \<exists>z\<in>B x. P z)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1511
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1512
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1513
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1514
text {* \medskip Set difference. *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1515
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1516
lemma Diff_eq: "A - B = A \<inter> (-B)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1517
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1518
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1519
lemma Diff_eq_empty_iff [simp]: "(A - B = {}) = (A \<subseteq> B)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1520
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1521
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1522
lemma Diff_cancel [simp]: "A - A = {}"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1523
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1524
14302
6c24235e8d5d *** empty log message ***
nipkow
parents: 14208
diff changeset
  1525
lemma Diff_idemp [simp]: "(A - B) - B = A - (B::'a set)"
6c24235e8d5d *** empty log message ***
nipkow
parents: 14208
diff changeset
  1526
by blast
6c24235e8d5d *** empty log message ***
nipkow
parents: 14208
diff changeset
  1527
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1528
lemma Diff_triv: "A \<inter> B = {} ==> A - B = A"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1529
  by (blast elim: equalityE)
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1530
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1531
lemma empty_Diff [simp]: "{} - A = {}"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1532
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1533
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1534
lemma Diff_empty [simp]: "A - {} = A"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1535
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1536
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1537
lemma Diff_UNIV [simp]: "A - UNIV = {}"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1538
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1539
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1540
lemma Diff_insert0 [simp]: "x \<notin> A ==> A - insert x B = A - B"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1541
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1542
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1543
lemma Diff_insert: "A - insert a B = A - B - {a}"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1544
  -- {* NOT SUITABLE FOR REWRITING since @{text "{a} == insert a 0"} *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1545
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1546
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1547
lemma Diff_insert2: "A - insert a B = A - {a} - B"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1548
  -- {* NOT SUITABLE FOR REWRITING since @{text "{a} == insert a 0"} *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1549
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1550
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1551
lemma insert_Diff_if: "insert x A - B = (if x \<in> B then A - B else insert x (A - B))"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1552
  by auto
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1553
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1554
lemma insert_Diff1 [simp]: "x \<in> B ==> insert x A - B = A - B"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1555
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1556
14302
6c24235e8d5d *** empty log message ***
nipkow
parents: 14208
diff changeset
  1557
lemma insert_Diff_single[simp]: "insert a (A - {a}) = insert a A"
6c24235e8d5d *** empty log message ***
nipkow
parents: 14208
diff changeset
  1558
by blast
6c24235e8d5d *** empty log message ***
nipkow
parents: 14208
diff changeset
  1559
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1560
lemma insert_Diff: "a \<in> A ==> insert a (A - {a}) = A"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1561
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1562
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1563
lemma Diff_insert_absorb: "x \<notin> A ==> (insert x A) - {x} = A"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1564
  by auto
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1565
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1566
lemma Diff_disjoint [simp]: "A \<inter> (B - A) = {}"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1567
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1568
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1569
lemma Diff_partition: "A \<subseteq> B ==> A \<union> (B - A) = B"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1570
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1571
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1572
lemma double_diff: "A \<subseteq> B ==> B \<subseteq> C ==> B - (C - A) = A"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1573
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1574
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1575
lemma Un_Diff_cancel [simp]: "A \<union> (B - A) = A \<union> B"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1576
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1577
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1578
lemma Un_Diff_cancel2 [simp]: "(B - A) \<union> A = B \<union> A"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1579
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1580
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1581
lemma Diff_Un: "A - (B \<union> C) = (A - B) \<inter> (A - C)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1582
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1583
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1584
lemma Diff_Int: "A - (B \<inter> C) = (A - B) \<union> (A - C)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1585
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1586
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1587
lemma Un_Diff: "(A \<union> B) - C = (A - C) \<union> (B - C)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1588
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1589
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1590
lemma Int_Diff: "(A \<inter> B) - C = A \<inter> (B - C)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1591
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1592
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1593
lemma Diff_Int_distrib: "C \<inter> (A - B) = (C \<inter> A) - (C \<inter> B)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1594
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1595
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1596
lemma Diff_Int_distrib2: "(A - B) \<inter> C = (A \<inter> C) - (B \<inter> C)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1597
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1598
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1599
lemma Diff_Compl [simp]: "A - (- B) = A \<inter> B"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1600
  by auto
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1601
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1602
lemma Compl_Diff_eq [simp]: "- (A - B) = -A \<union> B"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1603
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1604
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1605
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1606
text {* \medskip Quantification over type @{typ bool}. *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1607
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1608
lemma all_bool_eq: "(\<forall>b::bool. P b) = (P True & P False)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1609
  apply auto
14208
144f45277d5a misc tidying
paulson
parents: 14098
diff changeset
  1610
  apply (tactic {* case_tac "b" 1 *}, auto)
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1611
  done
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1612
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1613
lemma bool_induct: "P True \<Longrightarrow> P False \<Longrightarrow> P x"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1614
  by (rule conjI [THEN all_bool_eq [THEN iffD2], THEN spec])
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1615
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1616
lemma ex_bool_eq: "(\<exists>b::bool. P b) = (P True | P False)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1617
  apply auto
14208
144f45277d5a misc tidying
paulson
parents: 14098
diff changeset
  1618
  apply (tactic {* case_tac "b" 1 *}, auto)
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1619
  done
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1620
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1621
lemma Un_eq_UN: "A \<union> B = (\<Union>b. if b then A else B)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1622
  by (auto simp add: split_if_mem2)
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1623
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1624
lemma UN_bool_eq: "(\<Union>b::bool. A b) = (A True \<union> A False)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1625
  apply auto
14208
144f45277d5a misc tidying
paulson
parents: 14098
diff changeset
  1626
  apply (tactic {* case_tac "b" 1 *}, auto)
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1627
  done
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1628
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1629
lemma INT_bool_eq: "(\<Inter>b::bool. A b) = (A True \<inter> A False)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1630
  apply auto
14208
144f45277d5a misc tidying
paulson
parents: 14098
diff changeset
  1631
  apply (tactic {* case_tac "b" 1 *}, auto)
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1632
  done
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1633
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1634
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1635
text {* \medskip @{text Pow} *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1636
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1637
lemma Pow_empty [simp]: "Pow {} = {{}}"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1638
  by (auto simp add: Pow_def)
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1639
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1640
lemma Pow_insert: "Pow (insert a A) = Pow A \<union> (insert a ` Pow A)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1641
  by (blast intro: image_eqI [where ?x = "u - {a}", standard])
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1642
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1643
lemma Pow_Compl: "Pow (- A) = {-B | B. A \<in> Pow B}"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1644
  by (blast intro: exI [where ?x = "- u", standard])
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1645
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1646
lemma Pow_UNIV [simp]: "Pow UNIV = UNIV"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1647
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1648
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1649
lemma Un_Pow_subset: "Pow A \<union> Pow B \<subseteq> Pow (A \<union> B)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1650
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1651
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1652
lemma UN_Pow_subset: "(\<Union>x\<in>A. Pow (B x)) \<subseteq> Pow (\<Union>x\<in>A. B x)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1653
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1654
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1655
lemma subset_Pow_Union: "A \<subseteq> Pow (\<Union>A)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1656
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1657
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1658
lemma Union_Pow_eq [simp]: "\<Union>(Pow A) = A"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1659
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1660
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1661
lemma Pow_Int_eq [simp]: "Pow (A \<inter> B) = Pow A \<inter> Pow B"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1662
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1663
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1664
lemma Pow_INT_eq: "Pow (\<Inter>x\<in>A. B x) = (\<Inter>x\<in>A. Pow (B x))"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1665
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1666
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1667
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1668
text {* \medskip Miscellany. *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1669
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1670
lemma set_eq_subset: "(A = B) = (A \<subseteq> B & B \<subseteq> A)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1671
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1672
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1673
lemma subset_iff: "(A \<subseteq> B) = (\<forall>t. t \<in> A --> t \<in> B)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1674
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1675
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1676
lemma subset_iff_psubset_eq: "(A \<subseteq> B) = ((A \<subset> B) | (A = B))"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1677
  by (unfold psubset_def) blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1678
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1679
lemma all_not_in_conv [iff]: "(\<forall>x. x \<notin> A) = (A = {})"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1680
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1681
13831
ab27b36aba99 new lemma
paulson
parents: 13826
diff changeset
  1682
lemma ex_in_conv: "(\<exists>x. x \<in> A) = (A \<noteq> {})"
ab27b36aba99 new lemma
paulson
parents: 13826
diff changeset
  1683
  by blast
ab27b36aba99 new lemma
paulson
parents: 13826
diff changeset
  1684
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1685
lemma distinct_lemma: "f x \<noteq> f y ==> x \<noteq> y"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1686
  by rules
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1687
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1688
13860
b681a3cb0beb new UN/INT simprules
paulson
parents: 13858
diff changeset
  1689
text {* \medskip Miniscoping: pushing in quantifiers and big Unions
b681a3cb0beb new UN/INT simprules
paulson
parents: 13858
diff changeset
  1690
           and Intersections. *}
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1691
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1692
lemma UN_simps [simp]:
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1693
  "!!a B C. (UN x:C. insert a (B x)) = (if C={} then {} else insert a (UN x:C. B x))"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1694
  "!!A B C. (UN x:C. A x Un B)   = ((if C={} then {} else (UN x:C. A x) Un B))"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1695
  "!!A B C. (UN x:C. A Un B x)   = ((if C={} then {} else A Un (UN x:C. B x)))"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1696
  "!!A B C. (UN x:C. A x Int B)  = ((UN x:C. A x) Int B)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1697
  "!!A B C. (UN x:C. A Int B x)  = (A Int (UN x:C. B x))"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1698
  "!!A B C. (UN x:C. A x - B)    = ((UN x:C. A x) - B)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1699
  "!!A B C. (UN x:C. A - B x)    = (A - (INT x:C. B x))"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1700
  "!!A B. (UN x: Union A. B x) = (UN y:A. UN x:y. B x)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1701
  "!!A B C. (UN z: UNION A B. C z) = (UN  x:A. UN z: B(x). C z)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1702
  "!!A B f. (UN x:f`A. B x)     = (UN a:A. B (f a))"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1703
  by auto
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1704
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1705
lemma INT_simps [simp]:
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1706
  "!!A B C. (INT x:C. A x Int B) = (if C={} then UNIV else (INT x:C. A x) Int B)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1707
  "!!A B C. (INT x:C. A Int B x) = (if C={} then UNIV else A Int (INT x:C. B x))"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1708
  "!!A B C. (INT x:C. A x - B)   = (if C={} then UNIV else (INT x:C. A x) - B)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1709
  "!!A B C. (INT x:C. A - B x)   = (if C={} then UNIV else A - (UN x:C. B x))"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1710
  "!!a B C. (INT x:C. insert a (B x)) = insert a (INT x:C. B x)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1711
  "!!A B C. (INT x:C. A x Un B)  = ((INT x:C. A x) Un B)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1712
  "!!A B C. (INT x:C. A Un B x)  = (A Un (INT x:C. B x))"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1713
  "!!A B. (INT x: Union A. B x) = (INT y:A. INT x:y. B x)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1714
  "!!A B C. (INT z: UNION A B. C z) = (INT x:A. INT z: B(x). C z)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1715
  "!!A B f. (INT x:f`A. B x)    = (INT a:A. B (f a))"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1716
  by auto
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1717
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1718
lemma ball_simps [simp]:
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1719
  "!!A P Q. (ALL x:A. P x | Q) = ((ALL x:A. P x) | Q)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1720
  "!!A P Q. (ALL x:A. P | Q x) = (P | (ALL x:A. Q x))"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1721
  "!!A P Q. (ALL x:A. P --> Q x) = (P --> (ALL x:A. Q x))"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1722
  "!!A P Q. (ALL x:A. P x --> Q) = ((EX x:A. P x) --> Q)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1723
  "!!P. (ALL x:{}. P x) = True"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1724
  "!!P. (ALL x:UNIV. P x) = (ALL x. P x)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1725
  "!!a B P. (ALL x:insert a B. P x) = (P a & (ALL x:B. P x))"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1726
  "!!A P. (ALL x:Union A. P x) = (ALL y:A. ALL x:y. P x)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1727
  "!!A B P. (ALL x: UNION A B. P x) = (ALL a:A. ALL x: B a. P x)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1728
  "!!P Q. (ALL x:Collect Q. P x) = (ALL x. Q x --> P x)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1729
  "!!A P f. (ALL x:f`A. P x) = (ALL x:A. P (f x))"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1730
  "!!A P. (~(ALL x:A. P x)) = (EX x:A. ~P x)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1731
  by auto
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1732
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1733
lemma bex_simps [simp]:
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1734
  "!!A P Q. (EX x:A. P x & Q) = ((EX x:A. P x) & Q)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1735
  "!!A P Q. (EX x:A. P & Q x) = (P & (EX x:A. Q x))"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1736
  "!!P. (EX x:{}. P x) = False"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1737
  "!!P. (EX x:UNIV. P x) = (EX x. P x)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1738
  "!!a B P. (EX x:insert a B. P x) = (P(a) | (EX x:B. P x))"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1739
  "!!A P. (EX x:Union A. P x) = (EX y:A. EX x:y. P x)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1740
  "!!A B P. (EX x: UNION A B. P x) = (EX a:A. EX x:B a. P x)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1741
  "!!P Q. (EX x:Collect Q. P x) = (EX x. Q x & P x)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1742
  "!!A P f. (EX x:f`A. P x) = (EX x:A. P (f x))"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1743
  "!!A P. (~(EX x:A. P x)) = (ALL x:A. ~P x)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1744
  by auto
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1745
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1746
lemma ball_conj_distrib:
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1747
  "(ALL x:A. P x & Q x) = ((ALL x:A. P x) & (ALL x:A. Q x))"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1748
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1749
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1750
lemma bex_disj_distrib:
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1751
  "(EX x:A. P x | Q x) = ((EX x:A. P x) | (EX x:A. Q x))"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1752
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1753
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1754
13860
b681a3cb0beb new UN/INT simprules
paulson
parents: 13858
diff changeset
  1755
text {* \medskip Maxiscoping: pulling out big Unions and Intersections. *}
b681a3cb0beb new UN/INT simprules
paulson
parents: 13858
diff changeset
  1756
b681a3cb0beb new UN/INT simprules
paulson
parents: 13858
diff changeset
  1757
lemma UN_extend_simps:
b681a3cb0beb new UN/INT simprules
paulson
parents: 13858
diff changeset
  1758
  "!!a B C. insert a (UN x:C. B x) = (if C={} then {a} else (UN x:C. insert a (B x)))"
b681a3cb0beb new UN/INT simprules
paulson
parents: 13858
diff changeset
  1759
  "!!A B C. (UN x:C. A x) Un B    = (if C={} then B else (UN x:C. A x Un B))"
b681a3cb0beb new UN/INT simprules
paulson
parents: 13858
diff changeset
  1760
  "!!A B C. A Un (UN x:C. B x)   = (if C={} then A else (UN x:C. A Un B x))"
b681a3cb0beb new UN/INT simprules
paulson
parents: 13858
diff changeset
  1761
  "!!A B C. ((UN x:C. A x) Int B) = (UN x:C. A x Int B)"
b681a3cb0beb new UN/INT simprules
paulson
parents: 13858
diff changeset
  1762
  "!!A B C. (A Int (UN x:C. B x)) = (UN x:C. A Int B x)"
b681a3cb0beb new UN/INT simprules
paulson
parents: 13858
diff changeset
  1763
  "!!A B C. ((UN x:C. A x) - B) = (UN x:C. A x - B)"
b681a3cb0beb new UN/INT simprules
paulson
parents: 13858
diff changeset
  1764
  "!!A B C. (A - (INT x:C. B x)) = (UN x:C. A - B x)"
b681a3cb0beb new UN/INT simprules
paulson
parents: 13858
diff changeset
  1765
  "!!A B. (UN y:A. UN x:y. B x) = (UN x: Union A. B x)"
b681a3cb0beb new UN/INT simprules
paulson
parents: 13858
diff changeset
  1766
  "!!A B C. (UN  x:A. UN z: B(x). C z) = (UN z: UNION A B. C z)"
b681a3cb0beb new UN/INT simprules
paulson
parents: 13858
diff changeset
  1767
  "!!A B f. (UN a:A. B (f a)) = (UN x:f`A. B x)"
b681a3cb0beb new UN/INT simprules
paulson
parents: 13858
diff changeset
  1768
  by auto
b681a3cb0beb new UN/INT simprules
paulson
parents: 13858
diff changeset
  1769
b681a3cb0beb new UN/INT simprules
paulson
parents: 13858
diff changeset
  1770
lemma INT_extend_simps:
b681a3cb0beb new UN/INT simprules
paulson
parents: 13858
diff changeset
  1771
  "!!A B C. (INT x:C. A x) Int B = (if C={} then B else (INT x:C. A x Int B))"
b681a3cb0beb new UN/INT simprules
paulson
parents: 13858
diff changeset
  1772
  "!!A B C. A Int (INT x:C. B x) = (if C={} then A else (INT x:C. A Int B x))"
b681a3cb0beb new UN/INT simprules
paulson
parents: 13858
diff changeset
  1773
  "!!A B C. (INT x:C. A x) - B   = (if C={} then UNIV-B else (INT x:C. A x - B))"
b681a3cb0beb new UN/INT simprules
paulson
parents: 13858
diff changeset
  1774
  "!!A B C. A - (UN x:C. B x)   = (if C={} then A else (INT x:C. A - B x))"
b681a3cb0beb new UN/INT simprules
paulson
parents: 13858
diff changeset
  1775
  "!!a B C. insert a (INT x:C. B x) = (INT x:C. insert a (B x))"
b681a3cb0beb new UN/INT simprules
paulson
parents: 13858
diff changeset
  1776
  "!!A B C. ((INT x:C. A x) Un B)  = (INT x:C. A x Un B)"
b681a3cb0beb new UN/INT simprules
paulson
parents: 13858
diff changeset
  1777
  "!!A B C. A Un (INT x:C. B x)  = (INT x:C. A Un B x)"
b681a3cb0beb new UN/INT simprules
paulson
parents: 13858
diff changeset
  1778
  "!!A B. (INT y:A. INT x:y. B x) = (INT x: Union A. B x)"
b681a3cb0beb new UN/INT simprules
paulson
parents: 13858
diff changeset
  1779
  "!!A B C. (INT x:A. INT z: B(x). C z) = (INT z: UNION A B. C z)"
b681a3cb0beb new UN/INT simprules
paulson
parents: 13858
diff changeset
  1780
  "!!A B f. (INT a:A. B (f a))    = (INT x:f`A. B x)"
b681a3cb0beb new UN/INT simprules
paulson
parents: 13858
diff changeset
  1781
  by auto
b681a3cb0beb new UN/INT simprules
paulson
parents: 13858
diff changeset
  1782
b681a3cb0beb new UN/INT simprules
paulson
parents: 13858
diff changeset
  1783
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1784
subsubsection {* Monotonicity of various operations *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1785
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1786
lemma image_mono: "A \<subseteq> B ==> f`A \<subseteq> f`B"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1787
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1788
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1789
lemma Pow_mono: "A \<subseteq> B ==> Pow A \<subseteq> Pow B"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1790
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1791
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1792
lemma Union_mono: "A \<subseteq> B ==> \<Union>A \<subseteq> \<Union>B"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1793
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1794
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1795
lemma Inter_anti_mono: "B \<subseteq> A ==> \<Inter>A \<subseteq> \<Inter>B"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1796
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1797
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1798
lemma UN_mono:
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1799
  "A \<subseteq> B ==> (!!x. x \<in> A ==> f x \<subseteq> g x) ==>
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1800
    (\<Union>x\<in>A. f x) \<subseteq> (\<Union>x\<in>B. g x)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1801
  by (blast dest: subsetD)
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1802
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1803
lemma INT_anti_mono:
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1804
  "B \<subseteq> A ==> (!!x. x \<in> A ==> f x \<subseteq> g x) ==>
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1805
    (\<Inter>x\<in>A. f x) \<subseteq> (\<Inter>x\<in>A. g x)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1806
  -- {* The last inclusion is POSITIVE! *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1807
  by (blast dest: subsetD)
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1808
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1809
lemma insert_mono: "C \<subseteq> D ==> insert a C \<subseteq> insert a D"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1810
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1811
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1812
lemma Un_mono: "A \<subseteq> C ==> B \<subseteq> D ==> A \<union> B \<subseteq> C \<union> D"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1813
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1814
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1815
lemma Int_mono: "A \<subseteq> C ==> B \<subseteq> D ==> A \<inter> B \<subseteq> C \<inter> D"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1816
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1817
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1818
lemma Diff_mono: "A \<subseteq> C ==> D \<subseteq> B ==> A - B \<subseteq> C - D"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1819
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1820
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1821
lemma Compl_anti_mono: "A \<subseteq> B ==> -B \<subseteq> -A"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1822
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1823
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1824
text {* \medskip Monotonicity of implications. *}
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1825
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1826
lemma in_mono: "A \<subseteq> B ==> x \<in> A --> x \<in> B"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1827
  apply (rule impI)
14208
144f45277d5a misc tidying
paulson
parents: 14098
diff changeset
  1828
  apply (erule subsetD, assumption)
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1829
  done
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1830
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1831
lemma conj_mono: "P1 --> Q1 ==> P2 --> Q2 ==> (P1 & P2) --> (Q1 & Q2)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1832
  by rules
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1833
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1834
lemma disj_mono: "P1 --> Q1 ==> P2 --> Q2 ==> (P1 | P2) --> (Q1 | Q2)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1835
  by rules
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1836
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1837
lemma imp_mono: "Q1 --> P1 ==> P2 --> Q2 ==> (P1 --> P2) --> (Q1 --> Q2)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1838
  by rules
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1839
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1840
lemma imp_refl: "P --> P" ..
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1841
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1842
lemma ex_mono: "(!!x. P x --> Q x) ==> (EX x. P x) --> (EX x. Q x)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1843
  by rules
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1844
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1845
lemma all_mono: "(!!x. P x --> Q x) ==> (ALL x. P x) --> (ALL x. Q x)"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1846
  by rules
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1847
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1848
lemma Collect_mono: "(!!x. P x --> Q x) ==> Collect P \<subseteq> Collect Q"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1849
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1850
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1851
lemma Int_Collect_mono:
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1852
    "A \<subseteq> B ==> (!!x. x \<in> A ==> P x --> Q x) ==> A \<inter> Collect P \<subseteq> B \<inter> Collect Q"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1853
  by blast
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1854
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1855
lemmas basic_monos =
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1856
  subset_refl imp_refl disj_mono conj_mono
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1857
  ex_mono Collect_mono in_mono
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1858
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1859
lemma eq_to_mono: "a = b ==> c = d ==> b --> d ==> a --> c"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1860
  by rules
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1861
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1862
lemma eq_to_mono2: "a = b ==> c = d ==> ~ b --> ~ d ==> ~ a --> ~ c"
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1863
  by rules
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
  1864
11982
65e2822d83dd lemma Least_mono moved from Typedef.thy to Set.thy;
wenzelm
parents: 11979
diff changeset
  1865
lemma Least_mono:
65e2822d83dd lemma Least_mono moved from Typedef.thy to Set.thy;
wenzelm
parents: 11979
diff changeset
  1866
  "mono (f::'a::order => 'b::order) ==> EX x:S. ALL y:S. x <= y
65e2822d83dd lemma Least_mono moved from Typedef.thy to Set.thy;
wenzelm
parents: 11979
diff changeset
  1867
    ==> (LEAST y. y : f ` S) = f (LEAST x. x : S)"
65e2822d83dd lemma Least_mono moved from Typedef.thy to Set.thy;
wenzelm
parents: 11979
diff changeset
  1868
    -- {* Courtesy of Stephan Merz *}
65e2822d83dd lemma Least_mono moved from Typedef.thy to Set.thy;
wenzelm
parents: 11979
diff changeset
  1869
  apply clarify
14208
144f45277d5a misc tidying
paulson
parents: 14098
diff changeset
  1870
  apply (erule_tac P = "%x. x : S" in LeastI2, fast)
11982
65e2822d83dd lemma Least_mono moved from Typedef.thy to Set.thy;
wenzelm
parents: 11979
diff changeset
  1871
  apply (rule LeastI2)
65e2822d83dd lemma Least_mono moved from Typedef.thy to Set.thy;
wenzelm
parents: 11979
diff changeset
  1872
  apply (auto elim: monoD intro!: order_antisym)
65e2822d83dd lemma Least_mono moved from Typedef.thy to Set.thy;
wenzelm
parents: 11979
diff changeset
  1873
  done
65e2822d83dd lemma Least_mono moved from Typedef.thy to Set.thy;
wenzelm
parents: 11979
diff changeset
  1874
12020
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1875
12257
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1876
subsection {* Inverse image of a function *}
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1877
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1878
constdefs
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1879
  vimage :: "('a => 'b) => 'b set => 'a set"    (infixr "-`" 90)
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1880
  "f -` B == {x. f x : B}"
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1881
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1882
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1883
subsubsection {* Basic rules *}
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1884
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1885
lemma vimage_eq [simp]: "(a : f -` B) = (f a : B)"
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1886
  by (unfold vimage_def) blast
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1887
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1888
lemma vimage_singleton_eq: "(a : f -` {b}) = (f a = b)"
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1889
  by simp
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1890
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1891
lemma vimageI [intro]: "f a = b ==> b:B ==> a : f -` B"
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1892
  by (unfold vimage_def) blast
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1893
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1894
lemma vimageI2: "f a : A ==> a : f -` A"
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1895
  by (unfold vimage_def) fast
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1896
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1897
lemma vimageE [elim!]: "a: f -` B ==> (!!x. f a = x ==> x:B ==> P) ==> P"
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1898
  by (unfold vimage_def) blast
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1899
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1900
lemma vimageD: "a : f -` A ==> f a : A"
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1901
  by (unfold vimage_def) fast
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1902
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1903
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1904
subsubsection {* Equations *}
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1905
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1906
lemma vimage_empty [simp]: "f -` {} = {}"
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1907
  by blast
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1908
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1909
lemma vimage_Compl: "f -` (-A) = -(f -` A)"
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1910
  by blast
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1911
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1912
lemma vimage_Un [simp]: "f -` (A Un B) = (f -` A) Un (f -` B)"
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1913
  by blast
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1914
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1915
lemma vimage_Int [simp]: "f -` (A Int B) = (f -` A) Int (f -` B)"
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1916
  by fast
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1917
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1918
lemma vimage_Union: "f -` (Union A) = (UN X:A. f -` X)"
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1919
  by blast
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1920
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1921
lemma vimage_UN: "f-`(UN x:A. B x) = (UN x:A. f -` B x)"
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1922
  by blast
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1923
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1924
lemma vimage_INT: "f-`(INT x:A. B x) = (INT x:A. f -` B x)"
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1925
  by blast
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1926
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1927
lemma vimage_Collect_eq [simp]: "f -` Collect P = {y. P (f y)}"
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1928
  by blast
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1929
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1930
lemma vimage_Collect: "(!!x. P (f x) = Q x) ==> f -` (Collect P) = Collect Q"
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1931
  by blast
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1932
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1933
lemma vimage_insert: "f-`(insert a B) = (f-`{a}) Un (f-`B)"
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1934
  -- {* NOT suitable for rewriting because of the recurrence of @{term "{a}"}. *}
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1935
  by blast
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1936
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1937
lemma vimage_Diff: "f -` (A - B) = (f -` A) - (f -` B)"
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1938
  by blast
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1939
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1940
lemma vimage_UNIV [simp]: "f -` UNIV = UNIV"
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1941
  by blast
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1942
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1943
lemma vimage_eq_UN: "f-`B = (UN y: B. f-`{y})"
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1944
  -- {* NOT suitable for rewriting *}
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1945
  by blast
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1946
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1947
lemma vimage_mono: "A \<subseteq> B ==> f -` A \<subseteq> f -` B"
12257
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1948
  -- {* monotonicity *}
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1949
  by blast
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1950
e3f7d6fb55d7 theory Inverse_Image converted and moved to Set;
wenzelm
parents: 12114
diff changeset
  1951
12023
wenzelm
parents: 12020
diff changeset
  1952
subsection {* Transitivity rules for calculational reasoning *}
12020
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1953
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1954
lemma forw_subst: "a = b ==> P b ==> P a"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1955
  by (rule ssubst)
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1956
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1957
lemma back_subst: "P a ==> a = b ==> P b"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1958
  by (rule subst)
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1959
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1960
lemma set_rev_mp: "x:A ==> A \<subseteq> B ==> x:B"
12020
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1961
  by (rule subsetD)
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1962
12897
f4d10ad0ea7b converted/deleted equalities.ML, mono.ML, subset.ML (see Set.thy);
wenzelm
parents: 12633
diff changeset
  1963
lemma set_mp: "A \<subseteq> B ==> x:A ==> x:B"
12020
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1964
  by (rule subsetD)
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1965
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1966
lemma order_neq_le_trans: "a ~= b ==> (a::'a::order) <= b ==> a < b"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1967
  by (simp add: order_less_le)
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1968
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1969
lemma order_le_neq_trans: "(a::'a::order) <= b ==> a ~= b ==> a < b"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1970
  by (simp add: order_less_le)
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1971
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1972
lemma order_less_asym': "(a::'a::order) < b ==> b < a ==> P"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1973
  by (rule order_less_asym)
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1974
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1975
lemma ord_le_eq_trans: "a <= b ==> b = c ==> a <= c"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1976
  by (rule subst)
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1977
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1978
lemma ord_eq_le_trans: "a = b ==> b <= c ==> a <= c"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1979
  by (rule ssubst)
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1980
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1981
lemma ord_less_eq_trans: "a < b ==> b = c ==> a < c"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1982
  by (rule subst)
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1983
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1984
lemma ord_eq_less_trans: "a = b ==> b < c ==> a < c"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1985
  by (rule ssubst)
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1986
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1987
lemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==>
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1988
  (!!x y. x < y ==> f x < f y) ==> f a < c"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1989
proof -
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1990
  assume r: "!!x y. x < y ==> f x < f y"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1991
  assume "a < b" hence "f a < f b" by (rule r)
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1992
  also assume "f b < c"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1993
  finally (order_less_trans) show ?thesis .
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1994
qed
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1995
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1996
lemma order_less_subst1: "(a::'a::order) < f b ==> (b::'b::order) < c ==>
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1997
  (!!x y. x < y ==> f x < f y) ==> a < f c"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1998
proof -
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  1999
  assume r: "!!x y. x < y ==> f x < f y"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2000
  assume "a < f b"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2001
  also assume "b < c" hence "f b < f c" by (rule r)
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2002
  finally (order_less_trans) show ?thesis .
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2003
qed
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2004
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2005
lemma order_le_less_subst2: "(a::'a::order) <= b ==> f b < (c::'c::order) ==>
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2006
  (!!x y. x <= y ==> f x <= f y) ==> f a < c"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2007
proof -
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2008
  assume r: "!!x y. x <= y ==> f x <= f y"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2009
  assume "a <= b" hence "f a <= f b" by (rule r)
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2010
  also assume "f b < c"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2011
  finally (order_le_less_trans) show ?thesis .
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2012
qed
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2013
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2014
lemma order_le_less_subst1: "(a::'a::order) <= f b ==> (b::'b::order) < c ==>
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2015
  (!!x y. x < y ==> f x < f y) ==> a < f c"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2016
proof -
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2017
  assume r: "!!x y. x < y ==> f x < f y"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2018
  assume "a <= f b"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2019
  also assume "b < c" hence "f b < f c" by (rule r)
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2020
  finally (order_le_less_trans) show ?thesis .
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2021
qed
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2022
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2023
lemma order_less_le_subst2: "(a::'a::order) < b ==> f b <= (c::'c::order) ==>
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2024
  (!!x y. x < y ==> f x < f y) ==> f a < c"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2025
proof -
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2026
  assume r: "!!x y. x < y ==> f x < f y"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2027
  assume "a < b" hence "f a < f b" by (rule r)
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2028
  also assume "f b <= c"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2029
  finally (order_less_le_trans) show ?thesis .
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2030
qed
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2031
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2032
lemma order_less_le_subst1: "(a::'a::order) < f b ==> (b::'b::order) <= c ==>
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2033
  (!!x y. x <= y ==> f x <= f y) ==> a < f c"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2034
proof -
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2035
  assume r: "!!x y. x <= y ==> f x <= f y"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2036
  assume "a < f b"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2037
  also assume "b <= c" hence "f b <= f c" by (rule r)
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2038
  finally (order_less_le_trans) show ?thesis .
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2039
qed
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2040
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2041
lemma order_subst1: "(a::'a::order) <= f b ==> (b::'b::order) <= c ==>
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2042
  (!!x y. x <= y ==> f x <= f y) ==> a <= f c"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2043
proof -
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2044
  assume r: "!!x y. x <= y ==> f x <= f y"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2045
  assume "a <= f b"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2046
  also assume "b <= c" hence "f b <= f c" by (rule r)
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2047
  finally (order_trans) show ?thesis .
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2048
qed
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2049
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2050
lemma order_subst2: "(a::'a::order) <= b ==> f b <= (c::'c::order) ==>
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2051
  (!!x y. x <= y ==> f x <= f y) ==> f a <= c"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2052
proof -
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2053
  assume r: "!!x y. x <= y ==> f x <= f y"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2054
  assume "a <= b" hence "f a <= f b" by (rule r)
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2055
  also assume "f b <= c"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2056
  finally (order_trans) show ?thesis .
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2057
qed
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2058
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2059
lemma ord_le_eq_subst: "a <= b ==> f b = c ==>
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2060
  (!!x y. x <= y ==> f x <= f y) ==> f a <= c"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2061
proof -
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2062
  assume r: "!!x y. x <= y ==> f x <= f y"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2063
  assume "a <= b" hence "f a <= f b" by (rule r)
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2064
  also assume "f b = c"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2065
  finally (ord_le_eq_trans) show ?thesis .
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2066
qed
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2067
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2068
lemma ord_eq_le_subst: "a = f b ==> b <= c ==>
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2069
  (!!x y. x <= y ==> f x <= f y) ==> a <= f c"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2070
proof -
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2071
  assume r: "!!x y. x <= y ==> f x <= f y"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2072
  assume "a = f b"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2073
  also assume "b <= c" hence "f b <= f c" by (rule r)
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2074
  finally (ord_eq_le_trans) show ?thesis .
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2075
qed
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2076
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2077
lemma ord_less_eq_subst: "a < b ==> f b = c ==>
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2078
  (!!x y. x < y ==> f x < f y) ==> f a < c"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2079
proof -
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2080
  assume r: "!!x y. x < y ==> f x < f y"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2081
  assume "a < b" hence "f a < f b" by (rule r)
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2082
  also assume "f b = c"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2083
  finally (ord_less_eq_trans) show ?thesis .
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2084
qed
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2085
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2086
lemma ord_eq_less_subst: "a = f b ==> b < c ==>
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2087
  (!!x y. x < y ==> f x < f y) ==> a < f c"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2088
proof -
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2089
  assume r: "!!x y. x < y ==> f x < f y"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2090
  assume "a = f b"
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2091
  also assume "b < c" hence "f b < f c" by (rule r)
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2092
  finally (ord_eq_less_trans) show ?thesis .
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2093
qed
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2094
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2095
text {*
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2096
  Note that this list of rules is in reverse order of priorities.
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2097
*}
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2098
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2099
lemmas basic_trans_rules [trans] =
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2100
  order_less_subst2
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2101
  order_less_subst1
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2102
  order_le_less_subst2
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2103
  order_le_less_subst1
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2104
  order_less_le_subst2
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2105
  order_less_le_subst1
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2106
  order_subst2
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2107
  order_subst1
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2108
  ord_le_eq_subst
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2109
  ord_eq_le_subst
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2110
  ord_less_eq_subst
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2111
  ord_eq_less_subst
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2112
  forw_subst
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2113
  back_subst
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2114
  rev_mp
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2115
  mp
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2116
  set_rev_mp
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2117
  set_mp
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2118
  order_neq_le_trans
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2119
  order_le_neq_trans
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2120
  order_less_trans
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2121
  order_less_asym'
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2122
  order_le_less_trans
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2123
  order_less_le_trans
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2124
  order_trans
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2125
  order_antisym
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2126
  ord_le_eq_trans
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2127
  ord_eq_le_trans
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2128
  ord_less_eq_trans
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2129
  ord_eq_less_trans
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2130
  trans
a24373086908 theory Calculation move to Set;
wenzelm
parents: 11982
diff changeset
  2131
11979
0a3dace545c5 converted theory "Set";
wenzelm
parents: 11752
diff changeset
  2132
end