| author | nipkow | 
| Thu, 17 Jan 2002 19:37:42 +0100 | |
| changeset 12793 | e99d4a6cba8b | 
| parent 12481 | ea5d6da573c5 | 
| child 13601 | fd3e3d6b37b2 | 
| permissions | -rw-r--r-- | 
| 12224 | 1 | (* Title: Poly.ML | 
| 2 | Author: Jacques D. Fleuriot | |
| 3 | Copyright: 2000 University of Edinburgh | |
| 4 | Description: Properties of real polynomials following | |
| 5 | John Harrison's HOL-Light implementation. | |
| 6 | Some early theorems by Lucas Dixon | |
| 7 | *) | |
| 8 | ||
| 9 | Goal "p +++ [] = p"; | |
| 10 | by (induct_tac "p" 1); | |
| 11 | by Auto_tac; | |
| 12 | qed "padd_Nil2"; | |
| 13 | Addsimps [padd_Nil2]; | |
| 14 | ||
| 15 | Goal "(h1 # p1) +++ (h2 # p2) = (h1 + h2) # (p1 +++ p2)"; | |
| 16 | by Auto_tac; | |
| 17 | qed "padd_Cons_Cons"; | |
| 18 | ||
| 19 | Goal "-- [] = []"; | |
| 20 | by (rewtac poly_minus_def); | |
| 21 | by (Auto_tac); | |
| 22 | qed "pminus_Nil"; | |
| 23 | Addsimps [pminus_Nil]; | |
| 24 | ||
| 25 | Goal "[h1] *** p1 = h1 %* p1"; | |
| 26 | by (Simp_tac 1); | |
| 27 | qed "pmult_singleton"; | |
| 28 | ||
| 29 | Goal "1 %* t = t"; | |
| 30 | by (induct_tac "t" 1); | |
| 31 | by Auto_tac; | |
| 32 | qed "poly_ident_mult"; | |
| 33 | Addsimps [poly_ident_mult]; | |
| 34 | ||
| 35 | Goal "[a] +++ ((0)#t) = (a#t)"; | |
| 36 | by (Simp_tac 1); | |
| 37 | qed "poly_simple_add_Cons"; | |
| 38 | Addsimps [poly_simple_add_Cons]; | |
| 39 | ||
| 40 | (*-------------------------------------------------------------------------*) | |
| 41 | (* Handy general properties *) | |
| 42 | (*-------------------------------------------------------------------------*) | |
| 43 | ||
| 44 | Goal "b +++ a = a +++ b"; | |
| 45 | by (subgoal_tac "ALL a. b +++ a = a +++ b" 1); | |
| 46 | by (induct_tac "b" 2); | |
| 47 | by Auto_tac; | |
| 48 | by (rtac (padd_Cons RS ssubst) 1); | |
| 49 | by (case_tac "aa" 1); | |
| 50 | by Auto_tac; | |
| 51 | qed "padd_commut"; | |
| 52 | ||
| 53 | Goal "(a +++ b) +++ c = a +++ (b +++ c)"; | |
| 54 | by (subgoal_tac "ALL b c. (a +++ b) +++ c = a +++ (b +++ c)" 1); | |
| 55 | by (Asm_simp_tac 1); | |
| 56 | by (induct_tac "a" 1); | |
| 57 | by (Step_tac 2); | |
| 58 | by (case_tac "b" 2); | |
| 59 | by (Asm_simp_tac 2); | |
| 60 | by (Asm_simp_tac 2); | |
| 61 | by (Asm_simp_tac 1); | |
| 62 | qed "padd_assoc"; | |
| 63 | ||
| 64 | Goal "a %* ( p +++ q ) = (a %* p +++ a %* q)"; | |
| 65 | by (subgoal_tac "ALL q. a %* ( p +++ q ) = (a %* p +++ a %* q) " 1); | |
| 66 | by (induct_tac "p" 2); | |
| 67 | by (Simp_tac 2); | |
| 68 | by (rtac allI 2 ); | |
| 69 | by (case_tac "q" 2); | |
| 70 | by (Asm_simp_tac 2); | |
| 71 | by (asm_simp_tac (simpset() addsimps [real_add_mult_distrib2] ) 2); | |
| 72 | by (Asm_simp_tac 1); | |
| 73 | qed "poly_cmult_distr"; | |
| 74 | ||
| 75 | Goal "[0, 1] *** t = ((0)#t)"; | |
| 76 | by (induct_tac "t" 1); | |
| 77 | by (Simp_tac 1); | |
| 78 | by (simp_tac (simpset() addsimps [poly_ident_mult, padd_commut]) 1); | |
| 79 | by (case_tac "list" 1); | |
| 80 | by (Asm_simp_tac 1); | |
| 81 | by (asm_full_simp_tac (simpset() addsimps [poly_ident_mult, padd_commut]) 1); | |
| 82 | qed "pmult_by_x"; | |
| 83 | Addsimps [pmult_by_x]; | |
| 84 | ||
| 85 | ||
| 86 | (*-------------------------------------------------------------------------*) | |
| 87 | (* properties of evaluation of polynomials. *) | |
| 88 | (*-------------------------------------------------------------------------*) | |
| 89 | ||
| 90 | Goal "poly (p1 +++ p2) x = poly p1 x + poly p2 x"; | |
| 91 | by (subgoal_tac "ALL p2. poly (p1 +++ p2) x = poly( p1 ) x + poly( p2 ) x" 1); | |
| 92 | by (induct_tac "p1" 2); | |
| 93 | by Auto_tac; | |
| 94 | by (case_tac "p2" 1); | |
| 95 | by (auto_tac (claset(),simpset() addsimps [real_add_mult_distrib2])); | |
| 96 | qed "poly_add"; | |
| 97 | ||
| 98 | Goal "poly (c %* p) x = c * poly p x"; | |
| 99 | by (induct_tac "p" 1); | |
| 100 | by (case_tac "x=0" 2); | |
| 101 | by (auto_tac (claset(),simpset() addsimps [real_add_mult_distrib2] | |
| 102 | @ real_mult_ac)); | |
| 103 | qed "poly_cmult"; | |
| 104 | ||
| 105 | Goalw [poly_minus_def] "poly (-- p) x = - (poly p x)"; | |
| 106 | by (auto_tac (claset(),simpset() addsimps [poly_cmult])); | |
| 107 | qed "poly_minus"; | |
| 108 | ||
| 109 | Goal "poly (p1 *** p2) x = poly p1 x * poly p2 x"; | |
| 110 | by (subgoal_tac "ALL p2. poly (p1 *** p2) x = poly p1 x * poly p2 x" 1); | |
| 111 | by (Asm_simp_tac 1); | |
| 112 | by (induct_tac "p1" 1); | |
| 113 | by (auto_tac (claset(),simpset() addsimps [poly_cmult])); | |
| 114 | by (case_tac "list" 1); | |
| 115 | by (auto_tac (claset(),simpset() addsimps [poly_cmult,poly_add, | |
| 116 | real_add_mult_distrib,real_add_mult_distrib2] @ real_mult_ac)); | |
| 117 | qed "poly_mult"; | |
| 118 | ||
| 119 | Goal "poly (p %^ n) x = (poly p x) ^ n"; | |
| 120 | by (induct_tac "n" 1); | |
| 121 | by (auto_tac (claset(),simpset() addsimps [poly_cmult, poly_mult])); | |
| 122 | qed "poly_exp"; | |
| 123 | ||
| 124 | (*-------------------------------------------------------------------------*) | |
| 125 | (* More Polynomial Evaluation Lemmas *) | |
| 126 | (*-------------------------------------------------------------------------*) | |
| 127 | ||
| 128 | Goal "poly (a +++ []) x = poly a x"; | |
| 129 | by (Simp_tac 1); | |
| 130 | qed "poly_add_rzero"; | |
| 131 | Addsimps [poly_add_rzero]; | |
| 132 | ||
| 133 | Goal "poly ((a *** b) *** c) x = poly (a *** (b *** c)) x"; | |
| 134 | by (simp_tac (simpset() addsimps [poly_mult,real_mult_assoc]) 1); | |
| 135 | qed "poly_mult_assoc"; | |
| 136 | ||
| 137 | Goal "poly (p *** []) x = 0"; | |
| 138 | by (induct_tac "p" 1); | |
| 139 | by Auto_tac; | |
| 140 | qed "poly_mult_Nil2"; | |
| 141 | Addsimps [poly_mult_Nil2]; | |
| 142 | ||
| 143 | Goal "poly (p %^ (n + d)) x = poly( p %^ n *** p %^ d ) x"; | |
| 144 | by (induct_tac "n" 1); | |
| 145 | by (auto_tac (claset(), simpset() addsimps [poly_mult,real_mult_assoc])); | |
| 146 | qed "poly_exp_add"; | |
| 147 | ||
| 148 | (*-------------------------------------------------------------------------*) | |
| 149 | (* The derivative *) | |
| 150 | (*-------------------------------------------------------------------------*) | |
| 151 | ||
| 152 | Goalw [pderiv_def] "pderiv [] = []"; | |
| 153 | by (Simp_tac 1); | |
| 154 | qed "pderiv_Nil"; | |
| 155 | Addsimps [pderiv_Nil]; | |
| 156 | ||
| 157 | Goalw [pderiv_def] "pderiv [c] = []"; | |
| 158 | by (Simp_tac 1); | |
| 159 | qed "pderiv_singleton"; | |
| 160 | Addsimps [pderiv_singleton]; | |
| 161 | ||
| 162 | Goalw [pderiv_def] "pderiv (h#t) = pderiv_aux 1 t"; | |
| 163 | by (Simp_tac 1); | |
| 164 | qed "pderiv_Cons"; | |
| 165 | ||
| 166 | Goal "DERIV f x :> D ==> DERIV (%x. (f x) * c) x :> D * c"; | |
| 167 | by (auto_tac (claset() addIs [DERIV_cmult,real_mult_commute RS subst], | |
| 168 | simpset() addsimps [real_mult_commute])); | |
| 169 | qed "DERIV_cmult2"; | |
| 170 | ||
| 171 | Goal "DERIV (%x. x ^ Suc n) x :> real (Suc n) * (x ^ n)"; | |
| 172 | by (rtac lemma_DERIV_subst 1 THEN rtac DERIV_pow 1); | |
| 173 | by (Simp_tac 1); | |
| 174 | qed "DERIV_pow2"; | |
| 175 | Addsimps [DERIV_pow2,DERIV_pow]; | |
| 176 | ||
| 177 | Goal "ALL n. DERIV (%x. (x ^ (Suc n) * poly p x)) x :> \ | |
| 178 | \ x ^ n * poly (pderiv_aux (Suc n) p) x "; | |
| 179 | by (induct_tac "p" 1); | |
| 180 | by (auto_tac (claset() addSIs [DERIV_add,DERIV_cmult2],simpset() addsimps | |
| 181 | [pderiv_def,real_add_mult_distrib2,real_mult_assoc RS sym] delsimps | |
| 182 | [realpow_Suc])); | |
| 183 | by (rtac (real_mult_commute RS subst) 1); | |
| 184 | by (simp_tac (simpset() delsimps [realpow_Suc]) 1); | |
| 185 | by (asm_full_simp_tac (simpset() addsimps [real_mult_commute,realpow_Suc RS sym] | |
| 186 | delsimps [realpow_Suc]) 1); | |
| 187 | qed "lemma_DERIV_poly1"; | |
| 188 | ||
| 189 | Goal "DERIV (%x. (x ^ (Suc n) * poly p x)) x :> \ | |
| 190 | \ x ^ n * poly (pderiv_aux (Suc n) p) x "; | |
| 191 | by (simp_tac (simpset() addsimps [lemma_DERIV_poly1] delsimps [realpow_Suc]) 1); | |
| 192 | qed "lemma_DERIV_poly"; | |
| 193 | ||
| 194 | Goal "DERIV f x :> D ==> DERIV (%x. a + f x) x :> D"; | |
| 195 | by (rtac lemma_DERIV_subst 1 THEN rtac DERIV_add 1); | |
| 196 | by Auto_tac; | |
| 197 | qed "DERIV_add_const"; | |
| 198 | ||
| 199 | Goal "DERIV (%x. poly p x) x :> poly (pderiv p) x"; | |
| 200 | by (induct_tac "p" 1); | |
| 201 | by (auto_tac (claset(),simpset() addsimps [pderiv_Cons])); | |
| 202 | by (rtac DERIV_add_const 1); | |
| 203 | by (rtac lemma_DERIV_subst 1); | |
| 204 | by (rtac (full_simplify (simpset()) | |
| 205 |     (read_instantiate [("n","0")] lemma_DERIV_poly)) 1);
 | |
| 206 | by (simp_tac (simpset() addsimps [CLAIM "1 = 1"]) 1); | |
| 207 | qed "poly_DERIV"; | |
| 208 | Addsimps [poly_DERIV]; | |
| 209 | ||
| 210 | ||
| 211 | (*-------------------------------------------------------------------------*) | |
| 212 | (* Consequences of the derivative theorem above *) | |
| 213 | (*-------------------------------------------------------------------------*) | |
| 214 | ||
| 215 | Goalw [differentiable_def] "(%x. poly p x) differentiable x"; | |
| 216 | by (blast_tac (claset() addIs [poly_DERIV]) 1); | |
| 217 | qed "poly_differentiable"; | |
| 218 | Addsimps [poly_differentiable]; | |
| 219 | ||
| 220 | Goal "isCont (%x. poly p x) x"; | |
| 221 | by (rtac (poly_DERIV RS DERIV_isCont) 1); | |
| 222 | qed "poly_isCont"; | |
| 223 | Addsimps [poly_isCont]; | |
| 224 | ||
| 225 | Goal "[| a < b; poly p a < 0; 0 < poly p b |] \ | |
| 226 | \ ==> EX x. a < x & x < b & (poly p x = 0)"; | |
| 227 | by (cut_inst_tac [("f","%x. poly p x"),("a","a"),("b","b"),("y","0")] 
 | |
| 228 | IVT_objl 1); | |
| 229 | by (auto_tac (claset(),simpset() addsimps [real_le_less])); | |
| 230 | qed "poly_IVT_pos"; | |
| 231 | ||
| 232 | Goal "[| a < b; 0 < poly p a; poly p b < 0 |] \ | |
| 233 | \ ==> EX x. a < x & x < b & (poly p x = 0)"; | |
| 234 | by (blast_tac (claset() addIs [full_simplify (simpset() | |
| 235 | addsimps [poly_minus, rename_numerals real_minus_zero_less_iff2]) | |
| 236 |    (read_instantiate [("p","-- p")] poly_IVT_pos)]) 1);
 | |
| 237 | qed "poly_IVT_neg"; | |
| 238 | ||
| 239 | Goal "a < b ==> \ | |
| 240 | \ EX x. a < x & x < b & (poly p b - poly p a = (b - a) * poly (pderiv p) x)"; | |
| 241 | by (dres_inst_tac [("f","poly p")] MVT 1);
 | |
| 242 | by Auto_tac; | |
| 243 | by (res_inst_tac [("x","z")] exI 1);
 | |
| 244 | by (auto_tac (claset() addDs [ARITH_PROVE | |
| 245 | "[| a < z; z < b |] ==> (b - (a::real)) ~= 0"],simpset() | |
| 246 | addsimps [real_mult_left_cancel,poly_DERIV RS DERIV_unique])); | |
| 247 | qed "poly_MVT"; | |
| 248 | ||
| 249 | ||
| 250 | (*-------------------------------------------------------------------------*) | |
| 251 | (* Lemmas for Derivatives *) | |
| 252 | (*-------------------------------------------------------------------------*) | |
| 253 | ||
| 254 | Goal "ALL p2 n. poly (pderiv_aux n (p1 +++ p2)) x = \ | |
| 255 | \ poly (pderiv_aux n p1 +++ pderiv_aux n p2) x"; | |
| 256 | by (induct_tac "p1" 1); | |
| 257 | by (Step_tac 2); | |
| 258 | by (case_tac "p2" 2); | |
| 259 | by (auto_tac (claset(),simpset() addsimps [real_add_mult_distrib2])); | |
| 260 | qed "lemma_poly_pderiv_aux_add"; | |
| 261 | ||
| 262 | Goal "poly (pderiv_aux n (p1 +++ p2)) x = \ | |
| 263 | \ poly (pderiv_aux n p1 +++ pderiv_aux n p2) x"; | |
| 264 | by (simp_tac (simpset() addsimps [lemma_poly_pderiv_aux_add]) 1); | |
| 265 | qed "poly_pderiv_aux_add"; | |
| 266 | ||
| 267 | Goal "ALL n. poly (pderiv_aux n (c %* p) ) x = poly (c %* pderiv_aux n p) x"; | |
| 268 | by (induct_tac "p" 1); | |
| 269 | by (auto_tac (claset(),simpset() addsimps [poly_cmult] @ real_mult_ac)); | |
| 270 | qed "lemma_poly_pderiv_aux_cmult"; | |
| 271 | ||
| 272 | Goal "poly (pderiv_aux n (c %* p) ) x = poly (c %* pderiv_aux n p) x"; | |
| 273 | by (simp_tac (simpset() addsimps [lemma_poly_pderiv_aux_cmult]) 1); | |
| 274 | qed "poly_pderiv_aux_cmult"; | |
| 275 | ||
| 276 | Goalw [poly_minus_def] | |
| 277 | "poly (pderiv_aux n (-- p)) x = poly (-- pderiv_aux n p) x"; | |
| 278 | by (simp_tac (simpset() addsimps [poly_pderiv_aux_cmult]) 1); | |
| 279 | qed "poly_pderiv_aux_minus"; | |
| 280 | ||
| 281 | Goal "ALL n. poly (pderiv_aux (Suc n) p) x = poly ((pderiv_aux n p) +++ p) x"; | |
| 282 | by (induct_tac "p" 1); | |
| 283 | by (auto_tac (claset(),simpset() addsimps [real_of_nat_Suc, | |
| 284 | real_add_mult_distrib])); | |
| 285 | qed "lemma_poly_pderiv_aux_mult1"; | |
| 286 | ||
| 287 | Goal "poly (pderiv_aux (Suc n) p) x = poly ((pderiv_aux n p) +++ p) x"; | |
| 288 | by (simp_tac (simpset() addsimps [lemma_poly_pderiv_aux_mult1]) 1); | |
| 289 | qed "lemma_poly_pderiv_aux_mult"; | |
| 290 | ||
| 291 | Goal "ALL q. poly (pderiv (p +++ q)) x = poly (pderiv p +++ pderiv q) x"; | |
| 292 | by (induct_tac "p" 1); | |
| 293 | by (Step_tac 2); | |
| 294 | by (case_tac "q" 2); | |
| 295 | by (auto_tac (claset(),simpset() addsimps [poly_pderiv_aux_add,poly_add, | |
| 296 | pderiv_def])); | |
| 297 | qed "lemma_poly_pderiv_add"; | |
| 298 | ||
| 299 | Goal "poly (pderiv (p +++ q)) x = poly (pderiv p +++ pderiv q) x"; | |
| 300 | by (simp_tac (simpset() addsimps [lemma_poly_pderiv_add]) 1); | |
| 301 | qed "poly_pderiv_add"; | |
| 302 | ||
| 303 | Goal "poly (pderiv (c %* p)) x = poly (c %* (pderiv p)) x"; | |
| 304 | by (induct_tac "p" 1); | |
| 305 | by (auto_tac (claset(),simpset() addsimps [poly_pderiv_aux_cmult,poly_cmult, | |
| 306 | pderiv_def])); | |
| 307 | qed "poly_pderiv_cmult"; | |
| 308 | ||
| 309 | Goalw [poly_minus_def] "poly (pderiv (--p)) x = poly (--(pderiv p)) x"; | |
| 310 | by (simp_tac (simpset() addsimps [poly_pderiv_cmult]) 1); | |
| 311 | qed "poly_pderiv_minus"; | |
| 312 | ||
| 313 | Goalw [pderiv_def] | |
| 314 | "poly (pderiv (h#t)) x = poly ((0 # (pderiv t)) +++ t) x"; | |
| 315 | by (induct_tac "t" 1); | |
| 316 | by (auto_tac (claset(),simpset() addsimps [poly_add, | |
| 317 | lemma_poly_pderiv_aux_mult])); | |
| 318 | qed "lemma_poly_mult_pderiv"; | |
| 319 | ||
| 320 | Goal "ALL q. poly (pderiv (p *** q)) x = \ | |
| 321 | \ poly (p *** (pderiv q) +++ q *** (pderiv p)) x"; | |
| 322 | by (induct_tac "p" 1); | |
| 323 | by (auto_tac (claset(),simpset() addsimps [poly_add,poly_cmult, | |
| 324 | poly_pderiv_cmult,poly_pderiv_add,poly_mult])); | |
| 325 | by (rtac (lemma_poly_mult_pderiv RS ssubst) 1); | |
| 326 | by (rtac (lemma_poly_mult_pderiv RS ssubst) 1); | |
| 327 | by (rtac (poly_add RS ssubst) 1); | |
| 328 | by (rtac (poly_add RS ssubst) 1); | |
| 329 | by (asm_simp_tac (simpset() addsimps [poly_mult,real_add_mult_distrib2] | |
| 330 | @ real_add_ac @ real_mult_ac) 1); | |
| 331 | qed "poly_pderiv_mult"; | |
| 332 | ||
| 333 | Goal "poly (pderiv (p %^ (Suc n))) x = \ | |
| 334 | \ poly ((real (Suc n)) %* (p %^ n) *** pderiv p ) x"; | |
| 335 | by (induct_tac "n" 1); | |
| 336 | by (auto_tac (claset(),simpset() addsimps [poly_add,poly_pderiv_cmult, | |
| 337 | poly_cmult,poly_pderiv_mult,real_of_nat_zero,poly_mult, | |
| 338 | real_of_nat_Suc,real_add_mult_distrib2,real_add_mult_distrib] | |
| 339 | @ real_mult_ac)); | |
| 340 | qed "poly_pderiv_exp"; | |
| 341 | ||
| 342 | Goal "poly (pderiv ([-a, 1] %^ (Suc n))) x = \ | |
| 343 | \ poly (real (Suc n) %* ([-a, 1] %^ n)) x"; | |
| 344 | by (simp_tac (simpset() addsimps [poly_pderiv_exp,poly_mult] | |
| 345 | delsimps [pexp_Suc]) 1); | |
| 346 | by (simp_tac (simpset() addsimps [poly_cmult,pderiv_def]) 1); | |
| 347 | qed "poly_pderiv_exp_prime"; | |
| 348 | ||
| 349 | (* ----------------------------------------------------------------------- *) | |
| 350 | (* Key property that f(a) = 0 ==> (x - a) divides p(x). *) | |
| 351 | (* ----------------------------------------------------------------------- *) | |
| 352 | ||
| 353 | Goal "ALL h. EX q r. h#t = [r] +++ [-a, 1] *** q"; | |
| 354 | by (induct_tac "t" 1); | |
| 355 | by (Step_tac 1); | |
| 356 | by (res_inst_tac [("x","[]")] exI 1);
 | |
| 357 | by (res_inst_tac [("x","h")] exI 1);
 | |
| 358 | by (Simp_tac 1); | |
| 359 | by (dres_inst_tac [("x","aa")] spec 1);
 | |
| 360 | by (Step_tac 1); | |
| 361 | by (res_inst_tac [("x","r#q")] exI 1);
 | |
| 362 | by (res_inst_tac [("x","a*r + h")] exI 1);
 | |
| 363 | by (case_tac "q" 1); | |
| 12481 
ea5d6da573c5
mods due to reorienting and renaming of real_minus_mult_eq1/2
 nipkow parents: 
12224diff
changeset | 364 | by (Auto_tac); | 
| 12224 | 365 | qed "lemma_poly_linear_rem"; | 
| 366 | ||
| 367 | Goal "EX q r. h#t = [r] +++ [-a, 1] *** q"; | |
| 368 | by (cut_inst_tac [("t","t"),("a","a")] lemma_poly_linear_rem 1);
 | |
| 369 | by Auto_tac; | |
| 370 | qed "poly_linear_rem"; | |
| 371 | ||
| 372 | ||
| 373 | Goal "(poly p a = 0) = ((p = []) | (EX q. p = [-a, 1] *** q))"; | |
| 374 | by (auto_tac (claset(),simpset() addsimps [poly_add,poly_cmult, | |
| 375 | real_add_mult_distrib2])); | |
| 376 | by (case_tac "p" 1); | |
| 377 | by (cut_inst_tac [("h","aa"),("t","list"),("a","a")] poly_linear_rem 2);
 | |
| 378 | by (Step_tac 2); | |
| 379 | by (case_tac "q" 1); | |
| 380 | by Auto_tac; | |
| 381 | by (dres_inst_tac [("x","[]")] spec 1);
 | |
| 382 | by (Asm_full_simp_tac 1); | |
| 383 | by (auto_tac (claset(),simpset() addsimps [poly_add,poly_cmult, | |
| 384 | real_add_assoc])); | |
| 385 | by (dres_inst_tac [("x","aa#lista")] spec 1);
 | |
| 386 | by Auto_tac; | |
| 387 | qed "poly_linear_divides"; | |
| 388 | ||
| 389 | Goal "ALL h k a. length (k %* p +++ (h # (a %* p))) = Suc (length p)"; | |
| 390 | by (induct_tac "p" 1); | |
| 391 | by Auto_tac; | |
| 392 | qed "lemma_poly_length_mult"; | |
| 393 | Addsimps [lemma_poly_length_mult]; | |
| 394 | ||
| 395 | Goal "ALL h k. length (k %* p +++ (h # p)) = Suc (length p)"; | |
| 396 | by (induct_tac "p" 1); | |
| 397 | by Auto_tac; | |
| 398 | qed "lemma_poly_length_mult2"; | |
| 399 | Addsimps [lemma_poly_length_mult2]; | |
| 400 | ||
| 401 | Goal "length([-a ,1] *** q) = Suc (length q)"; | |
| 402 | by Auto_tac; | |
| 403 | qed "poly_length_mult"; | |
| 404 | Addsimps [poly_length_mult]; | |
| 405 | ||
| 406 | ||
| 407 | (*-------------------------------------------------------------------------*) | |
| 408 | (* Polynomial length *) | |
| 409 | (*-------------------------------------------------------------------------*) | |
| 410 | ||
| 411 | Goal "length (a %* p) = length p"; | |
| 412 | by (induct_tac "p" 1); | |
| 413 | by Auto_tac; | |
| 414 | qed "poly_cmult_length"; | |
| 415 | Addsimps [poly_cmult_length]; | |
| 416 | ||
| 417 | Goal "length (p1 +++ p2) = (if (length( p1 ) < length( p2 )) \ | |
| 418 | \ then (length( p2 )) else (length( p1) ))"; | |
| 419 | by (subgoal_tac "ALL p2. length (p1 +++ p2) = (if (length( p1 ) < \ | |
| 420 | \ length( p2 )) then (length( p2 )) else (length( p1) ))" 1); | |
| 421 | by (induct_tac "p1" 2); | |
| 422 | by (Simp_tac 2); | |
| 423 | by (Simp_tac 2); | |
| 424 | by (Step_tac 2); | |
| 425 | by (Asm_full_simp_tac 2); | |
| 426 | by (arith_tac 2); | |
| 427 | by (Asm_full_simp_tac 2); | |
| 428 | by (arith_tac 2); | |
| 429 | by (induct_tac "p2" 1); | |
| 430 | by (Asm_full_simp_tac 1); | |
| 431 | by (Asm_full_simp_tac 1); | |
| 432 | qed "poly_add_length"; | |
| 433 | ||
| 434 | Goal "length([a,b] *** p) = Suc (length p)"; | |
| 435 | by (asm_full_simp_tac (simpset() addsimps [poly_cmult_length, | |
| 436 | poly_add_length]) 1); | |
| 437 | qed "poly_root_mult_length"; | |
| 438 | Addsimps [poly_root_mult_length]; | |
| 439 | ||
| 440 | Goal "(poly (p *** q) x ~= poly [] x) = \ | |
| 441 | \ (poly p x ~= poly [] x & poly q x ~= poly [] x)"; | |
| 442 | by (auto_tac (claset(),simpset() addsimps [poly_mult,rename_numerals | |
| 443 | real_mult_not_zero])); | |
| 444 | qed "poly_mult_not_eq_poly_Nil"; | |
| 445 | Addsimps [poly_mult_not_eq_poly_Nil]; | |
| 446 | ||
| 447 | Goal "(poly (p *** q) x = 0) = (poly p x = 0 | poly q x = 0)"; | |
| 448 | by (auto_tac (claset() addDs [CLAIM "x * y = 0 ==> x = 0 | y = (0::real)"], | |
| 449 | simpset() addsimps [poly_mult])); | |
| 450 | qed "poly_mult_eq_zero_disj"; | |
| 451 | ||
| 452 | (*-------------------------------------------------------------------------*) | |
| 453 | (* Normalisation Properties *) | |
| 454 | (*-------------------------------------------------------------------------*) | |
| 455 | ||
| 456 | Goal "(pnormalize p = []) --> (poly p x = 0)"; | |
| 457 | by (induct_tac "p" 1); | |
| 458 | by Auto_tac; | |
| 459 | qed "poly_normalized_nil"; | |
| 460 | ||
| 461 | (*-------------------------------------------------------------------------*) | |
| 462 | (* A nontrivial polynomial of degree n has no more than n roots *) | |
| 463 | (*-------------------------------------------------------------------------*) | |
| 464 | ||
| 465 | Goal | |
| 466 | "ALL p x. (poly p x ~= poly [] x & length p = n \ | |
| 467 | \ --> (EX i. ALL x. (poly p x = (0::real)) --> (EX m. (m <= n & x = i m))))"; | |
| 468 | by (induct_tac "n" 1); | |
| 469 | by (Step_tac 1); | |
| 470 | by (rtac ccontr 1); | |
| 471 | by (subgoal_tac "EX a. poly p a = 0" 1 THEN Step_tac 1); | |
| 472 | by (dtac (poly_linear_divides RS iffD1) 1); | |
| 473 | by (Step_tac 1); | |
| 474 | by (dres_inst_tac [("x","q")] spec 1);
 | |
| 475 | by (dres_inst_tac [("x","x")] spec 1);
 | |
| 476 | by (asm_full_simp_tac (simpset() delsimps [poly_Nil,pmult_Cons]) 1); | |
| 477 | by (etac exE 1); | |
| 478 | by (dres_inst_tac [("x","%m. if m = Suc n then a else i m")] spec 1);
 | |
| 479 | by (Step_tac 1); | |
| 480 | by (dtac (poly_mult_eq_zero_disj RS iffD1) 1); | |
| 481 | by (Step_tac 1); | |
| 482 | by (dres_inst_tac [("x","Suc(length q)")] spec 1);
 | |
| 483 | by (Asm_full_simp_tac 1); | |
| 484 | by (dres_inst_tac [("x","xa")] spec 1 THEN Step_tac 1);
 | |
| 485 | by (dres_inst_tac [("x","m")] spec 1);
 | |
| 486 | by (Asm_full_simp_tac 1); | |
| 487 | by (Blast_tac 1); | |
| 488 | qed_spec_mp "poly_roots_index_lemma"; | |
| 489 | bind_thm ("poly_roots_index_lemma2",conjI RS poly_roots_index_lemma);
 | |
| 490 | ||
| 491 | Goal "poly p x ~= poly [] x ==> \ | |
| 492 | \ EX i. ALL x. (poly p x = 0) --> (EX n. n <= length p & x = i n)"; | |
| 493 | by (blast_tac (claset() addIs [poly_roots_index_lemma2]) 1); | |
| 494 | qed "poly_roots_index_length"; | |
| 495 | ||
| 496 | Goal "poly p x ~= poly [] x ==> \ | |
| 497 | \ EX N i. ALL x. (poly p x = 0) --> (EX n. (n::nat) < N & x = i n)"; | |
| 498 | by (dtac poly_roots_index_length 1 THEN Step_tac 1); | |
| 499 | by (res_inst_tac [("x","Suc (length p)")] exI 1);
 | |
| 500 | by (res_inst_tac [("x","i")] exI 1);
 | |
| 501 | by (auto_tac (claset(),simpset() addsimps | |
| 502 | [ARITH_PROVE "(m < Suc n) = (m <= n)"])); | |
| 503 | qed "poly_roots_finite_lemma"; | |
| 504 | ||
| 505 | (* annoying proof *) | |
| 506 | Goal "ALL P. (ALL x. P x --> (EX n. (n::nat) < N & x = (j::nat=>real) n)) \ | |
| 507 | \ --> (EX a. ALL x. P x --> x < a)"; | |
| 508 | by (induct_tac "N" 1); | |
| 509 | by (Asm_full_simp_tac 1); | |
| 510 | by (Step_tac 1); | |
| 511 | by (dres_inst_tac [("x","%z. P z & (z ~= (j::nat=>real) n)")] spec 1);
 | |
| 512 | by Auto_tac; | |
| 513 | by (dres_inst_tac [("x","x")] spec 1);
 | |
| 514 | by (Step_tac 1); | |
| 515 | by (res_inst_tac [("x","na")] exI 1);
 | |
| 516 | by (auto_tac (claset() addDs [ARITH_PROVE "na < Suc n ==> na = n | na < n"], | |
| 517 | simpset())); | |
| 518 | by (res_inst_tac [("x","abs a + abs(j n) + 1")] exI 1);
 | |
| 519 | by (Step_tac 1); | |
| 520 | by (dres_inst_tac [("x","x")] spec 1);
 | |
| 521 | by (Step_tac 1); | |
| 522 | by (dres_inst_tac [("x","j na")] spec 1);
 | |
| 523 | by (Step_tac 1); | |
| 524 | by (ALLGOALS(arith_tac)); | |
| 525 | qed_spec_mp "real_finite_lemma"; | |
| 526 | ||
| 527 | Goal "(poly p ~= poly []) = \ | |
| 528 | \ (EX N j. ALL x. poly p x = 0 --> (EX n. (n::nat) < N & x = j n))"; | |
| 529 | by (Step_tac 1); | |
| 530 | by (etac swap 1 THEN rtac ext 1); | |
| 531 | by (rtac ccontr 1); | |
| 532 | by (clarify_tac (claset() addSDs [poly_roots_finite_lemma]) 1); | |
| 533 | by (clarify_tac (claset() addSDs [real_finite_lemma]) 1); | |
| 534 | by (dres_inst_tac [("x","a")] fun_cong 1);
 | |
| 535 | by Auto_tac; | |
| 536 | qed "poly_roots_finite"; | |
| 537 | ||
| 538 | (*-------------------------------------------------------------------------*) | |
| 539 | (* Entirety and Cancellation for polynomials *) | |
| 540 | (*-------------------------------------------------------------------------*) | |
| 541 | ||
| 542 | Goal "[| poly p ~= poly [] ; poly q ~= poly [] |] \ | |
| 543 | \ ==> poly (p *** q) ~= poly []"; | |
| 544 | by (auto_tac (claset(),simpset() addsimps [poly_roots_finite])); | |
| 545 | by (res_inst_tac [("x","N + Na")] exI 1);
 | |
| 546 | by (res_inst_tac [("x","%n. if n < N then j n else ja (n - N)")] exI 1);
 | |
| 547 | by (auto_tac (claset(),simpset() addsimps [poly_mult_eq_zero_disj])); | |
| 548 | by (flexflex_tac THEN rotate_tac 1 1); | |
| 549 | by (dtac spec 1 THEN Auto_tac); | |
| 550 | qed "poly_entire_lemma"; | |
| 551 | ||
| 552 | Goal "(poly (p *** q) = poly []) = ((poly p = poly []) | (poly q = poly []))"; | |
| 553 | by (auto_tac (claset() addIs [ext] addDs [fun_cong],simpset() | |
| 554 | addsimps [poly_entire_lemma,poly_mult])); | |
| 555 | by (blast_tac (claset() addIs [ccontr] addDs [poly_entire_lemma, | |
| 556 | poly_mult RS subst]) 1); | |
| 557 | qed "poly_entire"; | |
| 558 | ||
| 559 | Goal "(poly (p *** q) ~= poly []) = ((poly p ~= poly []) & (poly q ~= poly []))"; | |
| 560 | by (asm_full_simp_tac (simpset() addsimps [poly_entire]) 1); | |
| 561 | qed "poly_entire_neg"; | |
| 562 | ||
| 563 | Goal " (f = g) = (ALL x. f x = g x)"; | |
| 564 | by (auto_tac (claset() addSIs [ext],simpset())); | |
| 565 | qed "fun_eq"; | |
| 566 | ||
| 567 | Goal "(poly (p +++ -- q) = poly []) = (poly p = poly q)"; | |
| 568 | by (auto_tac (claset(),simpset() addsimps [poly_add,poly_minus_def, | |
| 569 | fun_eq,poly_cmult,ARITH_PROVE "(p + -q = 0) = (p = (q::real))"])); | |
| 570 | qed "poly_add_minus_zero_iff"; | |
| 571 | ||
| 572 | Goal "poly (p *** q +++ --(p *** r)) = poly (p *** (q +++ -- r))"; | |
| 573 | by (auto_tac (claset(),simpset() addsimps [poly_add,poly_minus_def, | |
| 574 | fun_eq,poly_mult,poly_cmult,real_add_mult_distrib2])); | |
| 575 | qed "poly_add_minus_mult_eq"; | |
| 576 | ||
| 577 | Goal "(poly (p *** q) = poly (p *** r)) = (poly p = poly [] | poly q = poly r)"; | |
| 578 | by (res_inst_tac [("p1","p *** q")] (poly_add_minus_zero_iff RS subst) 1);
 | |
| 579 | by (auto_tac (claset() addIs [ext], simpset() addsimps [poly_add_minus_mult_eq, | |
| 580 | poly_entire,poly_add_minus_zero_iff])); | |
| 581 | qed "poly_mult_left_cancel"; | |
| 582 | ||
| 583 | Goal "(x * y = 0) = (x = (0::real) | y = 0)"; | |
| 584 | by (auto_tac (claset() addDs [CLAIM "x * y = 0 ==> x = 0 | y = (0::real)"], | |
| 585 | simpset())); | |
| 586 | qed "real_mult_zero_disj_iff"; | |
| 587 | ||
| 588 | Goal "(poly (p %^ n) = poly []) = (poly p = poly [] & n ~= 0)"; | |
| 589 | by (simp_tac (simpset() addsimps [fun_eq]) 1); | |
| 590 | by (rtac (CLAIM "((ALL x. P x) & Q) = (ALL x. P x & Q)" RS ssubst) 1); | |
| 591 | by (rtac (CLAIM "f = g ==> (ALL x. f x) = (ALL x. g x)") 1); | |
| 592 | by (rtac ext 1); | |
| 593 | by (induct_tac "n" 1); | |
| 594 | by (auto_tac (claset(),simpset() addsimps [poly_mult, | |
| 595 | real_mult_zero_disj_iff])); | |
| 596 | qed "poly_exp_eq_zero"; | |
| 597 | Addsimps [poly_exp_eq_zero]; | |
| 598 | ||
| 599 | Goal "poly [a,1] ~= poly []"; | |
| 600 | by (simp_tac (simpset() addsimps [fun_eq]) 1); | |
| 601 | by (res_inst_tac [("x","1 - a")] exI 1);
 | |
| 602 | by (Simp_tac 1); | |
| 603 | qed "poly_prime_eq_zero"; | |
| 604 | Addsimps [poly_prime_eq_zero]; | |
| 605 | ||
| 606 | Goal "(poly ([a, 1] %^ n) ~= poly [])"; | |
| 607 | by Auto_tac; | |
| 608 | qed "poly_exp_prime_eq_zero"; | |
| 609 | Addsimps [poly_exp_prime_eq_zero]; | |
| 610 | ||
| 611 | (*-------------------------------------------------------------------------*) | |
| 612 | (* A more constructive notion of polynomials being trivial *) | |
| 613 | (*-------------------------------------------------------------------------*) | |
| 614 | ||
| 615 | Goal "poly (h # t) = poly [] ==> h = 0 & poly t = poly []"; | |
| 616 | by (asm_full_simp_tac (simpset() addsimps [fun_eq]) 1); | |
| 617 | by (case_tac "h = 0" 1); | |
| 618 | by (dres_inst_tac [("x","0")] spec 2);
 | |
| 619 | by (rtac conjI 1); | |
| 620 | by (rtac ((simplify (simpset()) (read_instantiate [("g","poly []")] fun_eq))
 | |
| 621 | RS iffD1) 2 THEN rtac ccontr 2); | |
| 622 | by (auto_tac (claset(),simpset() addsimps [poly_roots_finite, | |
| 623 | real_mult_zero_disj_iff])); | |
| 624 | by (dtac real_finite_lemma 1 THEN Step_tac 1); | |
| 625 | by (REPEAT(dres_inst_tac [("x","abs a + 1")] spec 1));
 | |
| 626 | by (arith_tac 1); | |
| 627 | qed "poly_zero_lemma"; | |
| 628 | ||
| 629 | Goal "(poly p = poly []) = list_all (%c. c = 0) p"; | |
| 630 | by (induct_tac "p" 1); | |
| 631 | by (Asm_full_simp_tac 1); | |
| 632 | by (rtac iffI 1); | |
| 633 | by (dtac poly_zero_lemma 1); | |
| 634 | by Auto_tac; | |
| 635 | qed "poly_zero"; | |
| 636 | ||
| 637 | Addsimps [real_mult_zero_disj_iff]; | |
| 638 | Goal "ALL n. (list_all (%c. c = 0) (pderiv_aux (Suc n) p) = \ | |
| 639 | \ list_all (%c. c = 0) p)"; | |
| 640 | by (induct_tac "p" 1); | |
| 641 | by Auto_tac; | |
| 642 | qed_spec_mp "pderiv_aux_iszero"; | |
| 643 | Addsimps [pderiv_aux_iszero]; | |
| 644 | ||
| 645 | Goal "(number_of n :: nat) ~= 0 \ | |
| 646 | \ ==> (list_all (%c. c = 0) (pderiv_aux (number_of n) p) = \ | |
| 647 | \ list_all (%c. c = 0) p)"; | |
| 648 | by (res_inst_tac [("n1","number_of n"),("m1","0")] (less_imp_Suc_add RS exE) 1);
 | |
| 649 | by (Force_tac 1); | |
| 650 | by (res_inst_tac [("n1","0 + x")] (pderiv_aux_iszero RS subst) 1);
 | |
| 651 | by (asm_simp_tac (simpset() delsimps [pderiv_aux_iszero]) 1); | |
| 652 | qed "pderiv_aux_iszero_num"; | |
| 653 | ||
| 654 | Goal "poly (pderiv p) = poly [] --> (EX h. poly p = poly [h])"; | |
| 655 | by (asm_full_simp_tac (simpset() addsimps [poly_zero]) 1); | |
| 656 | by (induct_tac "p" 1); | |
| 657 | by (Force_tac 1); | |
| 658 | by (asm_full_simp_tac (simpset() addsimps [pderiv_Cons, | |
| 659 | pderiv_aux_iszero_num] delsimps [poly_Cons]) 1); | |
| 660 | by (auto_tac (claset(),simpset() addsimps [poly_zero RS sym])); | |
| 661 | qed_spec_mp "pderiv_iszero"; | |
| 662 | ||
| 663 | Goal "poly p = poly [] --> (poly (pderiv p) = poly [])"; | |
| 664 | by (asm_full_simp_tac (simpset() addsimps [poly_zero]) 1); | |
| 665 | by (induct_tac "p" 1); | |
| 666 | by (Force_tac 1); | |
| 667 | by (asm_full_simp_tac (simpset() addsimps [pderiv_Cons, | |
| 668 | pderiv_aux_iszero_num] delsimps [poly_Cons]) 1); | |
| 669 | qed "pderiv_zero_obj"; | |
| 670 | ||
| 671 | Goal "poly p = poly [] ==> (poly (pderiv p) = poly [])"; | |
| 672 | by (blast_tac (claset() addEs [pderiv_zero_obj RS impE]) 1); | |
| 673 | qed "pderiv_zero"; | |
| 674 | Addsimps [pderiv_zero]; | |
| 675 | ||
| 676 | Goal "poly p = poly q ==> (poly (pderiv p) = poly (pderiv q))"; | |
| 677 | by (cut_inst_tac [("p","p +++ --q")] pderiv_zero_obj 1);
 | |
| 678 | by (auto_tac (claset() addIs [ ARITH_PROVE "x + - y = 0 ==> x = (y::real)"], | |
| 679 | simpset() addsimps [fun_eq,poly_add,poly_minus,poly_pderiv_add, | |
| 680 | poly_pderiv_minus] delsimps [pderiv_zero])); | |
| 681 | qed "poly_pderiv_welldef"; | |
| 682 | ||
| 683 | (* ------------------------------------------------------------------------- *) | |
| 684 | (* Basics of divisibility. *) | |
| 685 | (* ------------------------------------------------------------------------- *) | |
| 686 | ||
| 687 | Goal "([a, 1] divides (p *** q)) = ([a, 1] divides p | [a, 1] divides q)"; | |
| 688 | by (auto_tac (claset(),simpset() addsimps [divides_def,fun_eq,poly_mult, | |
| 689 | poly_add,poly_cmult,real_add_mult_distrib RS sym])); | |
| 690 | by (dres_inst_tac [("x","-a")] spec 1);
 | |
| 691 | by (auto_tac (claset(),simpset() addsimps [poly_linear_divides,poly_add, | |
| 692 | poly_cmult,real_add_mult_distrib RS sym])); | |
| 693 | by (res_inst_tac [("x","qa *** q")] exI 1);
 | |
| 694 | by (res_inst_tac [("x","p *** qa")] exI 2);
 | |
| 695 | by (auto_tac (claset(),simpset() addsimps [poly_add,poly_mult, | |
| 696 | poly_cmult] @ real_mult_ac)); | |
| 697 | qed "poly_primes"; | |
| 698 | ||
| 699 | Goalw [divides_def] "p divides p"; | |
| 700 | by (res_inst_tac [("x","[1]")] exI 1);
 | |
| 701 | by (auto_tac (claset(),simpset() addsimps [poly_mult,fun_eq])); | |
| 702 | qed "poly_divides_refl"; | |
| 703 | Addsimps [poly_divides_refl]; | |
| 704 | ||
| 705 | Goalw [divides_def] "[| p divides q; q divides r |] ==> p divides r"; | |
| 706 | by (Step_tac 1); | |
| 707 | by (res_inst_tac [("x","qa *** qaa")] exI 1);
 | |
| 708 | by (auto_tac (claset(),simpset() addsimps [poly_mult,fun_eq, | |
| 709 | real_mult_assoc])); | |
| 710 | qed "poly_divides_trans"; | |
| 711 | ||
| 712 | Goal "(m::nat) <= n = (EX d. n = m + d)"; | |
| 713 | by (auto_tac (claset(),simpset() addsimps [le_eq_less_or_eq, | |
| 714 | less_iff_Suc_add])); | |
| 715 | qed "le_iff_add"; | |
| 716 | ||
| 717 | Goal "m <= n ==> (p %^ m) divides (p %^ n)"; | |
| 718 | by (auto_tac (claset(),simpset() addsimps [le_iff_add])); | |
| 719 | by (induct_tac "d" 1); | |
| 720 | by (rtac poly_divides_trans 2); | |
| 721 | by (auto_tac (claset(),simpset() addsimps [divides_def])); | |
| 722 | by (res_inst_tac [("x","p")] exI 1);
 | |
| 723 | by (auto_tac (claset(),simpset() addsimps [poly_mult,fun_eq] | |
| 724 | @ real_mult_ac)); | |
| 725 | qed "poly_divides_exp"; | |
| 726 | ||
| 727 | Goal "[| (p %^ n) divides q; m <= n |] ==> (p %^ m) divides q"; | |
| 728 | by (blast_tac (claset() addIs [poly_divides_exp,poly_divides_trans]) 1); | |
| 729 | qed "poly_exp_divides"; | |
| 730 | ||
| 731 | Goalw [divides_def] | |
| 732 | "[| p divides q; p divides r |] ==> p divides (q +++ r)"; | |
| 733 | by Auto_tac; | |
| 734 | by (res_inst_tac [("x","qa +++ qaa")] exI 1);
 | |
| 735 | by (auto_tac (claset(),simpset() addsimps [poly_add,fun_eq,poly_mult, | |
| 736 | real_add_mult_distrib2])); | |
| 737 | qed "poly_divides_add"; | |
| 738 | ||
| 739 | Goalw [divides_def] | |
| 740 | "[| p divides q; p divides (q +++ r) |] ==> p divides r"; | |
| 741 | by Auto_tac; | |
| 742 | by (res_inst_tac [("x","qaa +++ -- qa")] exI 1);
 | |
| 743 | by (auto_tac (claset(),simpset() addsimps [poly_add,fun_eq,poly_mult, | |
| 12481 
ea5d6da573c5
mods due to reorienting and renaming of real_minus_mult_eq1/2
 nipkow parents: 
12224diff
changeset | 744 | poly_minus,real_add_mult_distrib2, | 
| 12224 | 745 | ARITH_PROVE "(x = y + -z) = (z + x = (y::real))"])); | 
| 746 | qed "poly_divides_diff"; | |
| 747 | ||
| 748 | Goal "[| p divides r; p divides (q +++ r) |] ==> p divides q"; | |
| 749 | by (etac poly_divides_diff 1); | |
| 750 | by (auto_tac (claset(),simpset() addsimps [poly_add,fun_eq,poly_mult, | |
| 751 | divides_def] @ real_add_ac)); | |
| 752 | qed "poly_divides_diff2"; | |
| 753 | ||
| 754 | Goalw [divides_def] "poly p = poly [] ==> q divides p"; | |
| 755 | by (auto_tac (claset(),simpset() addsimps [fun_eq,poly_mult])); | |
| 756 | qed "poly_divides_zero"; | |
| 757 | ||
| 758 | Goalw [divides_def] "q divides []"; | |
| 759 | by (res_inst_tac [("x","[]")] exI 1); 
 | |
| 760 | by (auto_tac (claset(),simpset() addsimps [fun_eq])); | |
| 761 | qed "poly_divides_zero2"; | |
| 762 | Addsimps [poly_divides_zero2]; | |
| 763 | ||
| 764 | (* ------------------------------------------------------------------------- *) | |
| 765 | (* At last, we can consider the order of a root. *) | |
| 766 | (* ------------------------------------------------------------------------- *) | |
| 767 | ||
| 768 | (* FIXME: Tidy up *) | |
| 769 | Goal "[| length p = d; poly p ~= poly [] |] \ | |
| 770 | \ ==> EX n. ([-a, 1] %^ n) divides p & \ | |
| 771 | \ ~(([-a, 1] %^ (Suc n)) divides p)"; | |
| 772 | by (subgoal_tac "ALL p. length p = d & poly p ~= poly [] \ | |
| 773 | \ --> (EX n q. p = mulexp n [-a, 1] q & poly q a ~= 0)" 1); | |
| 774 | by (induct_tac "d" 2); | |
| 775 | by (asm_full_simp_tac (simpset() addsimps [fun_eq]) 2); | |
| 776 | by (Step_tac 2); | |
| 777 | by (case_tac "poly pa a = 0" 2); | |
| 778 | by (dtac (poly_linear_divides RS iffD1) 2); | |
| 779 | by (Step_tac 2); | |
| 780 | by (dres_inst_tac [("x","q")] spec 2);
 | |
| 781 | by (dtac (poly_entire_neg RS iffD1) 2); | |
| 782 | by (Step_tac 2); | |
| 783 | by (Force_tac 2 THEN Blast_tac 2); | |
| 784 | by (res_inst_tac [("x","Suc na")] exI 2);
 | |
| 785 | by (res_inst_tac [("x","qa")] exI 2);
 | |
| 786 | by (asm_full_simp_tac (simpset() delsimps [pmult_Cons]) 2); | |
| 787 | by (res_inst_tac [("x","0")] exI 2);
 | |
| 788 | by (Force_tac 2); | |
| 789 | by (dres_inst_tac [("x","p")] spec 1 THEN Step_tac 1);
 | |
| 790 | by (res_inst_tac [("x","n")] exI 1 THEN Step_tac 1);
 | |
| 791 | by (rewtac divides_def); | |
| 792 | by (res_inst_tac [("x","q")] exI 1);
 | |
| 793 | by (induct_tac "n" 1); | |
| 794 | by (Simp_tac 1); | |
| 795 | by (asm_simp_tac (simpset() addsimps [poly_add,poly_cmult,poly_mult, | |
| 796 | real_add_mult_distrib2] @ real_mult_ac) 1); | |
| 797 | by (Step_tac 1); | |
| 798 | by (rotate_tac 2 1); | |
| 799 | by (rtac swap 1 THEN assume_tac 2); | |
| 800 | by (induct_tac "n" 1); | |
| 801 | by (asm_full_simp_tac (simpset() delsimps [pmult_Cons,pexp_Suc]) 1); | |
| 802 | by (eres_inst_tac [("Pa","poly q a = 0")] swap 1);
 | |
| 12481 
ea5d6da573c5
mods due to reorienting and renaming of real_minus_mult_eq1/2
 nipkow parents: 
12224diff
changeset | 803 | by (asm_full_simp_tac (simpset() addsimps [poly_add,poly_cmult]) 1); | 
| 12224 | 804 | by (rtac (pexp_Suc RS ssubst) 1); | 
| 805 | by (rtac ccontr 1); | |
| 806 | by (asm_full_simp_tac (simpset() addsimps [poly_mult_left_cancel, | |
| 807 | poly_mult_assoc] delsimps [pmult_Cons,pexp_Suc]) 1); | |
| 808 | qed "poly_order_exists"; | |
| 809 | ||
| 810 | Goalw [divides_def] "[1] divides p"; | |
| 811 | by Auto_tac; | |
| 812 | qed "poly_one_divides"; | |
| 813 | Addsimps [poly_one_divides]; | |
| 814 | ||
| 815 | Goal "poly p ~= poly [] \ | |
| 816 | \ ==> EX! n. ([-a, 1] %^ n) divides p & \ | |
| 817 | \ ~(([-a, 1] %^ (Suc n)) divides p)"; | |
| 818 | by (auto_tac (claset() addIs [poly_order_exists], | |
| 819 | simpset() addsimps [less_linear] delsimps [pmult_Cons,pexp_Suc])); | |
| 820 | by (cut_inst_tac [("m","y"),("n","n")] less_linear 1);
 | |
| 821 | by (dres_inst_tac [("m","n")] poly_exp_divides 1);
 | |
| 822 | by (auto_tac (claset() addDs [ARITH_PROVE "n < m ==> Suc n <= m" RSN | |
| 823 | (2,poly_exp_divides)],simpset() delsimps [pmult_Cons,pexp_Suc])); | |
| 824 | qed "poly_order"; | |
| 825 | ||
| 826 | (* ------------------------------------------------------------------------- *) | |
| 827 | (* Order *) | |
| 828 | (* ------------------------------------------------------------------------- *) | |
| 829 | ||
| 830 | Goal "[| n = (@n. P n); EX! n. P n |] ==> P n"; | |
| 831 | by (blast_tac (claset() addIs [someI2]) 1); | |
| 832 | qed "some1_equalityD"; | |
| 833 | ||
| 834 | Goalw [order_def] | |
| 835 | "(([-a, 1] %^ n) divides p & \ | |
| 836 | \ ~(([-a, 1] %^ (Suc n)) divides p)) = \ | |
| 837 | \ ((n = order a p) & ~(poly p = poly []))"; | |
| 838 | by (rtac iffI 1); | |
| 839 | by (blast_tac (claset() addDs [poly_divides_zero] | |
| 840 | addSIs [some1_equality RS sym, poly_order]) 1); | |
| 841 | by (blast_tac (claset() addSIs [poly_order RSN (2,some1_equalityD)]) 1); | |
| 842 | qed "order"; | |
| 843 | ||
| 844 | Goal "[| poly p ~= poly [] |] \ | |
| 845 | \ ==> ([-a, 1] %^ (order a p)) divides p & \ | |
| 846 | \ ~(([-a, 1] %^ (Suc(order a p))) divides p)"; | |
| 847 | by (asm_full_simp_tac (simpset() addsimps [order] delsimps [pexp_Suc]) 1); | |
| 848 | qed "order2"; | |
| 849 | ||
| 850 | Goal "[| poly p ~= poly []; ([-a, 1] %^ n) divides p; \ | |
| 851 | \ ~(([-a, 1] %^ (Suc n)) divides p) \ | |
| 852 | \ |] ==> (n = order a p)"; | |
| 853 | by (cut_inst_tac [("p","p"),("a","a"),("n","n")] order 1);
 | |
| 854 | by Auto_tac; | |
| 855 | qed "order_unique"; | |
| 856 | ||
| 857 | Goal "(poly p ~= poly [] & ([-a, 1] %^ n) divides p & \ | |
| 858 | \ ~(([-a, 1] %^ (Suc n)) divides p)) \ | |
| 859 | \ ==> (n = order a p)"; | |
| 860 | by (blast_tac (claset() addIs [order_unique]) 1); | |
| 861 | qed "order_unique_lemma"; | |
| 862 | ||
| 863 | Goal "poly p = poly q ==> order a p = order a q"; | |
| 864 | by (auto_tac (claset(),simpset() addsimps [fun_eq,divides_def,poly_mult, | |
| 865 | order_def])); | |
| 866 | qed "order_poly"; | |
| 867 | ||
| 868 | Goal "p %^ (Suc 0) = p"; | |
| 869 | by (induct_tac "p" 1); | |
| 870 | by (auto_tac (claset(),simpset() addsimps [numeral_1_eq_1])); | |
| 871 | qed "pexp_one"; | |
| 872 | Addsimps [pexp_one]; | |
| 873 | ||
| 874 | Goal "ALL p a. 0 < n & [- a, 1] %^ n divides p & \ | |
| 875 | \ ~ [- a, 1] %^ (Suc n) divides p \ | |
| 876 | \ --> poly p a = 0"; | |
| 877 | by (induct_tac "n" 1); | |
| 878 | by (Blast_tac 1); | |
| 879 | by (auto_tac (claset(),simpset() addsimps [divides_def,poly_mult] | |
| 880 | delsimps [pmult_Cons])); | |
| 881 | qed_spec_mp "lemma_order_root"; | |
| 882 | ||
| 883 | Goal "(poly p a = 0) = ((poly p = poly []) | order a p ~= 0)"; | |
| 884 | by (case_tac "poly p = poly []" 1); | |
| 885 | by Auto_tac; | |
| 886 | by (asm_full_simp_tac (simpset() addsimps [poly_linear_divides] | |
| 887 | delsimps [pmult_Cons]) 1); | |
| 888 | by (Step_tac 1); | |
| 889 | by (ALLGOALS(dres_inst_tac [("a","a")] order2));
 | |
| 890 | by (rtac ccontr 1); | |
| 891 | by (asm_full_simp_tac (simpset() addsimps [divides_def,poly_mult,fun_eq] | |
| 892 | delsimps [pmult_Cons]) 1); | |
| 893 | by (Blast_tac 1); | |
| 894 | by (blast_tac (claset() addIs [lemma_order_root]) 1); | |
| 895 | qed "order_root"; | |
| 896 | ||
| 897 | Goal "(([-a, 1] %^ n) divides p) = ((poly p = poly []) | n <= order a p)"; | |
| 898 | by (case_tac "poly p = poly []" 1); | |
| 899 | by Auto_tac; | |
| 900 | by (asm_full_simp_tac (simpset() addsimps [divides_def,fun_eq,poly_mult]) 1); | |
| 901 | by (res_inst_tac [("x","[]")] exI 1);
 | |
| 902 | by (TRYALL(dres_inst_tac [("a","a")] order2));
 | |
| 903 | by (auto_tac (claset() addIs [poly_exp_divides],simpset() | |
| 904 | delsimps [pexp_Suc])); | |
| 905 | qed "order_divides"; | |
| 906 | ||
| 907 | Goalw [divides_def] | |
| 908 | "poly p ~= poly [] \ | |
| 909 | \ ==> EX q. (poly p = poly (([-a, 1] %^ (order a p)) *** q)) & \ | |
| 910 | \ ~([-a, 1] divides q)"; | |
| 911 | by (dres_inst_tac [("a","a")] order2 1);
 | |
| 912 | by (asm_full_simp_tac (simpset() addsimps [divides_def] | |
| 913 | delsimps [pexp_Suc,pmult_Cons]) 1); | |
| 914 | by (Step_tac 1); | |
| 915 | by (res_inst_tac [("x","q")] exI 1);
 | |
| 916 | by (Step_tac 1); | |
| 917 | by (dres_inst_tac [("x","qa")] spec 1);
 | |
| 918 | by (auto_tac (claset(),simpset() addsimps [poly_mult,fun_eq,poly_exp] | |
| 919 | @ real_mult_ac delsimps [pmult_Cons])); | |
| 920 | qed "order_decomp"; | |
| 921 | ||
| 922 | (* ------------------------------------------------------------------------- *) | |
| 923 | (* Important composition properties of orders. *) | |
| 924 | (* ------------------------------------------------------------------------- *) | |
| 925 | ||
| 926 | Goal "poly (p *** q) ~= poly [] \ | |
| 927 | \ ==> order a (p *** q) = order a p + order a q"; | |
| 928 | by (cut_inst_tac [("a","a"),("p","p***q"),("n","order a p + order a q")] 
 | |
| 929 | order 1); | |
| 930 | by (auto_tac (claset(),simpset() addsimps [poly_entire] delsimps [pmult_Cons])); | |
| 931 | by (REPEAT(dres_inst_tac [("a","a")] order2 1));
 | |
| 932 | by (Step_tac 1); | |
| 933 | by (asm_full_simp_tac (simpset() addsimps [divides_def,fun_eq,poly_exp_add, | |
| 934 | poly_mult] delsimps [pmult_Cons]) 1); | |
| 935 | by (Step_tac 1); | |
| 936 | by (res_inst_tac [("x","qa *** qaa")] exI 1);
 | |
| 937 | by (asm_full_simp_tac (simpset() addsimps [poly_mult] @ real_mult_ac | |
| 938 | delsimps [pmult_Cons]) 1); | |
| 939 | by (REPEAT(dres_inst_tac [("a","a")] order_decomp 1));
 | |
| 940 | by (Step_tac 1); | |
| 941 | by (subgoal_tac "[-a,1] divides (qa *** qaa)" 1); | |
| 942 | by (asm_full_simp_tac (simpset() addsimps [poly_primes] | |
| 943 | delsimps [pmult_Cons]) 1); | |
| 944 | by (auto_tac (claset(),simpset() addsimps [divides_def] | |
| 945 | delsimps [pmult_Cons])); | |
| 946 | by (res_inst_tac [("x","qb")] exI 1);
 | |
| 947 | by (subgoal_tac "poly ([-a, 1] %^ (order a p) *** (qa *** qaa)) = \ | |
| 948 | \ poly ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))" 1); | |
| 949 | by (dtac (poly_mult_left_cancel RS iffD1) 1); | |
| 950 | by (Force_tac 1); | |
| 951 | by (subgoal_tac "poly ([-a, 1] %^ (order a q) *** \ | |
| 952 | \ ([-a, 1] %^ (order a p) *** (qa *** qaa))) = \ | |
| 953 | \ poly ([-a, 1] %^ (order a q) *** \ | |
| 954 | \ ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb)))" 1); | |
| 955 | by (dtac (poly_mult_left_cancel RS iffD1) 1); | |
| 956 | by (Force_tac 1); | |
| 957 | by (asm_full_simp_tac (simpset() addsimps [fun_eq,poly_exp_add,poly_mult] | |
| 958 | @ real_mult_ac delsimps [pmult_Cons]) 1); | |
| 959 | qed "order_mult"; | |
| 960 | ||
| 961 | (* FIXME: too too long! *) | |
| 962 | Goal "ALL p q a. 0 < n & \ | |
| 963 | \ poly (pderiv p) ~= poly [] & \ | |
| 964 | \ poly p = poly ([- a, 1] %^ n *** q) & ~ [- a, 1] divides q \ | |
| 965 | \ --> n = Suc (order a (pderiv p))"; | |
| 966 | by (induct_tac "n" 1); | |
| 967 | by (Step_tac 1); | |
| 968 | by (rtac order_unique_lemma 1 THEN rtac conjI 1); | |
| 969 | by (assume_tac 1); | |
| 970 | by (subgoal_tac "ALL r. r divides (pderiv p) = \ | |
| 971 | \ r divides (pderiv ([-a, 1] %^ Suc n *** q))" 1); | |
| 972 | by (dtac poly_pderiv_welldef 2); | |
| 973 | by (asm_full_simp_tac (simpset() addsimps [divides_def] delsimps [pmult_Cons, | |
| 974 | pexp_Suc]) 2); | |
| 975 | by (asm_full_simp_tac (simpset() delsimps [pmult_Cons,pexp_Suc]) 1); | |
| 976 | by (rtac conjI 1); | |
| 977 | by (asm_full_simp_tac (simpset() addsimps [divides_def,fun_eq] | |
| 978 | delsimps [pmult_Cons,pexp_Suc]) 1); | |
| 979 | by (res_inst_tac | |
| 980 |     [("x","[-a, 1] *** (pderiv q) +++ real (Suc n) %* q")] exI 1);
 | |
| 981 | by (asm_full_simp_tac (simpset() addsimps [poly_pderiv_mult, | |
| 982 | poly_pderiv_exp_prime,poly_add,poly_mult,poly_cmult, | |
| 983 | real_add_mult_distrib2] @ real_mult_ac | |
| 984 | delsimps [pmult_Cons,pexp_Suc]) 1); | |
| 985 | by (asm_full_simp_tac (simpset() addsimps [poly_mult,real_add_mult_distrib2, | |
| 986 | real_add_mult_distrib] @ real_mult_ac delsimps [pmult_Cons]) 1); | |
| 987 | by (thin_tac "ALL r. \ | |
| 988 | \ r divides pderiv p = \ | |
| 989 | \ r divides pderiv ([- a, 1] %^ Suc n *** q)" 1); | |
| 990 | by (rewtac divides_def); | |
| 991 | by (simp_tac (simpset() addsimps [poly_pderiv_mult, | |
| 992 | poly_pderiv_exp_prime,fun_eq,poly_add,poly_mult] | |
| 993 | delsimps [pmult_Cons,pexp_Suc]) 1); | |
| 994 | by (rtac swap 1 THEN assume_tac 1); | |
| 995 | by (rotate_tac 3 1 THEN etac swap 1); | |
| 996 | by (asm_full_simp_tac (simpset() delsimps [pmult_Cons,pexp_Suc]) 1); | |
| 997 | by (Step_tac 1); | |
| 998 | by (res_inst_tac [("x","inverse(real (Suc n)) %* (qa +++ --(pderiv q))")]
 | |
| 999 | exI 1); | |
| 1000 | by (subgoal_tac "poly ([-a, 1] %^ n *** q) = \ | |
| 1001 | \ poly ([-a, 1] %^ n *** ([-a, 1] *** (inverse (real (Suc n)) %* \ | |
| 1002 | \ (qa +++ -- (pderiv q)))))" 1); | |
| 1003 | by (dtac (poly_mult_left_cancel RS iffD1) 1); | |
| 1004 | by (Asm_full_simp_tac 1); | |
| 1005 | by (asm_full_simp_tac (simpset() addsimps [fun_eq,poly_mult,poly_add,poly_cmult, | |
| 1006 | poly_minus] delsimps [pmult_Cons]) 1); | |
| 1007 | by (Step_tac 1); | |
| 1008 | by (res_inst_tac [("c1","real (Suc n)")] (real_mult_left_cancel 
 | |
| 1009 | RS iffD1) 1); | |
| 1010 | by (Simp_tac 1); | |
| 1011 | by (rtac ((CLAIM_SIMP | |
| 1012 | "a * (b * (c * (d * e))) = e * (b * (c * (d * (a::real))))" | |
| 1013 | real_mult_ac) RS ssubst) 1); | |
| 1014 | by (rotate_tac 2 1); | |
| 1015 | by (dres_inst_tac [("x","xa")] spec 1);
 | |
| 12481 
ea5d6da573c5
mods due to reorienting and renaming of real_minus_mult_eq1/2
 nipkow parents: 
12224diff
changeset | 1016 | by (asm_full_simp_tac (simpset() | 
| 
ea5d6da573c5
mods due to reorienting and renaming of real_minus_mult_eq1/2
 nipkow parents: 
12224diff
changeset | 1017 | addsimps [real_add_mult_distrib] @ real_mult_ac | 
| 12224 | 1018 | delsimps [pmult_Cons]) 1); | 
| 1019 | qed_spec_mp "lemma_order_pderiv"; | |
| 1020 | ||
| 1021 | Goal "[| poly (pderiv p) ~= poly []; order a p ~= 0 |] \ | |
| 1022 | \ ==> (order a p = Suc (order a (pderiv p)))"; | |
| 1023 | by (case_tac "poly p = poly []" 1); | |
| 1024 | by (auto_tac (claset() addDs [pderiv_zero],simpset())); | |
| 1025 | by (dres_inst_tac [("a","a"),("p","p")] order_decomp 1);
 | |
| 1026 | by (blast_tac (claset() addIs [lemma_order_pderiv]) 1); | |
| 1027 | qed "order_pderiv"; | |
| 1028 | ||
| 1029 | (* ------------------------------------------------------------------------- *) | |
| 1030 | (* Now justify the standard squarefree decomposition, i.e. f / gcd(f,f'). *) | |
| 1031 | (* `a la Harrison *) | |
| 1032 | (* ------------------------------------------------------------------------- *) | |
| 1033 | ||
| 1034 | Goal "[| poly (pderiv p) ~= poly []; \ | |
| 1035 | \ poly p = poly (q *** d); \ | |
| 1036 | \ poly (pderiv p) = poly (e *** d); \ | |
| 1037 | \ poly d = poly (r *** p +++ s *** pderiv p) \ | |
| 1038 | \ |] ==> order a q = (if order a p = 0 then 0 else 1)"; | |
| 1039 | by (subgoal_tac "order a p = order a q + order a d" 1); | |
| 1040 | by (res_inst_tac [("s","order a (q *** d)")] trans 2);
 | |
| 1041 | by (blast_tac (claset() addIs [order_poly]) 2); | |
| 1042 | by (rtac order_mult 2); | |
| 1043 | by (rtac notI 2 THEN Asm_full_simp_tac 2); | |
| 1044 | by (dres_inst_tac [("p","p")] pderiv_zero 2);
 | |
| 1045 | by (Asm_full_simp_tac 2); | |
| 1046 | by (case_tac "order a p = 0" 1); | |
| 1047 | by (Asm_full_simp_tac 1); | |
| 1048 | by (subgoal_tac "order a (pderiv p) = order a e + order a d" 1); | |
| 1049 | by (res_inst_tac [("s","order a (e *** d)")] trans 2);
 | |
| 1050 | by (blast_tac (claset() addIs [order_poly]) 2); | |
| 1051 | by (rtac order_mult 2); | |
| 1052 | by (rtac notI 2 THEN Asm_full_simp_tac 2); | |
| 1053 | by (case_tac "poly p = poly []" 1); | |
| 1054 | by (dres_inst_tac [("p","p")] pderiv_zero 1);
 | |
| 1055 | by (Asm_full_simp_tac 1); | |
| 1056 | by (dtac order_pderiv 1 THEN assume_tac 1); | |
| 1057 | by (subgoal_tac "order a (pderiv p) <= order a d" 1); | |
| 1058 | by (subgoal_tac "([-a, 1] %^ (order a (pderiv p))) divides d" 2); | |
| 1059 | by (asm_full_simp_tac (simpset() addsimps [poly_entire,order_divides]) 2); | |
| 1060 | by (subgoal_tac "([-a, 1] %^ (order a (pderiv p))) divides p & \ | |
| 1061 | \ ([-a, 1] %^ (order a (pderiv p))) divides (pderiv p)" 2); | |
| 1062 | by (asm_simp_tac (simpset() addsimps [order_divides]) 3); | |
| 1063 | by (asm_full_simp_tac (simpset() addsimps [divides_def] | |
| 1064 | delsimps [pexp_Suc,pmult_Cons]) 2); | |
| 1065 | by (Step_tac 2); | |
| 1066 | by (res_inst_tac [("x","r *** qa +++ s *** qaa")] exI 2);
 | |
| 1067 | by (asm_full_simp_tac (simpset() addsimps [fun_eq,poly_add,poly_mult, | |
| 1068 | real_add_mult_distrib, real_add_mult_distrib2] @ real_mult_ac | |
| 1069 | delsimps [pexp_Suc,pmult_Cons]) 2); | |
| 1070 | by Auto_tac; | |
| 1071 | qed "poly_squarefree_decomp_order"; | |
| 1072 | ||
| 1073 | ||
| 1074 | Goal "[| poly (pderiv p) ~= poly []; \ | |
| 1075 | \ poly p = poly (q *** d); \ | |
| 1076 | \ poly (pderiv p) = poly (e *** d); \ | |
| 1077 | \ poly d = poly (r *** p +++ s *** pderiv p) \ | |
| 1078 | \ |] ==> ALL a. order a q = (if order a p = 0 then 0 else 1)"; | |
| 1079 | by (blast_tac (claset() addIs [poly_squarefree_decomp_order]) 1); | |
| 1080 | qed "poly_squarefree_decomp_order2"; | |
| 1081 | ||
| 1082 | Goal "poly p ~= poly [] ==> (poly p a = 0) = (order a p ~= 0)"; | |
| 1083 | by (rtac (order_root RS ssubst) 1); | |
| 1084 | by Auto_tac; | |
| 1085 | qed "order_root2"; | |
| 1086 | ||
| 1087 | Goal "[| poly (pderiv p) ~= poly []; order a p ~= 0 |] \ | |
| 1088 | \ ==> (order a (pderiv p) = n) = (order a p = Suc n)"; | |
| 1089 | by (auto_tac (claset() addDs [order_pderiv],simpset())); | |
| 1090 | qed "order_pderiv2"; | |
| 1091 | ||
| 1092 | Goalw [rsquarefree_def] | |
| 1093 | "rsquarefree p = (ALL a. ~(poly p a = 0 & poly (pderiv p) a = 0))"; | |
| 1094 | by (case_tac "poly p = poly []" 1); | |
| 1095 | by (Asm_full_simp_tac 1); | |
| 1096 | by (Asm_full_simp_tac 1); | |
| 1097 | by (case_tac "poly (pderiv p) = poly []" 1); | |
| 1098 | by (Asm_full_simp_tac 1); | |
| 1099 | by (dtac pderiv_iszero 1 THEN Clarify_tac 1); | |
| 1100 | by (subgoal_tac "ALL a. order a p = order a [h]" 1); | |
| 1101 | by (asm_full_simp_tac (simpset() addsimps [fun_eq]) 1); | |
| 1102 | by (rtac allI 1); | |
| 1103 | by (cut_inst_tac [("p","[h]"),("a","a")] order_root 1);
 | |
| 1104 | by (asm_full_simp_tac (simpset() addsimps [fun_eq]) 1); | |
| 1105 | by (blast_tac (claset() addIs [order_poly]) 1); | |
| 1106 | by (auto_tac (claset(),simpset() addsimps [order_root,order_pderiv2])); | |
| 1107 | by (dtac spec 1 THEN Auto_tac); | |
| 1108 | qed "rsquarefree_roots"; | |
| 1109 | ||
| 1110 | Goal "[1] *** p = p"; | |
| 1111 | by Auto_tac; | |
| 1112 | qed "pmult_one"; | |
| 1113 | Addsimps [pmult_one]; | |
| 1114 | ||
| 1115 | Goal "poly [] = poly [0]"; | |
| 1116 | by (simp_tac (simpset() addsimps [fun_eq]) 1); | |
| 1117 | qed "poly_Nil_zero"; | |
| 1118 | ||
| 1119 | Goalw [rsquarefree_def] | |
| 1120 | "[| rsquarefree p; poly p a = 0 |] \ | |
| 1121 | \ ==> EX q. (poly p = poly ([-a, 1] *** q)) & poly q a ~= 0"; | |
| 1122 | by (Step_tac 1); | |
| 1123 | by (forw_inst_tac [("a","a")] order_decomp 1);
 | |
| 1124 | by (dres_inst_tac [("x","a")] spec 1);
 | |
| 1125 | by (dres_inst_tac [("a1","a")] (order_root2 RS sym) 1);
 | |
| 1126 | by (auto_tac (claset(),simpset() delsimps [pmult_Cons])); | |
| 1127 | by (res_inst_tac [("x","q")] exI 1 THEN Step_tac 1);
 | |
| 1128 | by (asm_full_simp_tac (simpset() addsimps [poly_mult,fun_eq]) 1); | |
| 1129 | by (dres_inst_tac [("p1","q")] (poly_linear_divides RS iffD1) 1);
 | |
| 1130 | by (asm_full_simp_tac (simpset() addsimps [divides_def] | |
| 1131 | delsimps [pmult_Cons]) 1); | |
| 1132 | by (Step_tac 1); | |
| 1133 | by (dres_inst_tac [("x","[]")] spec 1); 
 | |
| 1134 | by (auto_tac (claset(),simpset() addsimps [fun_eq])); | |
| 1135 | qed "rsquarefree_decomp"; | |
| 1136 | ||
| 1137 | Goal "[| poly (pderiv p) ~= poly []; \ | |
| 1138 | \ poly p = poly (q *** d); \ | |
| 1139 | \ poly (pderiv p) = poly (e *** d); \ | |
| 1140 | \ poly d = poly (r *** p +++ s *** pderiv p) \ | |
| 1141 | \ |] ==> rsquarefree q & (ALL a. (poly q a = 0) = (poly p a = 0))"; | |
| 1142 | by (ftac poly_squarefree_decomp_order2 1); | |
| 1143 | by (TRYALL(assume_tac)); | |
| 1144 | by (case_tac "poly p = poly []" 1); | |
| 1145 | by (blast_tac (claset() addDs [pderiv_zero]) 1); | |
| 1146 | by (simp_tac (simpset() addsimps [rsquarefree_def, | |
| 1147 | order_root] delsimps [pmult_Cons]) 1); | |
| 1148 | by (asm_full_simp_tac (simpset() addsimps [poly_entire] | |
| 1149 | delsimps [pmult_Cons]) 1); | |
| 1150 | qed "poly_squarefree_decomp"; | |
| 1151 | ||
| 1152 | ||
| 1153 | (* ------------------------------------------------------------------------- *) | |
| 1154 | (* Normalization of a polynomial. *) | |
| 1155 | (* ------------------------------------------------------------------------- *) | |
| 1156 | ||
| 1157 | Goal "poly (pnormalize p) = poly p"; | |
| 1158 | by (induct_tac "p" 1); | |
| 1159 | by (auto_tac (claset(),simpset() addsimps [fun_eq])); | |
| 1160 | qed "poly_normalize"; | |
| 1161 | Addsimps [poly_normalize]; | |
| 1162 | ||
| 1163 | ||
| 1164 | (* ------------------------------------------------------------------------- *) | |
| 1165 | (* The degree of a polynomial. *) | |
| 1166 | (* ------------------------------------------------------------------------- *) | |
| 1167 | ||
| 1168 | Goal "list_all (%c. c = 0) p --> pnormalize p = []"; | |
| 1169 | by (induct_tac "p" 1); | |
| 1170 | by Auto_tac; | |
| 1171 | qed_spec_mp "lemma_degree_zero"; | |
| 1172 | ||
| 1173 | Goalw [degree_def] "poly p = poly [] ==> degree p = 0"; | |
| 1174 | by (case_tac "pnormalize p = []" 1); | |
| 1175 | by (auto_tac (claset() addDs [lemma_degree_zero],simpset() | |
| 1176 | addsimps [poly_zero])); | |
| 1177 | qed "degree_zero"; | |
| 1178 | ||
| 1179 | (* ------------------------------------------------------------------------- *) | |
| 1180 | (* Tidier versions of finiteness of roots. *) | |
| 1181 | (* ------------------------------------------------------------------------- *) | |
| 1182 | ||
| 1183 | Goal "poly p ~= poly [] ==> finite {x. poly p x = 0}";
 | |
| 1184 | by (auto_tac (claset(),simpset() addsimps [poly_roots_finite])); | |
| 1185 | by (res_inst_tac [("B","{x::real. EX n. (n::nat) < N & (x = j n)}")] 
 | |
| 1186 | finite_subset 1); | |
| 1187 | by (induct_tac "N" 2); | |
| 1188 | by Auto_tac; | |
| 1189 | by (subgoal_tac "{x::real. EX na. na < Suc n & (x = j na)} = \
 | |
| 1190 | \                 {(j n)} Un {x. EX na. na < n & (x = j na)}" 1);
 | |
| 1191 | by (auto_tac (claset(),simpset() addsimps [ARITH_PROVE | |
| 1192 | "(na < Suc n) = (na = n | na < n)"])); | |
| 1193 | qed "poly_roots_finite_set"; | |
| 1194 | ||
| 1195 | (* ------------------------------------------------------------------------- *) | |
| 1196 | (* bound for polynomial. *) | |
| 1197 | (* ------------------------------------------------------------------------- *) | |
| 1198 | ||
| 1199 | Goal "abs(x) <= k --> abs(poly p x) <= poly (map abs p) k"; | |
| 1200 | by (induct_tac "p" 1); | |
| 1201 | by Auto_tac; | |
| 1202 | by (res_inst_tac [("j","abs a + abs(x * poly list x)")] real_le_trans 1);
 | |
| 1203 | by (rtac abs_triangle_ineq 1); | |
| 1204 | by (auto_tac (claset() addSIs [real_mult_le_mono],simpset() | |
| 1205 | addsimps [abs_mult])); | |
| 1206 | by (arith_tac 1); | |
| 1207 | qed_spec_mp "poly_mono"; |