| author | wenzelm | 
| Thu, 11 Jan 2018 13:48:17 +0100 | |
| changeset 67405 | e9ab4ad7bd15 | 
| parent 67399 | eab6ce8368fa | 
| child 68028 | 1f9f973eed2a | 
| permissions | -rw-r--r-- | 
| 26169 | 1  | 
(* Title: HOL/Library/Countable.thy  | 
| 26350 | 2  | 
Author: Alexander Krauss, TU Muenchen  | 
| 
43534
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
3  | 
Author: Brian Huffman, Portland State University  | 
| 58160 | 4  | 
Author: Jasmin Blanchette, TU Muenchen  | 
| 26169 | 5  | 
*)  | 
6  | 
||
| 60500 | 7  | 
section \<open>Encoding (almost) everything into natural numbers\<close>  | 
| 26169 | 8  | 
|
9  | 
theory Countable  | 
|
| 
66453
 
cc19f7ca2ed6
session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
 
wenzelm 
parents: 
65411 
diff
changeset
 | 
10  | 
imports Old_Datatype HOL.Rat Nat_Bijection  | 
| 26169 | 11  | 
begin  | 
12  | 
||
| 60500 | 13  | 
subsection \<open>The class of countable types\<close>  | 
| 26169 | 14  | 
|
| 29797 | 15  | 
class countable =  | 
| 61076 | 16  | 
assumes ex_inj: "\<exists>to_nat :: 'a \<Rightarrow> nat. inj to_nat"  | 
| 26169 | 17  | 
|
18  | 
lemma countable_classI:  | 
|
19  | 
fixes f :: "'a \<Rightarrow> nat"  | 
|
20  | 
assumes "\<And>x y. f x = f y \<Longrightarrow> x = y"  | 
|
21  | 
  shows "OFCLASS('a, countable_class)"
 | 
|
22  | 
proof (intro_classes, rule exI)  | 
|
23  | 
show "inj f"  | 
|
24  | 
by (rule injI [OF assms]) assumption  | 
|
25  | 
qed  | 
|
26  | 
||
27  | 
||
| 60500 | 28  | 
subsection \<open>Conversion functions\<close>  | 
| 26169 | 29  | 
|
| 61076 | 30  | 
definition to_nat :: "'a::countable \<Rightarrow> nat" where  | 
| 26169 | 31  | 
"to_nat = (SOME f. inj f)"  | 
32  | 
||
| 61076 | 33  | 
definition from_nat :: "nat \<Rightarrow> 'a::countable" where  | 
34  | 
"from_nat = inv (to_nat :: 'a \<Rightarrow> nat)"  | 
|
| 26169 | 35  | 
|
36  | 
lemma inj_to_nat [simp]: "inj to_nat"  | 
|
37  | 
by (rule exE_some [OF ex_inj]) (simp add: to_nat_def)  | 
|
38  | 
||
| 43992 | 39  | 
lemma inj_on_to_nat[simp, intro]: "inj_on to_nat S"  | 
40  | 
using inj_to_nat by (auto simp: inj_on_def)  | 
|
41  | 
||
| 29910 | 42  | 
lemma surj_from_nat [simp]: "surj from_nat"  | 
43  | 
unfolding from_nat_def by (simp add: inj_imp_surj_inv)  | 
|
44  | 
||
| 26169 | 45  | 
lemma to_nat_split [simp]: "to_nat x = to_nat y \<longleftrightarrow> x = y"  | 
46  | 
using injD [OF inj_to_nat] by auto  | 
|
47  | 
||
48  | 
lemma from_nat_to_nat [simp]:  | 
|
49  | 
"from_nat (to_nat x) = x"  | 
|
50  | 
by (simp add: from_nat_def)  | 
|
51  | 
||
52  | 
||
| 60500 | 53  | 
subsection \<open>Finite types are countable\<close>  | 
| 26169 | 54  | 
|
55  | 
subclass (in finite) countable  | 
|
| 28823 | 56  | 
proof  | 
| 61076 | 57  | 
have "finite (UNIV::'a set)" by (rule finite_UNIV)  | 
| 31992 | 58  | 
with finite_conv_nat_seg_image [of "UNIV::'a set"]  | 
| 26169 | 59  | 
obtain n and f :: "nat \<Rightarrow> 'a"  | 
60  | 
    where "UNIV = f ` {i. i < n}" by auto
 | 
|
61  | 
then have "surj f" unfolding surj_def by auto  | 
|
62  | 
then have "inj (inv f)" by (rule surj_imp_inj_inv)  | 
|
| 61076 | 63  | 
then show "\<exists>to_nat :: 'a \<Rightarrow> nat. inj to_nat" by (rule exI[of inj])  | 
| 26169 | 64  | 
qed  | 
65  | 
||
66  | 
||
| 60500 | 67  | 
subsection \<open>Automatically proving countability of old-style datatypes\<close>  | 
| 
43534
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
68  | 
|
| 
61115
 
3a4400985780
modernized name space management -- more uniform qualification;
 
wenzelm 
parents: 
61076 
diff
changeset
 | 
69  | 
context  | 
| 
 
3a4400985780
modernized name space management -- more uniform qualification;
 
wenzelm 
parents: 
61076 
diff
changeset
 | 
70  | 
begin  | 
| 
 
3a4400985780
modernized name space management -- more uniform qualification;
 
wenzelm 
parents: 
61076 
diff
changeset
 | 
71  | 
|
| 
 
3a4400985780
modernized name space management -- more uniform qualification;
 
wenzelm 
parents: 
61076 
diff
changeset
 | 
72  | 
qualified inductive finite_item :: "'a Old_Datatype.item \<Rightarrow> bool" where  | 
| 
43534
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
73  | 
undefined: "finite_item undefined"  | 
| 
58112
 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 
blanchet 
parents: 
57437 
diff
changeset
 | 
74  | 
| In0: "finite_item x \<Longrightarrow> finite_item (Old_Datatype.In0 x)"  | 
| 
 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 
blanchet 
parents: 
57437 
diff
changeset
 | 
75  | 
| In1: "finite_item x \<Longrightarrow> finite_item (Old_Datatype.In1 x)"  | 
| 
 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 
blanchet 
parents: 
57437 
diff
changeset
 | 
76  | 
| Leaf: "finite_item (Old_Datatype.Leaf a)"  | 
| 
 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 
blanchet 
parents: 
57437 
diff
changeset
 | 
77  | 
| Scons: "\<lbrakk>finite_item x; finite_item y\<rbrakk> \<Longrightarrow> finite_item (Old_Datatype.Scons x y)"  | 
| 
43534
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
78  | 
|
| 
61115
 
3a4400985780
modernized name space management -- more uniform qualification;
 
wenzelm 
parents: 
61076 
diff
changeset
 | 
79  | 
qualified function nth_item :: "nat \<Rightarrow> ('a::countable) Old_Datatype.item"
 | 
| 
43534
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
80  | 
where  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
81  | 
"nth_item 0 = undefined"  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
82  | 
| "nth_item (Suc n) =  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
83  | 
(case sum_decode n of  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
84  | 
Inl i \<Rightarrow>  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
85  | 
(case sum_decode i of  | 
| 
58112
 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 
blanchet 
parents: 
57437 
diff
changeset
 | 
86  | 
Inl j \<Rightarrow> Old_Datatype.In0 (nth_item j)  | 
| 
 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 
blanchet 
parents: 
57437 
diff
changeset
 | 
87  | 
| Inr j \<Rightarrow> Old_Datatype.In1 (nth_item j))  | 
| 
43534
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
88  | 
| Inr i \<Rightarrow>  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
89  | 
(case sum_decode i of  | 
| 
58112
 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 
blanchet 
parents: 
57437 
diff
changeset
 | 
90  | 
Inl j \<Rightarrow> Old_Datatype.Leaf (from_nat j)  | 
| 
43534
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
91  | 
| Inr j \<Rightarrow>  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
92  | 
(case prod_decode j of  | 
| 
58112
 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 
blanchet 
parents: 
57437 
diff
changeset
 | 
93  | 
(a, b) \<Rightarrow> Old_Datatype.Scons (nth_item a) (nth_item b))))"  | 
| 
43534
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
94  | 
by pat_completeness auto  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
95  | 
|
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
96  | 
lemma le_sum_encode_Inl: "x \<le> y \<Longrightarrow> x \<le> sum_encode (Inl y)"  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
97  | 
unfolding sum_encode_def by simp  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
98  | 
|
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
99  | 
lemma le_sum_encode_Inr: "x \<le> y \<Longrightarrow> x \<le> sum_encode (Inr y)"  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
100  | 
unfolding sum_encode_def by simp  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
101  | 
|
| 
61115
 
3a4400985780
modernized name space management -- more uniform qualification;
 
wenzelm 
parents: 
61076 
diff
changeset
 | 
102  | 
qualified termination  | 
| 
43534
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
103  | 
by (relation "measure id")  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
104  | 
(auto simp add: sum_encode_eq [symmetric] prod_encode_eq [symmetric]  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
105  | 
le_imp_less_Suc le_sum_encode_Inl le_sum_encode_Inr  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
106  | 
le_prod_encode_1 le_prod_encode_2)  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
107  | 
|
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
108  | 
lemma nth_item_covers: "finite_item x \<Longrightarrow> \<exists>n. nth_item n = x"  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
109  | 
proof (induct set: finite_item)  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
110  | 
case undefined  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
111  | 
have "nth_item 0 = undefined" by simp  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
112  | 
thus ?case ..  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
113  | 
next  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
114  | 
case (In0 x)  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
115  | 
then obtain n where "nth_item n = x" by fast  | 
| 
58112
 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 
blanchet 
parents: 
57437 
diff
changeset
 | 
116  | 
hence "nth_item (Suc (sum_encode (Inl (sum_encode (Inl n))))) = Old_Datatype.In0 x" by simp  | 
| 
43534
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
117  | 
thus ?case ..  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
118  | 
next  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
119  | 
case (In1 x)  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
120  | 
then obtain n where "nth_item n = x" by fast  | 
| 
58112
 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 
blanchet 
parents: 
57437 
diff
changeset
 | 
121  | 
hence "nth_item (Suc (sum_encode (Inl (sum_encode (Inr n))))) = Old_Datatype.In1 x" by simp  | 
| 
43534
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
122  | 
thus ?case ..  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
123  | 
next  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
124  | 
case (Leaf a)  | 
| 
58112
 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 
blanchet 
parents: 
57437 
diff
changeset
 | 
125  | 
have "nth_item (Suc (sum_encode (Inr (sum_encode (Inl (to_nat a)))))) = Old_Datatype.Leaf a"  | 
| 
 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 
blanchet 
parents: 
57437 
diff
changeset
 | 
126  | 
by simp  | 
| 
43534
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
127  | 
thus ?case ..  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
128  | 
next  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
129  | 
case (Scons x y)  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
130  | 
then obtain i j where "nth_item i = x" and "nth_item j = y" by fast  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
131  | 
hence "nth_item  | 
| 
58112
 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 
blanchet 
parents: 
57437 
diff
changeset
 | 
132  | 
(Suc (sum_encode (Inr (sum_encode (Inr (prod_encode (i, j))))))) = Old_Datatype.Scons x y"  | 
| 
 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 
blanchet 
parents: 
57437 
diff
changeset
 | 
133  | 
by simp  | 
| 
43534
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
134  | 
thus ?case ..  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
135  | 
qed  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
136  | 
|
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
137  | 
theorem countable_datatype:  | 
| 
58112
 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 
blanchet 
parents: 
57437 
diff
changeset
 | 
138  | 
  fixes Rep :: "'b \<Rightarrow> ('a::countable) Old_Datatype.item"
 | 
| 
 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 
blanchet 
parents: 
57437 
diff
changeset
 | 
139  | 
  fixes Abs :: "('a::countable) Old_Datatype.item \<Rightarrow> 'b"
 | 
| 
 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 
blanchet 
parents: 
57437 
diff
changeset
 | 
140  | 
  fixes rep_set :: "('a::countable) Old_Datatype.item \<Rightarrow> bool"
 | 
| 
43534
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
141  | 
assumes type: "type_definition Rep Abs (Collect rep_set)"  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
142  | 
assumes finite_item: "\<And>x. rep_set x \<Longrightarrow> finite_item x"  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
143  | 
  shows "OFCLASS('b, countable_class)"
 | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
144  | 
proof  | 
| 63040 | 145  | 
define f where "f y = (LEAST n. nth_item n = Rep y)" for y  | 
| 
43534
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
146  | 
  {
 | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
147  | 
fix y :: 'b  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
148  | 
have "rep_set (Rep y)"  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
149  | 
using type_definition.Rep [OF type] by simp  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
150  | 
hence "finite_item (Rep y)"  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
151  | 
by (rule finite_item)  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
152  | 
hence "\<exists>n. nth_item n = Rep y"  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
153  | 
by (rule nth_item_covers)  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
154  | 
hence "nth_item (f y) = Rep y"  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
155  | 
unfolding f_def by (rule LeastI_ex)  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
156  | 
hence "Abs (nth_item (f y)) = y"  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
157  | 
using type_definition.Rep_inverse [OF type] by simp  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
158  | 
}  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
159  | 
hence "inj f"  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
160  | 
by (rule inj_on_inverseI)  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
161  | 
thus "\<exists>f::'b \<Rightarrow> nat. inj f"  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
162  | 
by - (rule exI)  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
163  | 
qed  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
164  | 
|
| 60500 | 165  | 
ML \<open>  | 
| 58161 | 166  | 
fun old_countable_datatype_tac ctxt =  | 
| 58160 | 167  | 
SUBGOAL (fn (goal, _) =>  | 
| 
43534
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
168  | 
let  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
169  | 
val ty_name =  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
170  | 
(case goal of  | 
| 56243 | 171  | 
            (_ $ Const (@{const_name Pure.type}, Type (@{type_name itself}, [Type (n, _)]))) => n
 | 
| 
43534
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
172  | 
| _ => raise Match)  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
173  | 
val typedef_info = hd (Typedef.get_info ctxt ty_name)  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
174  | 
val typedef_thm = #type_definition (snd typedef_info)  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
175  | 
val pred_name =  | 
| 59582 | 176  | 
(case HOLogic.dest_Trueprop (Thm.concl_of typedef_thm) of  | 
| 58160 | 177  | 
(_ $ _ $ _ $ (_ $ Const (n, _))) => n  | 
| 
43534
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
178  | 
| _ => raise Match)  | 
| 
65411
 
3c628937899d
use Item_Net to store inductive info
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
63040 
diff
changeset
 | 
179  | 
val induct_info = Inductive.the_inductive_global ctxt pred_name  | 
| 
43534
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
180  | 
val pred_names = #names (fst induct_info)  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
181  | 
val induct_thms = #inducts (snd induct_info)  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
182  | 
val alist = pred_names ~~ induct_thms  | 
| 
67405
 
e9ab4ad7bd15
uniform use of Standard ML op-infix -- eliminated warnings;
 
wenzelm 
parents: 
67399 
diff
changeset
 | 
183  | 
val induct_thm = the (AList.lookup (op =) alist pred_name)  | 
| 
49187
 
6096da55d2d6
countable_datatype method: pre-instantiate induction rule to avoid failure with e.g. datatype a = A "b list" and b = B "a"
 
huffman 
parents: 
47432 
diff
changeset
 | 
184  | 
val vars = rev (Term.add_vars (Thm.prop_of induct_thm) [])  | 
| 59643 | 185  | 
val insts = vars |> map (fn (_, T) => try (Thm.cterm_of ctxt)  | 
| 
49187
 
6096da55d2d6
countable_datatype method: pre-instantiate induction rule to avoid failure with e.g. datatype a = A "b list" and b = B "a"
 
huffman 
parents: 
47432 
diff
changeset
 | 
186  | 
          (Const (@{const_name Countable.finite_item}, T)))
 | 
| 60801 | 187  | 
val induct_thm' = Thm.instantiate' [] insts induct_thm  | 
| 
43534
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
188  | 
        val rules = @{thms finite_item.intros}
 | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
189  | 
in  | 
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
190  | 
SOLVED' (fn i => EVERY  | 
| 60752 | 191  | 
          [resolve_tac ctxt @{thms countable_datatype} i,
 | 
192  | 
resolve_tac ctxt [typedef_thm] i,  | 
|
193  | 
eresolve_tac ctxt [induct_thm'] i,  | 
|
194  | 
REPEAT (resolve_tac ctxt rules i ORELSE assume_tac ctxt i)]) 1  | 
|
| 
43534
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
195  | 
end)  | 
| 60500 | 196  | 
\<close>  | 
| 47432 | 197  | 
|
| 
61115
 
3a4400985780
modernized name space management -- more uniform qualification;
 
wenzelm 
parents: 
61076 
diff
changeset
 | 
198  | 
end  | 
| 
43534
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
199  | 
|
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
200  | 
|
| 60500 | 201  | 
subsection \<open>Automatically proving countability of datatypes\<close>  | 
| 58160 | 202  | 
|
| 
62691
 
9bfcbab7cd99
put all 'bnf_*.ML' files together, irrespective of bootstrapping/dependency constraints
 
blanchet 
parents: 
62087 
diff
changeset
 | 
203  | 
ML_file "../Tools/BNF/bnf_lfp_countable.ML"  | 
| 58160 | 204  | 
|
| 60500 | 205  | 
ML \<open>  | 
| 58161 | 206  | 
fun countable_datatype_tac ctxt st =  | 
| 60029 | 207  | 
(case try (fn () => HEADGOAL (old_countable_datatype_tac ctxt) st) () of  | 
208  | 
SOME res => res  | 
|
209  | 
| NONE => BNF_LFP_Countable.countable_datatype_tac ctxt st);  | 
|
| 58161 | 210  | 
|
211  | 
(* compatibility *)  | 
|
212  | 
fun countable_tac ctxt =  | 
|
213  | 
SELECT_GOAL (countable_datatype_tac ctxt);  | 
|
| 60500 | 214  | 
\<close>  | 
| 58161 | 215  | 
|
| 60500 | 216  | 
method_setup countable_datatype = \<open>  | 
| 58161 | 217  | 
Scan.succeed (SIMPLE_METHOD o countable_datatype_tac)  | 
| 60500 | 218  | 
\<close> "prove countable class instances for datatypes"  | 
| 58160 | 219  | 
|
220  | 
||
| 60500 | 221  | 
subsection \<open>More Countable types\<close>  | 
| 58160 | 222  | 
|
| 60500 | 223  | 
text \<open>Naturals\<close>  | 
| 
43534
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
224  | 
|
| 58160 | 225  | 
instance nat :: countable  | 
226  | 
by (rule countable_classI [of "id"]) simp  | 
|
227  | 
||
| 60500 | 228  | 
text \<open>Pairs\<close>  | 
| 58160 | 229  | 
|
230  | 
instance prod :: (countable, countable) countable  | 
|
231  | 
by (rule countable_classI [of "\<lambda>(x, y). prod_encode (to_nat x, to_nat y)"])  | 
|
232  | 
(auto simp add: prod_encode_eq)  | 
|
| 58158 | 233  | 
|
| 60500 | 234  | 
text \<open>Sums\<close>  | 
| 58160 | 235  | 
|
236  | 
instance sum :: (countable, countable) countable  | 
|
237  | 
by (rule countable_classI [of "(\<lambda>x. case x of Inl a \<Rightarrow> to_nat (False, to_nat a)  | 
|
238  | 
| Inr b \<Rightarrow> to_nat (True, to_nat b))"])  | 
|
239  | 
(simp split: sum.split_asm)  | 
|
240  | 
||
| 60500 | 241  | 
text \<open>Integers\<close>  | 
| 58158 | 242  | 
|
| 58160 | 243  | 
instance int :: countable  | 
244  | 
by (rule countable_classI [of int_encode]) (simp add: int_encode_eq)  | 
|
245  | 
||
| 60500 | 246  | 
text \<open>Options\<close>  | 
| 58160 | 247  | 
|
248  | 
instance option :: (countable) countable  | 
|
249  | 
by countable_datatype  | 
|
250  | 
||
| 60500 | 251  | 
text \<open>Lists\<close>  | 
| 58160 | 252  | 
|
253  | 
instance list :: (countable) countable  | 
|
254  | 
by countable_datatype  | 
|
255  | 
||
| 60500 | 256  | 
text \<open>String literals\<close>  | 
| 58160 | 257  | 
|
258  | 
instance String.literal :: countable  | 
|
| 58221 | 259  | 
by (rule countable_classI [of "to_nat \<circ> String.explode"]) (auto simp add: explode_inject)  | 
| 58160 | 260  | 
|
| 60500 | 261  | 
text \<open>Functions\<close>  | 
| 58160 | 262  | 
|
263  | 
instance "fun" :: (finite, countable) countable  | 
|
264  | 
proof  | 
|
265  | 
obtain xs :: "'a list" where xs: "set xs = UNIV"  | 
|
266  | 
using finite_list [OF finite_UNIV] ..  | 
|
267  | 
  show "\<exists>to_nat::('a \<Rightarrow> 'b) \<Rightarrow> nat. inj to_nat"
 | 
|
268  | 
proof  | 
|
269  | 
show "inj (\<lambda>f. to_nat (map f xs))"  | 
|
270  | 
by (rule injI, simp add: xs fun_eq_iff)  | 
|
271  | 
qed  | 
|
272  | 
qed  | 
|
273  | 
||
| 60500 | 274  | 
text \<open>Typereps\<close>  | 
| 58158 | 275  | 
|
| 
43534
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
276  | 
instance typerep :: countable  | 
| 58160 | 277  | 
by countable_datatype  | 
278  | 
||
279  | 
||
| 60500 | 280  | 
subsection \<open>The rationals are countably infinite\<close>  | 
| 58160 | 281  | 
|
282  | 
definition nat_to_rat_surj :: "nat \<Rightarrow> rat" where  | 
|
283  | 
"nat_to_rat_surj n = (let (a, b) = prod_decode n in Fract (int_decode a) (int_decode b))"  | 
|
284  | 
||
285  | 
lemma surj_nat_to_rat_surj: "surj nat_to_rat_surj"  | 
|
286  | 
unfolding surj_def  | 
|
287  | 
proof  | 
|
288  | 
fix r::rat  | 
|
289  | 
show "\<exists>n. r = nat_to_rat_surj n"  | 
|
290  | 
proof (cases r)  | 
|
291  | 
fix i j assume [simp]: "r = Fract i j" and "j > 0"  | 
|
| 58161 | 292  | 
have "r = (let m = int_encode i; n = int_encode j in nat_to_rat_surj (prod_encode (m, n)))"  | 
| 58160 | 293  | 
by (simp add: Let_def nat_to_rat_surj_def)  | 
| 58161 | 294  | 
thus "\<exists>n. r = nat_to_rat_surj n" by(auto simp: Let_def)  | 
| 58160 | 295  | 
qed  | 
296  | 
qed  | 
|
297  | 
||
298  | 
lemma Rats_eq_range_nat_to_rat_surj: "\<rat> = range nat_to_rat_surj"  | 
|
299  | 
by (simp add: Rats_def surj_nat_to_rat_surj)  | 
|
300  | 
||
301  | 
context field_char_0  | 
|
302  | 
begin  | 
|
303  | 
||
304  | 
lemma Rats_eq_range_of_rat_o_nat_to_rat_surj:  | 
|
| 58221 | 305  | 
"\<rat> = range (of_rat \<circ> nat_to_rat_surj)"  | 
| 58160 | 306  | 
using surj_nat_to_rat_surj  | 
307  | 
by (auto simp: Rats_def image_def surj_def) (blast intro: arg_cong[where f = of_rat])  | 
|
308  | 
||
309  | 
lemma surj_of_rat_nat_to_rat_surj:  | 
|
| 58221 | 310  | 
"r \<in> \<rat> \<Longrightarrow> \<exists>n. r = of_rat (nat_to_rat_surj n)"  | 
| 58160 | 311  | 
by (simp add: Rats_eq_range_of_rat_o_nat_to_rat_surj image_def)  | 
| 
43534
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
312  | 
|
| 
 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 
huffman 
parents: 
40702 
diff
changeset
 | 
313  | 
end  | 
| 58160 | 314  | 
|
315  | 
instance rat :: countable  | 
|
316  | 
proof  | 
|
317  | 
show "\<exists>to_nat::rat \<Rightarrow> nat. inj to_nat"  | 
|
318  | 
proof  | 
|
319  | 
have "surj nat_to_rat_surj"  | 
|
320  | 
by (rule surj_nat_to_rat_surj)  | 
|
321  | 
then show "inj (inv nat_to_rat_surj)"  | 
|
322  | 
by (rule surj_imp_inj_inv)  | 
|
323  | 
qed  | 
|
324  | 
qed  | 
|
325  | 
||
326  | 
end  |