30661
|
1 |
(* Author: Amine Chaieb, University of Cambridge *)
|
29838
|
2 |
|
30661
|
3 |
header {* Definitions of Lower Bounds and Greatest Lower Bounds, analogous to Lubs *}
|
29838
|
4 |
|
|
5 |
theory Glbs
|
|
6 |
imports Lubs
|
|
7 |
begin
|
|
8 |
|
46509
|
9 |
definition greatestP :: "('a \<Rightarrow> bool) \<Rightarrow> 'a::ord \<Rightarrow> bool"
|
|
10 |
where "greatestP P x = (P x \<and> Collect P *<= x)"
|
29838
|
11 |
|
46509
|
12 |
definition isLb :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a::ord \<Rightarrow> bool"
|
|
13 |
where "isLb R S x = (x <=* S \<and> x: R)"
|
29838
|
14 |
|
46509
|
15 |
definition isGlb :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a::ord \<Rightarrow> bool"
|
|
16 |
where "isGlb R S x = greatestP (isLb R S) x"
|
29838
|
17 |
|
46509
|
18 |
definition lbs :: "'a set \<Rightarrow> 'a::ord set \<Rightarrow> 'a set"
|
|
19 |
where "lbs R S = Collect (isLb R S)"
|
|
20 |
|
29838
|
21 |
|
46509
|
22 |
subsection {* Rules about the Operators @{term greatestP}, @{term isLb}
|
|
23 |
and @{term isGlb} *}
|
29838
|
24 |
|
46509
|
25 |
lemma leastPD1: "greatestP P x \<Longrightarrow> P x"
|
|
26 |
by (simp add: greatestP_def)
|
29838
|
27 |
|
46509
|
28 |
lemma greatestPD2: "greatestP P x \<Longrightarrow> Collect P *<= x"
|
|
29 |
by (simp add: greatestP_def)
|
29838
|
30 |
|
46509
|
31 |
lemma greatestPD3: "greatestP P x \<Longrightarrow> y: Collect P \<Longrightarrow> x \<ge> y"
|
|
32 |
by (blast dest!: greatestPD2 setleD)
|
29838
|
33 |
|
46509
|
34 |
lemma isGlbD1: "isGlb R S x \<Longrightarrow> x <=* S"
|
|
35 |
by (simp add: isGlb_def isLb_def greatestP_def)
|
29838
|
36 |
|
46509
|
37 |
lemma isGlbD1a: "isGlb R S x \<Longrightarrow> x: R"
|
|
38 |
by (simp add: isGlb_def isLb_def greatestP_def)
|
29838
|
39 |
|
46509
|
40 |
lemma isGlb_isLb: "isGlb R S x \<Longrightarrow> isLb R S x"
|
|
41 |
unfolding isLb_def by (blast dest: isGlbD1 isGlbD1a)
|
29838
|
42 |
|
46509
|
43 |
lemma isGlbD2: "isGlb R S x \<Longrightarrow> y : S \<Longrightarrow> y \<ge> x"
|
|
44 |
by (blast dest!: isGlbD1 setgeD)
|
29838
|
45 |
|
46509
|
46 |
lemma isGlbD3: "isGlb R S x \<Longrightarrow> greatestP (isLb R S) x"
|
|
47 |
by (simp add: isGlb_def)
|
29838
|
48 |
|
46509
|
49 |
lemma isGlbI1: "greatestP (isLb R S) x \<Longrightarrow> isGlb R S x"
|
|
50 |
by (simp add: isGlb_def)
|
29838
|
51 |
|
46509
|
52 |
lemma isGlbI2: "isLb R S x \<Longrightarrow> Collect (isLb R S) *<= x \<Longrightarrow> isGlb R S x"
|
|
53 |
by (simp add: isGlb_def greatestP_def)
|
29838
|
54 |
|
46509
|
55 |
lemma isLbD: "isLb R S x \<Longrightarrow> y : S \<Longrightarrow> y \<ge> x"
|
|
56 |
by (simp add: isLb_def setge_def)
|
29838
|
57 |
|
46509
|
58 |
lemma isLbD2: "isLb R S x \<Longrightarrow> x <=* S "
|
|
59 |
by (simp add: isLb_def)
|
29838
|
60 |
|
46509
|
61 |
lemma isLbD2a: "isLb R S x \<Longrightarrow> x: R"
|
|
62 |
by (simp add: isLb_def)
|
29838
|
63 |
|
46509
|
64 |
lemma isLbI: "x <=* S \<Longrightarrow> x: R \<Longrightarrow> isLb R S x"
|
|
65 |
by (simp add: isLb_def)
|
29838
|
66 |
|
46509
|
67 |
lemma isGlb_le_isLb: "isGlb R S x \<Longrightarrow> isLb R S y \<Longrightarrow> x \<ge> y"
|
|
68 |
unfolding isGlb_def by (blast intro!: greatestPD3)
|
29838
|
69 |
|
46509
|
70 |
lemma isGlb_ubs: "isGlb R S x \<Longrightarrow> lbs R S *<= x"
|
|
71 |
unfolding lbs_def isGlb_def by (rule greatestPD2)
|
29838
|
72 |
|
|
73 |
end
|