| 
5078
 | 
     1  | 
(*  Title:      HOL/Integ/Lagrange.ML
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author:     Tobias Nipkow
  | 
| 
 | 
     4  | 
    Copyright   1996 TU Muenchen
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
  | 
| 
11375
 | 
     7  | 
The following lemma essentially shows that every natural number is the sum of
  | 
| 
 | 
     8  | 
four squares, provided all prime numbers are.  However, this is an abstract
  | 
| 
 | 
     9  | 
theorem about commutative rings.  It has, a priori, nothing to do with nat.*)
  | 
| 
5078
 | 
    10  | 
  | 
| 
11375
 | 
    11  | 
Goalw [Lagrange.sq_def]
  | 
| 
 | 
    12  | 
 "!!x1::'a::cring. \
  | 
| 
5078
 | 
    13  | 
\  (sq x1 + sq x2 + sq x3 + sq x4) * (sq y1 + sq y2 + sq y3 + sq y4) = \
  | 
| 
 | 
    14  | 
\  sq(x1*y1 - x2*y2 - x3*y3 - x4*y4)  + \
  | 
| 
 | 
    15  | 
\  sq(x1*y2 + x2*y1 + x3*y4 - x4*y3)  + \
  | 
| 
 | 
    16  | 
\  sq(x1*y3 - x2*y4 + x3*y1 + x4*y2)  + \
  | 
| 
 | 
    17  | 
\  sq(x1*y4 + x2*y3 - x3*y2 + x4*y1)";
  | 
| 
11375
 | 
    18  | 
by (cring_tac 1);  (*once a slow step, but now (2001) just three seconds!*)
  | 
| 
5078
 | 
    19  | 
qed "Lagrange_lemma";
  | 
| 
 | 
    20  | 
  | 
| 
11375
 | 
    21  | 
  | 
| 
5078
 | 
    22  | 
(* A challenge by John Harrison.
  | 
| 
 | 
    23  | 
   Takes forever because of the naive bottom-up strategy of the rewriter.
  | 
| 
 | 
    24  | 
  | 
| 
 | 
    25  | 
Goalw [Lagrange.sq_def] "!!p1::'a::cring.\
  | 
| 
 | 
    26  | 
\ (sq p1 + sq q1 + sq r1 + sq s1 + sq t1 + sq u1 + sq v1 + sq w1) * \
  | 
| 
 | 
    27  | 
\ (sq p2 + sq q2 + sq r2 + sq s2 + sq t2 + sq u2 + sq v2 + sq w2) \
  | 
| 
 | 
    28  | 
\  = sq (p1*p2 - q1*q2 - r1*r2 - s1*s2 - t1*t2 - u1*u2 - v1*v2 - w1*w2) + \
  | 
| 
 | 
    29  | 
\    sq (p1*q2 + q1*p2 + r1*s2 - s1*r2 + t1*u2 - u1*t2 - v1*w2 + w1*v2) +\
  | 
| 
 | 
    30  | 
\    sq (p1*r2 - q1*s2 + r1*p2 + s1*q2 + t1*v2 + u1*w2 - v1*t2 - w1*u2) +\
  | 
| 
 | 
    31  | 
\    sq (p1*s2 + q1*r2 - r1*q2 + s1*p2 + t1*w2 - u1*v2 + v1*u2 - w1*t2) +\
  | 
| 
 | 
    32  | 
\    sq (p1*t2 - q1*u2 - r1*v2 - s1*w2 + t1*p2 + u1*q2 + v1*r2 + w1*s2) +\
  | 
| 
 | 
    33  | 
\    sq (p1*u2 + q1*t2 - r1*w2 + s1*v2 - t1*q2 + u1*p2 - v1*s2 + w1*r2) +\
  | 
| 
 | 
    34  | 
\    sq (p1*v2 + q1*w2 + r1*t2 - s1*u2 - t1*r2 + u1*s2 + v1*p2 - w1*q2) +\
  | 
| 
 | 
    35  | 
\    sq (p1*w2 - q1*v2 + r1*u2 + s1*t2 - t1*s2 - u1*r2 + v1*q2 + w1*p2)";
  | 
| 
11375
 | 
    36  | 
by (cring_tac 1);
  | 
| 
5078
 | 
    37  | 
*)
  |