| author | wenzelm | 
| Tue, 29 Sep 2009 18:14:08 +0200 | |
| changeset 32760 | ea6672bff5dd | 
| parent 32047 | c141f139ce26 | 
| child 36974 | b877866b5b00 | 
| permissions | -rw-r--r-- | 
| 28952 
15a4b2cf8c34
made repository layout more coherent with logical distribution structure; stripped some $Id$s
 haftmann parents: 
27239diff
changeset | 1 | (* Author : Jacques D. Fleuriot | 
| 12224 | 2 | Copyright : 2001 University of Edinburgh | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 3 | Conversion to Isar and new proofs by Lawrence C Paulson, 2004 | 
| 12224 | 4 | *) | 
| 5 | ||
| 15944 | 6 | header{*MacLaurin Series*}
 | 
| 7 | ||
| 15131 | 8 | theory MacLaurin | 
| 29811 
026b0f9f579f
fixed Proofs and dependencies ; Theory Dense_Linear_Order moved to Library
 chaieb@chaieb-laptop parents: 
29803diff
changeset | 9 | imports Transcendental | 
| 15131 | 10 | begin | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 11 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 12 | subsection{*Maclaurin's Theorem with Lagrange Form of Remainder*}
 | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 13 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 14 | text{*This is a very long, messy proof even now that it's been broken down
 | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 15 | into lemmas.*} | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 16 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 17 | lemma Maclaurin_lemma: | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 18 | "0 < h ==> | 
| 15539 | 19 | \<exists>B. f h = (\<Sum>m=0..<n. (j m / real (fact m)) * (h^m)) + | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 20 | (B * ((h^n) / real(fact n)))" | 
| 15539 | 21 | apply (rule_tac x = "(f h - (\<Sum>m=0..<n. (j m / real (fact m)) * h^m)) * | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 22 | real(fact n) / (h^n)" | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 23 | in exI) | 
| 15539 | 24 | apply (simp) | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 25 | done | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 26 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 27 | lemma eq_diff_eq': "(x = y - z) = (y = x + (z::real))" | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 28 | by arith | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 29 | |
| 32038 | 30 | lemma fact_diff_Suc [rule_format]: | 
| 31 | "n < Suc m ==> fact (Suc m - n) = (Suc m - n) * fact (m - n)" | |
| 32 | by (subst fact_reduce_nat, auto) | |
| 33 | ||
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 34 | lemma Maclaurin_lemma2: | 
| 29187 | 35 | assumes diff: "\<forall>m t. m < n \<and> 0\<le>t \<and> t\<le>h \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t" | 
| 36 | assumes n: "n = Suc k" | |
| 37 | assumes difg: "difg = | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 38 | (\<lambda>m t. diff m t - | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 39 | ((\<Sum>p = 0..<n - m. diff (m + p) 0 / real (fact p) * t ^ p) + | 
| 29187 | 40 | B * (t ^ (n - m) / real (fact (n - m)))))" | 
| 41 | shows | |
| 42 | "\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (difg m) t :> difg (Suc m) t" | |
| 43 | unfolding difg | |
| 44 | apply clarify | |
| 45 | apply (rule DERIV_diff) | |
| 46 | apply (simp add: diff) | |
| 47 | apply (simp only: n) | |
| 48 | apply (rule DERIV_add) | |
| 49 | apply (rule_tac [2] DERIV_cmult) | |
| 50 | apply (rule_tac [2] lemma_DERIV_subst) | |
| 51 | apply (rule_tac [2] DERIV_quotient) | |
| 52 | apply (rule_tac [3] DERIV_const) | |
| 53 | apply (rule_tac [2] DERIV_pow) | |
| 32038 | 54 | prefer 3 | 
| 55 | ||
| 56 | apply (simp add: fact_diff_Suc) | |
| 29187 | 57 | prefer 2 apply simp | 
| 58 | apply (frule less_iff_Suc_add [THEN iffD1], clarify) | |
| 59 | apply (simp del: setsum_op_ivl_Suc) | |
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
29811diff
changeset | 60 | apply (insert sumr_offset4 [of "Suc 0"]) | 
| 32047 | 61 | apply (simp del: setsum_op_ivl_Suc fact_Suc power_Suc) | 
| 29187 | 62 | apply (rule lemma_DERIV_subst) | 
| 63 | apply (rule DERIV_add) | |
| 64 | apply (rule_tac [2] DERIV_const) | |
| 65 | apply (rule DERIV_sumr, clarify) | |
| 66 | prefer 2 apply simp | |
| 32047 | 67 | apply (simp (no_asm) add: divide_inverse mult_assoc del: fact_Suc power_Suc) | 
| 29187 | 68 | apply (rule DERIV_cmult) | 
| 69 | apply (rule lemma_DERIV_subst) | |
| 31881 | 70 | apply (best intro!: DERIV_intros) | 
| 32047 | 71 | apply (subst fact_Suc) | 
| 29187 | 72 | apply (subst real_of_nat_mult) | 
| 73 | apply (simp add: mult_ac) | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 74 | done | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 75 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 76 | lemma Maclaurin: | 
| 29187 | 77 | assumes h: "0 < h" | 
| 78 | assumes n: "0 < n" | |
| 79 | assumes diff_0: "diff 0 = f" | |
| 80 | assumes diff_Suc: | |
| 81 | "\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t" | |
| 82 | shows | |
| 83 | "\<exists>t. 0 < t & t < h & | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 84 | f h = | 
| 15539 | 85 |               setsum (%m. (diff m 0 / real (fact m)) * h ^ m) {0..<n} +
 | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 86 | (diff n t / real (fact n)) * h ^ n" | 
| 29187 | 87 | proof - | 
| 88 | from n obtain m where m: "n = Suc m" | |
| 89 | by (cases n, simp add: n) | |
| 90 | ||
| 91 | obtain B where f_h: "f h = | |
| 92 | (\<Sum>m = 0..<n. diff m (0\<Colon>real) / real (fact m) * h ^ m) + | |
| 93 | B * (h ^ n / real (fact n))" | |
| 94 | using Maclaurin_lemma [OF h] .. | |
| 95 | ||
| 96 | obtain g where g_def: "g = (%t. f t - | |
| 97 |     (setsum (%m. (diff m 0 / real(fact m)) * t^m) {0..<n}
 | |
| 98 | + (B * (t^n / real(fact n)))))" by blast | |
| 99 | ||
| 100 | have g2: "g 0 = 0 & g h = 0" | |
| 101 | apply (simp add: m f_h g_def del: setsum_op_ivl_Suc) | |
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
29811diff
changeset | 102 | apply (cut_tac n = m and k = "Suc 0" in sumr_offset2) | 
| 29187 | 103 | apply (simp add: eq_diff_eq' diff_0 del: setsum_op_ivl_Suc) | 
| 104 | done | |
| 105 | ||
| 106 | obtain difg where difg_def: "difg = (%m t. diff m t - | |
| 107 |     (setsum (%p. (diff (m + p) 0 / real (fact p)) * (t ^ p)) {0..<n-m}
 | |
| 108 | + (B * ((t ^ (n - m)) / real (fact (n - m))))))" by blast | |
| 109 | ||
| 110 | have difg_0: "difg 0 = g" | |
| 111 | unfolding difg_def g_def by (simp add: diff_0) | |
| 112 | ||
| 113 | have difg_Suc: "\<forall>(m\<Colon>nat) t\<Colon>real. | |
| 114 | m < n \<and> (0\<Colon>real) \<le> t \<and> t \<le> h \<longrightarrow> DERIV (difg m) t :> difg (Suc m) t" | |
| 115 | using diff_Suc m difg_def by (rule Maclaurin_lemma2) | |
| 116 | ||
| 117 | have difg_eq_0: "\<forall>m. m < n --> difg m 0 = 0" | |
| 118 | apply clarify | |
| 119 | apply (simp add: m difg_def) | |
| 120 | apply (frule less_iff_Suc_add [THEN iffD1], clarify) | |
| 121 | apply (simp del: setsum_op_ivl_Suc) | |
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
29811diff
changeset | 122 | apply (insert sumr_offset4 [of "Suc 0"]) | 
| 32047 | 123 | apply (simp del: setsum_op_ivl_Suc fact_Suc) | 
| 29187 | 124 | done | 
| 125 | ||
| 126 | have isCont_difg: "\<And>m x. \<lbrakk>m < n; 0 \<le> x; x \<le> h\<rbrakk> \<Longrightarrow> isCont (difg m) x" | |
| 127 | by (rule DERIV_isCont [OF difg_Suc [rule_format]]) simp | |
| 128 | ||
| 129 | have differentiable_difg: | |
| 130 | "\<And>m x. \<lbrakk>m < n; 0 \<le> x; x \<le> h\<rbrakk> \<Longrightarrow> difg m differentiable x" | |
| 131 | by (rule differentiableI [OF difg_Suc [rule_format]]) simp | |
| 132 | ||
| 133 | have difg_Suc_eq_0: "\<And>m t. \<lbrakk>m < n; 0 \<le> t; t \<le> h; DERIV (difg m) t :> 0\<rbrakk> | |
| 134 | \<Longrightarrow> difg (Suc m) t = 0" | |
| 135 | by (rule DERIV_unique [OF difg_Suc [rule_format]]) simp | |
| 136 | ||
| 137 | have "m < n" using m by simp | |
| 138 | ||
| 139 | have "\<exists>t. 0 < t \<and> t < h \<and> DERIV (difg m) t :> 0" | |
| 140 | using `m < n` | |
| 141 | proof (induct m) | |
| 142 | case 0 | |
| 143 | show ?case | |
| 144 | proof (rule Rolle) | |
| 145 | show "0 < h" by fact | |
| 146 | show "difg 0 0 = difg 0 h" by (simp add: difg_0 g2) | |
| 147 | show "\<forall>x. 0 \<le> x \<and> x \<le> h \<longrightarrow> isCont (difg (0\<Colon>nat)) x" | |
| 148 | by (simp add: isCont_difg n) | |
| 149 | show "\<forall>x. 0 < x \<and> x < h \<longrightarrow> difg (0\<Colon>nat) differentiable x" | |
| 150 | by (simp add: differentiable_difg n) | |
| 151 | qed | |
| 152 | next | |
| 153 | case (Suc m') | |
| 154 | hence "\<exists>t. 0 < t \<and> t < h \<and> DERIV (difg m') t :> 0" by simp | |
| 155 | then obtain t where t: "0 < t" "t < h" "DERIV (difg m') t :> 0" by fast | |
| 156 | have "\<exists>t'. 0 < t' \<and> t' < t \<and> DERIV (difg (Suc m')) t' :> 0" | |
| 157 | proof (rule Rolle) | |
| 158 | show "0 < t" by fact | |
| 159 | show "difg (Suc m') 0 = difg (Suc m') t" | |
| 160 | using t `Suc m' < n` by (simp add: difg_Suc_eq_0 difg_eq_0) | |
| 161 | show "\<forall>x. 0 \<le> x \<and> x \<le> t \<longrightarrow> isCont (difg (Suc m')) x" | |
| 162 | using `t < h` `Suc m' < n` by (simp add: isCont_difg) | |
| 163 | show "\<forall>x. 0 < x \<and> x < t \<longrightarrow> difg (Suc m') differentiable x" | |
| 164 | using `t < h` `Suc m' < n` by (simp add: differentiable_difg) | |
| 165 | qed | |
| 166 | thus ?case | |
| 167 | using `t < h` by auto | |
| 168 | qed | |
| 169 | ||
| 170 | then obtain t where "0 < t" "t < h" "DERIV (difg m) t :> 0" by fast | |
| 171 | ||
| 172 | hence "difg (Suc m) t = 0" | |
| 173 | using `m < n` by (simp add: difg_Suc_eq_0) | |
| 174 | ||
| 175 | show ?thesis | |
| 176 | proof (intro exI conjI) | |
| 177 | show "0 < t" by fact | |
| 178 | show "t < h" by fact | |
| 179 | show "f h = | |
| 180 | (\<Sum>m = 0..<n. diff m 0 / real (fact m) * h ^ m) + | |
| 181 | diff n t / real (fact n) * h ^ n" | |
| 182 | using `difg (Suc m) t = 0` | |
| 32047 | 183 | by (simp add: m f_h difg_def del: fact_Suc) | 
| 29187 | 184 | qed | 
| 185 | ||
| 186 | qed | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 187 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 188 | lemma Maclaurin_objl: | 
| 25162 | 189 | "0 < h & n>0 & diff 0 = f & | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 190 | (\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 191 | --> (\<exists>t. 0 < t & t < h & | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 192 | f h = (\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) + | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 193 | diff n t / real (fact n) * h ^ n)" | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 194 | by (blast intro: Maclaurin) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 195 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 196 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 197 | lemma Maclaurin2: | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 198 | "[| 0 < h; diff 0 = f; | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 199 | \<forall>m t. | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 200 | m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t |] | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 201 | ==> \<exists>t. 0 < t & | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 202 | t \<le> h & | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 203 | f h = | 
| 15539 | 204 | (\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) + | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 205 | diff n t / real (fact n) * h ^ n" | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 206 | apply (case_tac "n", auto) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 207 | apply (drule Maclaurin, auto) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 208 | done | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 209 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 210 | lemma Maclaurin2_objl: | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 211 | "0 < h & diff 0 = f & | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 212 | (\<forall>m t. | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 213 | m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 214 | --> (\<exists>t. 0 < t & | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 215 | t \<le> h & | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 216 | f h = | 
| 15539 | 217 | (\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) + | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 218 | diff n t / real (fact n) * h ^ n)" | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 219 | by (blast intro: Maclaurin2) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 220 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 221 | lemma Maclaurin_minus: | 
| 25162 | 222 | "[| h < 0; n > 0; diff 0 = f; | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 223 | \<forall>m t. m < n & h \<le> t & t \<le> 0 --> DERIV (diff m) t :> diff (Suc m) t |] | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 224 | ==> \<exists>t. h < t & | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 225 | t < 0 & | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 226 | f h = | 
| 15539 | 227 | (\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) + | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 228 | diff n t / real (fact n) * h ^ n" | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 229 | apply (cut_tac f = "%x. f (-x)" | 
| 23177 | 230 | and diff = "%n x. (-1 ^ n) * diff n (-x)" | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 231 | and h = "-h" and n = n in Maclaurin_objl) | 
| 15539 | 232 | apply (simp) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 233 | apply safe | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 234 | apply (subst minus_mult_right) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 235 | apply (rule DERIV_cmult) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 236 | apply (rule lemma_DERIV_subst) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 237 | apply (rule DERIV_chain2 [where g=uminus]) | 
| 23069 
cdfff0241c12
rename lemmas LIM_ident, isCont_ident, DERIV_ident
 huffman parents: 
22985diff
changeset | 238 | apply (rule_tac [2] DERIV_minus, rule_tac [2] DERIV_ident) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 239 | prefer 2 apply force | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 240 | apply force | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 241 | apply (rule_tac x = "-t" in exI, auto) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 242 | apply (subgoal_tac "(\<Sum>m = 0..<n. -1 ^ m * diff m 0 * (-h)^m / real(fact m)) = | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 243 | (\<Sum>m = 0..<n. diff m 0 * h ^ m / real(fact m))") | 
| 15536 | 244 | apply (rule_tac [2] setsum_cong[OF refl]) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 245 | apply (auto simp add: divide_inverse power_mult_distrib [symmetric]) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 246 | done | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 247 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 248 | lemma Maclaurin_minus_objl: | 
| 25162 | 249 | "(h < 0 & n > 0 & diff 0 = f & | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 250 | (\<forall>m t. | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 251 | m < n & h \<le> t & t \<le> 0 --> DERIV (diff m) t :> diff (Suc m) t)) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 252 | --> (\<exists>t. h < t & | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 253 | t < 0 & | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 254 | f h = | 
| 15539 | 255 | (\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) + | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 256 | diff n t / real (fact n) * h ^ n)" | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 257 | by (blast intro: Maclaurin_minus) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 258 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 259 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 260 | subsection{*More Convenient "Bidirectional" Version.*}
 | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 261 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 262 | (* not good for PVS sin_approx, cos_approx *) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 263 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 264 | lemma Maclaurin_bi_le_lemma [rule_format]: | 
| 25162 | 265 | "n>0 \<longrightarrow> | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 266 | diff 0 0 = | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 267 | (\<Sum>m = 0..<n. diff m 0 * 0 ^ m / real (fact m)) + | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 268 | diff n 0 * 0 ^ n / real (fact n)" | 
| 15251 | 269 | by (induct "n", auto) | 
| 14738 | 270 | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 271 | lemma Maclaurin_bi_le: | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 272 | "[| diff 0 = f; | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 273 | \<forall>m t. m < n & abs t \<le> abs x --> DERIV (diff m) t :> diff (Suc m) t |] | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 274 | ==> \<exists>t. abs t \<le> abs x & | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 275 | f x = | 
| 15539 | 276 | (\<Sum>m=0..<n. diff m 0 / real (fact m) * x ^ m) + | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 277 | diff n t / real (fact n) * x ^ n" | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 278 | apply (case_tac "n = 0", force) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 279 | apply (case_tac "x = 0") | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 280 | apply (rule_tac x = 0 in exI) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 281 | apply (force simp add: Maclaurin_bi_le_lemma) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 282 | apply (cut_tac x = x and y = 0 in linorder_less_linear, auto) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 283 |  txt{*Case 1, where @{term "x < 0"}*}
 | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 284 | apply (cut_tac f = "diff 0" and diff = diff and h = x and n = n in Maclaurin_minus_objl, safe) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 285 | apply (simp add: abs_if) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 286 | apply (rule_tac x = t in exI) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 287 | apply (simp add: abs_if) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 288 | txt{*Case 2, where @{term "0 < x"}*}
 | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 289 | apply (cut_tac f = "diff 0" and diff = diff and h = x and n = n in Maclaurin_objl, safe) | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 290 | apply (simp add: abs_if) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 291 | apply (rule_tac x = t in exI) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 292 | apply (simp add: abs_if) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 293 | done | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 294 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 295 | lemma Maclaurin_all_lt: | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 296 | "[| diff 0 = f; | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 297 | \<forall>m x. DERIV (diff m) x :> diff(Suc m) x; | 
| 25162 | 298 | x ~= 0; n > 0 | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 299 | |] ==> \<exists>t. 0 < abs t & abs t < abs x & | 
| 15539 | 300 | f x = (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) + | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 301 | (diff n t / real (fact n)) * x ^ n" | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 302 | apply (rule_tac x = x and y = 0 in linorder_cases) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 303 | prefer 2 apply blast | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 304 | apply (drule_tac [2] diff=diff in Maclaurin) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 305 | apply (drule_tac diff=diff in Maclaurin_minus, simp_all, safe) | 
| 15229 | 306 | apply (rule_tac [!] x = t in exI, auto) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 307 | done | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 308 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 309 | lemma Maclaurin_all_lt_objl: | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 310 | "diff 0 = f & | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 311 | (\<forall>m x. DERIV (diff m) x :> diff(Suc m) x) & | 
| 25162 | 312 | x ~= 0 & n > 0 | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 313 | --> (\<exists>t. 0 < abs t & abs t < abs x & | 
| 15539 | 314 | f x = (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) + | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 315 | (diff n t / real (fact n)) * x ^ n)" | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 316 | by (blast intro: Maclaurin_all_lt) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 317 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 318 | lemma Maclaurin_zero [rule_format]: | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 319 | "x = (0::real) | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 320 | ==> n \<noteq> 0 --> | 
| 15539 | 321 | (\<Sum>m=0..<n. (diff m (0::real) / real (fact m)) * x ^ m) = | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 322 | diff 0 0" | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 323 | by (induct n, auto) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 324 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 325 | lemma Maclaurin_all_le: "[| diff 0 = f; | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 326 | \<forall>m x. DERIV (diff m) x :> diff (Suc m) x | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 327 | |] ==> \<exists>t. abs t \<le> abs x & | 
| 15539 | 328 | f x = (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) + | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 329 | (diff n t / real (fact n)) * x ^ n" | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 330 | apply(cases "n=0") | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 331 | apply (force) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 332 | apply (case_tac "x = 0") | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 333 | apply (frule_tac diff = diff and n = n in Maclaurin_zero, assumption) | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 334 | apply (drule not0_implies_Suc) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 335 | apply (rule_tac x = 0 in exI, force) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 336 | apply (frule_tac diff = diff and n = n in Maclaurin_all_lt, auto) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 337 | apply (rule_tac x = t in exI, auto) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 338 | done | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 339 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 340 | lemma Maclaurin_all_le_objl: "diff 0 = f & | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 341 | (\<forall>m x. DERIV (diff m) x :> diff (Suc m) x) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 342 | --> (\<exists>t. abs t \<le> abs x & | 
| 15539 | 343 | f x = (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) + | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 344 | (diff n t / real (fact n)) * x ^ n)" | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 345 | by (blast intro: Maclaurin_all_le) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 346 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 347 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 348 | subsection{*Version for Exponential Function*}
 | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 349 | |
| 25162 | 350 | lemma Maclaurin_exp_lt: "[| x ~= 0; n > 0 |] | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 351 | ==> (\<exists>t. 0 < abs t & | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 352 | abs t < abs x & | 
| 15539 | 353 | exp x = (\<Sum>m=0..<n. (x ^ m) / real (fact m)) + | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 354 | (exp t / real (fact n)) * x ^ n)" | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 355 | by (cut_tac diff = "%n. exp" and f = exp and x = x and n = n in Maclaurin_all_lt_objl, auto) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 356 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 357 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 358 | lemma Maclaurin_exp_le: | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 359 | "\<exists>t. abs t \<le> abs x & | 
| 15539 | 360 | exp x = (\<Sum>m=0..<n. (x ^ m) / real (fact m)) + | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 361 | (exp t / real (fact n)) * x ^ n" | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 362 | by (cut_tac diff = "%n. exp" and f = exp and x = x and n = n in Maclaurin_all_le_objl, auto) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 363 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 364 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 365 | subsection{*Version for Sine Function*}
 | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 366 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 367 | lemma mod_exhaust_less_4: | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 368 | "m mod 4 = 0 | m mod 4 = 1 | m mod 4 = 2 | m mod 4 = (3::nat)" | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19765diff
changeset | 369 | by auto | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 370 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 371 | lemma Suc_Suc_mult_two_diff_two [rule_format, simp]: | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 372 | "n\<noteq>0 --> Suc (Suc (2 * n - 2)) = 2*n" | 
| 15251 | 373 | by (induct "n", auto) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 374 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 375 | lemma lemma_Suc_Suc_4n_diff_2 [rule_format, simp]: | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 376 | "n\<noteq>0 --> Suc (Suc (4*n - 2)) = 4*n" | 
| 15251 | 377 | by (induct "n", auto) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 378 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 379 | lemma Suc_mult_two_diff_one [rule_format, simp]: | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 380 | "n\<noteq>0 --> Suc (2 * n - 1) = 2*n" | 
| 15251 | 381 | by (induct "n", auto) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 382 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 383 | |
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 384 | text{*It is unclear why so many variant results are needed.*}
 | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 385 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 386 | lemma Maclaurin_sin_expansion2: | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 387 | "\<exists>t. abs t \<le> abs x & | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 388 | sin x = | 
| 15539 | 389 | (\<Sum>m=0..<n. (if even m then 0 | 
| 23177 | 390 | else (-1 ^ ((m - Suc 0) div 2)) / real (fact m)) * | 
| 15539 | 391 | x ^ m) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 392 | + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)" | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 393 | apply (cut_tac f = sin and n = n and x = x | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 394 | and diff = "%n x. sin (x + 1/2*real n * pi)" in Maclaurin_all_lt_objl) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 395 | apply safe | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 396 | apply (simp (no_asm)) | 
| 15539 | 397 | apply (simp (no_asm)) | 
| 23242 | 398 | apply (case_tac "n", clarify, simp, simp add: lemma_STAR_sin) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 399 | apply (rule ccontr, simp) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 400 | apply (drule_tac x = x in spec, simp) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 401 | apply (erule ssubst) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 402 | apply (rule_tac x = t in exI, simp) | 
| 15536 | 403 | apply (rule setsum_cong[OF refl]) | 
| 15539 | 404 | apply (auto simp add: sin_zero_iff odd_Suc_mult_two_ex) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 405 | done | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 406 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 407 | lemma Maclaurin_sin_expansion: | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 408 | "\<exists>t. sin x = | 
| 15539 | 409 | (\<Sum>m=0..<n. (if even m then 0 | 
| 23177 | 410 | else (-1 ^ ((m - Suc 0) div 2)) / real (fact m)) * | 
| 15539 | 411 | x ^ m) | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 412 | + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 413 | apply (insert Maclaurin_sin_expansion2 [of x n]) | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 414 | apply (blast intro: elim:); | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 415 | done | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 416 | |
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 417 | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 418 | lemma Maclaurin_sin_expansion3: | 
| 25162 | 419 | "[| n > 0; 0 < x |] ==> | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 420 | \<exists>t. 0 < t & t < x & | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 421 | sin x = | 
| 15539 | 422 | (\<Sum>m=0..<n. (if even m then 0 | 
| 23177 | 423 | else (-1 ^ ((m - Suc 0) div 2)) / real (fact m)) * | 
| 15539 | 424 | x ^ m) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 425 | + ((sin(t + 1/2 * real(n) *pi) / real (fact n)) * x ^ n)" | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 426 | apply (cut_tac f = sin and n = n and h = x and diff = "%n x. sin (x + 1/2*real (n) *pi)" in Maclaurin_objl) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 427 | apply safe | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 428 | apply simp | 
| 15539 | 429 | apply (simp (no_asm)) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 430 | apply (erule ssubst) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 431 | apply (rule_tac x = t in exI, simp) | 
| 15536 | 432 | apply (rule setsum_cong[OF refl]) | 
| 15539 | 433 | apply (auto simp add: sin_zero_iff odd_Suc_mult_two_ex) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 434 | done | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 435 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 436 | lemma Maclaurin_sin_expansion4: | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 437 | "0 < x ==> | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 438 | \<exists>t. 0 < t & t \<le> x & | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 439 | sin x = | 
| 15539 | 440 | (\<Sum>m=0..<n. (if even m then 0 | 
| 23177 | 441 | else (-1 ^ ((m - Suc 0) div 2)) / real (fact m)) * | 
| 15539 | 442 | x ^ m) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 443 | + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)" | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 444 | apply (cut_tac f = sin and n = n and h = x and diff = "%n x. sin (x + 1/2*real (n) *pi)" in Maclaurin2_objl) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 445 | apply safe | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 446 | apply simp | 
| 15539 | 447 | apply (simp (no_asm)) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 448 | apply (erule ssubst) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 449 | apply (rule_tac x = t in exI, simp) | 
| 15536 | 450 | apply (rule setsum_cong[OF refl]) | 
| 15539 | 451 | apply (auto simp add: sin_zero_iff odd_Suc_mult_two_ex) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 452 | done | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 453 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 454 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 455 | subsection{*Maclaurin Expansion for Cosine Function*}
 | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 456 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 457 | lemma sumr_cos_zero_one [simp]: | 
| 15539 | 458 | "(\<Sum>m=0..<(Suc n). | 
| 23177 | 459 | (if even m then -1 ^ (m div 2)/(real (fact m)) else 0) * 0 ^ m) = 1" | 
| 15251 | 460 | by (induct "n", auto) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 461 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 462 | lemma Maclaurin_cos_expansion: | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 463 | "\<exists>t. abs t \<le> abs x & | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 464 | cos x = | 
| 15539 | 465 | (\<Sum>m=0..<n. (if even m | 
| 23177 | 466 | then -1 ^ (m div 2)/(real (fact m)) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 467 | else 0) * | 
| 15539 | 468 | x ^ m) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 469 | + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)" | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 470 | apply (cut_tac f = cos and n = n and x = x and diff = "%n x. cos (x + 1/2*real (n) *pi)" in Maclaurin_all_lt_objl) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 471 | apply safe | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 472 | apply (simp (no_asm)) | 
| 15539 | 473 | apply (simp (no_asm)) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 474 | apply (case_tac "n", simp) | 
| 15561 | 475 | apply (simp del: setsum_op_ivl_Suc) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 476 | apply (rule ccontr, simp) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 477 | apply (drule_tac x = x in spec, simp) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 478 | apply (erule ssubst) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 479 | apply (rule_tac x = t in exI, simp) | 
| 15536 | 480 | apply (rule setsum_cong[OF refl]) | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 481 | apply (auto simp add: cos_zero_iff even_mult_two_ex) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 482 | done | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 483 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 484 | lemma Maclaurin_cos_expansion2: | 
| 25162 | 485 | "[| 0 < x; n > 0 |] ==> | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 486 | \<exists>t. 0 < t & t < x & | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 487 | cos x = | 
| 15539 | 488 | (\<Sum>m=0..<n. (if even m | 
| 23177 | 489 | then -1 ^ (m div 2)/(real (fact m)) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 490 | else 0) * | 
| 15539 | 491 | x ^ m) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 492 | + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)" | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 493 | apply (cut_tac f = cos and n = n and h = x and diff = "%n x. cos (x + 1/2*real (n) *pi)" in Maclaurin_objl) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 494 | apply safe | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 495 | apply simp | 
| 15539 | 496 | apply (simp (no_asm)) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 497 | apply (erule ssubst) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 498 | apply (rule_tac x = t in exI, simp) | 
| 15536 | 499 | apply (rule setsum_cong[OF refl]) | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 500 | apply (auto simp add: cos_zero_iff even_mult_two_ex) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 501 | done | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 502 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 503 | lemma Maclaurin_minus_cos_expansion: | 
| 25162 | 504 | "[| x < 0; n > 0 |] ==> | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 505 | \<exists>t. x < t & t < 0 & | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 506 | cos x = | 
| 15539 | 507 | (\<Sum>m=0..<n. (if even m | 
| 23177 | 508 | then -1 ^ (m div 2)/(real (fact m)) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 509 | else 0) * | 
| 15539 | 510 | x ^ m) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 511 | + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)" | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 512 | apply (cut_tac f = cos and n = n and h = x and diff = "%n x. cos (x + 1/2*real (n) *pi)" in Maclaurin_minus_objl) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 513 | apply safe | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 514 | apply simp | 
| 15539 | 515 | apply (simp (no_asm)) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 516 | apply (erule ssubst) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 517 | apply (rule_tac x = t in exI, simp) | 
| 15536 | 518 | apply (rule setsum_cong[OF refl]) | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 519 | apply (auto simp add: cos_zero_iff even_mult_two_ex) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 520 | done | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 521 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 522 | (* ------------------------------------------------------------------------- *) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 523 | (* Version for ln(1 +/- x). Where is it?? *) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 524 | (* ------------------------------------------------------------------------- *) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 525 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 526 | lemma sin_bound_lemma: | 
| 15081 | 527 | "[|x = y; abs u \<le> (v::real) |] ==> \<bar>(x + u) - y\<bar> \<le> v" | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 528 | by auto | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 529 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 530 | lemma Maclaurin_sin_bound: | 
| 23177 | 531 | "abs(sin x - (\<Sum>m=0..<n. (if even m then 0 else (-1 ^ ((m - Suc 0) div 2)) / real (fact m)) * | 
| 15081 | 532 | x ^ m)) \<le> inverse(real (fact n)) * \<bar>x\<bar> ^ n" | 
| 14738 | 533 | proof - | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 534 | have "!! x (y::real). x \<le> 1 \<Longrightarrow> 0 \<le> y \<Longrightarrow> x * y \<le> 1 * y" | 
| 14738 | 535 | by (rule_tac mult_right_mono,simp_all) | 
| 536 | note est = this[simplified] | |
| 22985 | 537 | let ?diff = "\<lambda>(n::nat) x. if n mod 4 = 0 then sin(x) else if n mod 4 = 1 then cos(x) else if n mod 4 = 2 then -sin(x) else -cos(x)" | 
| 538 | have diff_0: "?diff 0 = sin" by simp | |
| 539 | have DERIV_diff: "\<forall>m x. DERIV (?diff m) x :> ?diff (Suc m) x" | |
| 540 | apply (clarify) | |
| 541 | apply (subst (1 2 3) mod_Suc_eq_Suc_mod) | |
| 542 | apply (cut_tac m=m in mod_exhaust_less_4) | |
| 31881 | 543 | apply (safe, auto intro!: DERIV_intros) | 
| 22985 | 544 | done | 
| 545 | from Maclaurin_all_le [OF diff_0 DERIV_diff] | |
| 546 | obtain t where t1: "\<bar>t\<bar> \<le> \<bar>x\<bar>" and | |
| 547 | t2: "sin x = (\<Sum>m = 0..<n. ?diff m 0 / real (fact m) * x ^ m) + | |
| 548 | ?diff n t / real (fact n) * x ^ n" by fast | |
| 549 | have diff_m_0: | |
| 550 | "\<And>m. ?diff m 0 = (if even m then 0 | |
| 23177 | 551 | else -1 ^ ((m - Suc 0) div 2))" | 
| 22985 | 552 | apply (subst even_even_mod_4_iff) | 
| 553 | apply (cut_tac m=m in mod_exhaust_less_4) | |
| 554 | apply (elim disjE, simp_all) | |
| 555 | apply (safe dest!: mod_eqD, simp_all) | |
| 556 | done | |
| 14738 | 557 | show ?thesis | 
| 22985 | 558 | apply (subst t2) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 559 | apply (rule sin_bound_lemma) | 
| 15536 | 560 | apply (rule setsum_cong[OF refl]) | 
| 22985 | 561 | apply (subst diff_m_0, simp) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 562 | apply (auto intro: mult_right_mono [where b=1, simplified] mult_right_mono | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
15944diff
changeset | 563 | simp add: est mult_nonneg_nonneg mult_ac divide_inverse | 
| 16924 | 564 | power_abs [symmetric] abs_mult) | 
| 14738 | 565 | done | 
| 566 | qed | |
| 567 | ||
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 568 | end |