| author | wenzelm | 
| Tue, 29 Sep 2009 18:14:08 +0200 | |
| changeset 32760 | ea6672bff5dd | 
| parent 32596 | bd68c04dace1 | 
| child 32960 | 69916a850301 | 
| permissions | -rw-r--r-- | 
| 8924 | 1 | (* Title: HOL/SetInterval.thy | 
| 13735 | 2 | Author: Tobias Nipkow and Clemens Ballarin | 
| 14485 | 3 | Additions by Jeremy Avigad in March 2004 | 
| 8957 | 4 | Copyright 2000 TU Muenchen | 
| 8924 | 5 | |
| 13735 | 6 | lessThan, greaterThan, atLeast, atMost and two-sided intervals | 
| 8924 | 7 | *) | 
| 8 | ||
| 14577 | 9 | header {* Set intervals *}
 | 
| 10 | ||
| 15131 | 11 | theory SetInterval | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25560diff
changeset | 12 | imports Int | 
| 15131 | 13 | begin | 
| 8924 | 14 | |
| 24691 | 15 | context ord | 
| 16 | begin | |
| 17 | definition | |
| 25062 | 18 |   lessThan    :: "'a => 'a set"	("(1{..<_})") where
 | 
| 19 |   "{..<u} == {x. x < u}"
 | |
| 24691 | 20 | |
| 21 | definition | |
| 25062 | 22 |   atMost      :: "'a => 'a set"	("(1{.._})") where
 | 
| 23 |   "{..u} == {x. x \<le> u}"
 | |
| 24691 | 24 | |
| 25 | definition | |
| 25062 | 26 |   greaterThan :: "'a => 'a set"	("(1{_<..})") where
 | 
| 27 |   "{l<..} == {x. l<x}"
 | |
| 24691 | 28 | |
| 29 | definition | |
| 25062 | 30 |   atLeast     :: "'a => 'a set"	("(1{_..})") where
 | 
| 31 |   "{l..} == {x. l\<le>x}"
 | |
| 24691 | 32 | |
| 33 | definition | |
| 25062 | 34 |   greaterThanLessThan :: "'a => 'a => 'a set"  ("(1{_<..<_})") where
 | 
| 35 |   "{l<..<u} == {l<..} Int {..<u}"
 | |
| 24691 | 36 | |
| 37 | definition | |
| 25062 | 38 |   atLeastLessThan :: "'a => 'a => 'a set"      ("(1{_..<_})") where
 | 
| 39 |   "{l..<u} == {l..} Int {..<u}"
 | |
| 24691 | 40 | |
| 41 | definition | |
| 25062 | 42 |   greaterThanAtMost :: "'a => 'a => 'a set"    ("(1{_<.._})") where
 | 
| 43 |   "{l<..u} == {l<..} Int {..u}"
 | |
| 24691 | 44 | |
| 45 | definition | |
| 25062 | 46 |   atLeastAtMost :: "'a => 'a => 'a set"        ("(1{_.._})") where
 | 
| 47 |   "{l..u} == {l..} Int {..u}"
 | |
| 24691 | 48 | |
| 49 | end | |
| 8924 | 50 | |
| 13735 | 51 | |
| 15048 | 52 | text{* A note of warning when using @{term"{..<n}"} on type @{typ
 | 
| 53 | nat}: it is equivalent to @{term"{0::nat..<n}"} but some lemmas involving
 | |
| 15052 | 54 | @{term"{m..<n}"} may not exist in @{term"{..<n}"}-form as well. *}
 | 
| 15048 | 55 | |
| 14418 | 56 | syntax | 
| 30384 | 57 |   "@UNION_le"   :: "'a => 'a => 'b set => 'b set"       ("(3UN _<=_./ _)" 10)
 | 
| 58 |   "@UNION_less" :: "'a => 'a => 'b set => 'b set"       ("(3UN _<_./ _)" 10)
 | |
| 59 |   "@INTER_le"   :: "'a => 'a => 'b set => 'b set"       ("(3INT _<=_./ _)" 10)
 | |
| 60 |   "@INTER_less" :: "'a => 'a => 'b set => 'b set"       ("(3INT _<_./ _)" 10)
 | |
| 14418 | 61 | |
| 30372 | 62 | syntax (xsymbols) | 
| 30384 | 63 |   "@UNION_le"   :: "'a => 'a => 'b set => 'b set"       ("(3\<Union> _\<le>_./ _)" 10)
 | 
| 64 |   "@UNION_less" :: "'a => 'a => 'b set => 'b set"       ("(3\<Union> _<_./ _)" 10)
 | |
| 65 |   "@INTER_le"   :: "'a => 'a => 'b set => 'b set"       ("(3\<Inter> _\<le>_./ _)" 10)
 | |
| 66 |   "@INTER_less" :: "'a => 'a => 'b set => 'b set"       ("(3\<Inter> _<_./ _)" 10)
 | |
| 14418 | 67 | |
| 30372 | 68 | syntax (latex output) | 
| 30384 | 69 |   "@UNION_le"   :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Union>(00_ \<le> _)/ _)" 10)
 | 
| 70 |   "@UNION_less" :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Union>(00_ < _)/ _)" 10)
 | |
| 71 |   "@INTER_le"   :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Inter>(00_ \<le> _)/ _)" 10)
 | |
| 72 |   "@INTER_less" :: "'a \<Rightarrow> 'a => 'b set => 'b set"       ("(3\<Inter>(00_ < _)/ _)" 10)
 | |
| 14418 | 73 | |
| 74 | translations | |
| 75 |   "UN i<=n. A"  == "UN i:{..n}. A"
 | |
| 15045 | 76 |   "UN i<n. A"   == "UN i:{..<n}. A"
 | 
| 14418 | 77 |   "INT i<=n. A" == "INT i:{..n}. A"
 | 
| 15045 | 78 |   "INT i<n. A"  == "INT i:{..<n}. A"
 | 
| 14418 | 79 | |
| 80 | ||
| 14485 | 81 | subsection {* Various equivalences *}
 | 
| 13735 | 82 | |
| 25062 | 83 | lemma (in ord) lessThan_iff [iff]: "(i: lessThan k) = (i<k)" | 
| 13850 | 84 | by (simp add: lessThan_def) | 
| 13735 | 85 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 86 | lemma Compl_lessThan [simp]: | 
| 13735 | 87 | "!!k:: 'a::linorder. -lessThan k = atLeast k" | 
| 13850 | 88 | apply (auto simp add: lessThan_def atLeast_def) | 
| 13735 | 89 | done | 
| 90 | ||
| 13850 | 91 | lemma single_Diff_lessThan [simp]: "!!k:: 'a::order. {k} - lessThan k = {k}"
 | 
| 92 | by auto | |
| 13735 | 93 | |
| 25062 | 94 | lemma (in ord) greaterThan_iff [iff]: "(i: greaterThan k) = (k<i)" | 
| 13850 | 95 | by (simp add: greaterThan_def) | 
| 13735 | 96 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 97 | lemma Compl_greaterThan [simp]: | 
| 13735 | 98 | "!!k:: 'a::linorder. -greaterThan k = atMost k" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25919diff
changeset | 99 | by (auto simp add: greaterThan_def atMost_def) | 
| 13735 | 100 | |
| 13850 | 101 | lemma Compl_atMost [simp]: "!!k:: 'a::linorder. -atMost k = greaterThan k" | 
| 102 | apply (subst Compl_greaterThan [symmetric]) | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 103 | apply (rule double_complement) | 
| 13735 | 104 | done | 
| 105 | ||
| 25062 | 106 | lemma (in ord) atLeast_iff [iff]: "(i: atLeast k) = (k<=i)" | 
| 13850 | 107 | by (simp add: atLeast_def) | 
| 13735 | 108 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 109 | lemma Compl_atLeast [simp]: | 
| 13735 | 110 | "!!k:: 'a::linorder. -atLeast k = lessThan k" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25919diff
changeset | 111 | by (auto simp add: lessThan_def atLeast_def) | 
| 13735 | 112 | |
| 25062 | 113 | lemma (in ord) atMost_iff [iff]: "(i: atMost k) = (i<=k)" | 
| 13850 | 114 | by (simp add: atMost_def) | 
| 13735 | 115 | |
| 14485 | 116 | lemma atMost_Int_atLeast: "!!n:: 'a::order. atMost n Int atLeast n = {n}"
 | 
| 117 | by (blast intro: order_antisym) | |
| 13850 | 118 | |
| 119 | ||
| 14485 | 120 | subsection {* Logical Equivalences for Set Inclusion and Equality *}
 | 
| 13850 | 121 | |
| 122 | lemma atLeast_subset_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 123 | "(atLeast x \<subseteq> atLeast y) = (y \<le> (x::'a::order))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 124 | by (blast intro: order_trans) | 
| 13850 | 125 | |
| 126 | lemma atLeast_eq_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 127 | "(atLeast x = atLeast y) = (x = (y::'a::linorder))" | 
| 13850 | 128 | by (blast intro: order_antisym order_trans) | 
| 129 | ||
| 130 | lemma greaterThan_subset_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 131 | "(greaterThan x \<subseteq> greaterThan y) = (y \<le> (x::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 132 | apply (auto simp add: greaterThan_def) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 133 | apply (subst linorder_not_less [symmetric], blast) | 
| 13850 | 134 | done | 
| 135 | ||
| 136 | lemma greaterThan_eq_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 137 | "(greaterThan x = greaterThan y) = (x = (y::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 138 | apply (rule iffI) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 139 | apply (erule equalityE) | 
| 29709 | 140 | apply simp_all | 
| 13850 | 141 | done | 
| 142 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 143 | lemma atMost_subset_iff [iff]: "(atMost x \<subseteq> atMost y) = (x \<le> (y::'a::order))" | 
| 13850 | 144 | by (blast intro: order_trans) | 
| 145 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 146 | lemma atMost_eq_iff [iff]: "(atMost x = atMost y) = (x = (y::'a::linorder))" | 
| 13850 | 147 | by (blast intro: order_antisym order_trans) | 
| 148 | ||
| 149 | lemma lessThan_subset_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 150 | "(lessThan x \<subseteq> lessThan y) = (x \<le> (y::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 151 | apply (auto simp add: lessThan_def) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 152 | apply (subst linorder_not_less [symmetric], blast) | 
| 13850 | 153 | done | 
| 154 | ||
| 155 | lemma lessThan_eq_iff [iff]: | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 156 | "(lessThan x = lessThan y) = (x = (y::'a::linorder))" | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 157 | apply (rule iffI) | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 158 | apply (erule equalityE) | 
| 29709 | 159 | apply simp_all | 
| 13735 | 160 | done | 
| 161 | ||
| 162 | ||
| 13850 | 163 | subsection {*Two-sided intervals*}
 | 
| 13735 | 164 | |
| 24691 | 165 | context ord | 
| 166 | begin | |
| 167 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23496diff
changeset | 168 | lemma greaterThanLessThan_iff [simp,noatp]: | 
| 25062 | 169 |   "(i : {l<..<u}) = (l < i & i < u)"
 | 
| 13735 | 170 | by (simp add: greaterThanLessThan_def) | 
| 171 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23496diff
changeset | 172 | lemma atLeastLessThan_iff [simp,noatp]: | 
| 25062 | 173 |   "(i : {l..<u}) = (l <= i & i < u)"
 | 
| 13735 | 174 | by (simp add: atLeastLessThan_def) | 
| 175 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23496diff
changeset | 176 | lemma greaterThanAtMost_iff [simp,noatp]: | 
| 25062 | 177 |   "(i : {l<..u}) = (l < i & i <= u)"
 | 
| 13735 | 178 | by (simp add: greaterThanAtMost_def) | 
| 179 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23496diff
changeset | 180 | lemma atLeastAtMost_iff [simp,noatp]: | 
| 25062 | 181 |   "(i : {l..u}) = (l <= i & i <= u)"
 | 
| 13735 | 182 | by (simp add: atLeastAtMost_def) | 
| 183 | ||
| 32436 
10cd49e0c067
Turned "x <= y ==> sup x y = y" (and relatives) into simp rules
 nipkow parents: 
32408diff
changeset | 184 | text {* The above four lemmas could be declared as iffs. Unfortunately this
 | 
| 
10cd49e0c067
Turned "x <= y ==> sup x y = y" (and relatives) into simp rules
 nipkow parents: 
32408diff
changeset | 185 | breaks many proofs. Since it only helps blast, it is better to leave well | 
| 
10cd49e0c067
Turned "x <= y ==> sup x y = y" (and relatives) into simp rules
 nipkow parents: 
32408diff
changeset | 186 | alone *} | 
| 
10cd49e0c067
Turned "x <= y ==> sup x y = y" (and relatives) into simp rules
 nipkow parents: 
32408diff
changeset | 187 | |
| 24691 | 188 | end | 
| 13735 | 189 | |
| 32400 | 190 | subsubsection{* Emptyness, singletons, subset *}
 | 
| 15554 | 191 | |
| 24691 | 192 | context order | 
| 193 | begin | |
| 15554 | 194 | |
| 32400 | 195 | lemma atLeastatMost_empty[simp]: | 
| 196 |   "b < a \<Longrightarrow> {a..b} = {}"
 | |
| 197 | by(auto simp: atLeastAtMost_def atLeast_def atMost_def) | |
| 198 | ||
| 199 | lemma atLeastatMost_empty_iff[simp]: | |
| 200 |   "{a..b} = {} \<longleftrightarrow> (~ a <= b)"
 | |
| 201 | by auto (blast intro: order_trans) | |
| 202 | ||
| 203 | lemma atLeastatMost_empty_iff2[simp]: | |
| 204 |   "{} = {a..b} \<longleftrightarrow> (~ a <= b)"
 | |
| 205 | by auto (blast intro: order_trans) | |
| 206 | ||
| 207 | lemma atLeastLessThan_empty[simp]: | |
| 208 |   "b <= a \<Longrightarrow> {a..<b} = {}"
 | |
| 209 | by(auto simp: atLeastLessThan_def) | |
| 24691 | 210 | |
| 32400 | 211 | lemma atLeastLessThan_empty_iff[simp]: | 
| 212 |   "{a..<b} = {} \<longleftrightarrow> (~ a < b)"
 | |
| 213 | by auto (blast intro: le_less_trans) | |
| 214 | ||
| 215 | lemma atLeastLessThan_empty_iff2[simp]: | |
| 216 |   "{} = {a..<b} \<longleftrightarrow> (~ a < b)"
 | |
| 217 | by auto (blast intro: le_less_trans) | |
| 15554 | 218 | |
| 32400 | 219 | lemma greaterThanAtMost_empty[simp]: "l \<le> k ==> {k<..l} = {}"
 | 
| 17719 | 220 | by(auto simp:greaterThanAtMost_def greaterThan_def atMost_def) | 
| 221 | ||
| 32400 | 222 | lemma greaterThanAtMost_empty_iff[simp]: "{k<..l} = {} \<longleftrightarrow> ~ k < l"
 | 
| 223 | by auto (blast intro: less_le_trans) | |
| 224 | ||
| 225 | lemma greaterThanAtMost_empty_iff2[simp]: "{} = {k<..l} \<longleftrightarrow> ~ k < l"
 | |
| 226 | by auto (blast intro: less_le_trans) | |
| 227 | ||
| 29709 | 228 | lemma greaterThanLessThan_empty[simp]:"l \<le> k ==> {k<..<l} = {}"
 | 
| 17719 | 229 | by(auto simp:greaterThanLessThan_def greaterThan_def lessThan_def) | 
| 230 | ||
| 25062 | 231 | lemma atLeastAtMost_singleton [simp]: "{a..a} = {a}"
 | 
| 24691 | 232 | by (auto simp add: atLeastAtMost_def atMost_def atLeast_def) | 
| 233 | ||
| 32400 | 234 | lemma atLeastatMost_subset_iff[simp]: | 
| 235 |   "{a..b} <= {c..d} \<longleftrightarrow> (~ a <= b) | c <= a & b <= d"
 | |
| 236 | unfolding atLeastAtMost_def atLeast_def atMost_def | |
| 237 | by (blast intro: order_trans) | |
| 238 | ||
| 239 | lemma atLeastatMost_psubset_iff: | |
| 240 |   "{a..b} < {c..d} \<longleftrightarrow>
 | |
| 241 | ((~ a <= b) | c <= a & b <= d & (c < a | b < d)) & c <= d" | |
| 242 | by(simp add: psubset_eq expand_set_eq less_le_not_le)(blast intro: order_trans) | |
| 243 | ||
| 24691 | 244 | end | 
| 14485 | 245 | |
| 32408 | 246 | lemma (in linorder) atLeastLessThan_subset_iff: | 
| 247 |   "{a..<b} <= {c..<d} \<Longrightarrow> b <= a | c<=a & b<=d"
 | |
| 248 | apply (auto simp:subset_eq Ball_def) | |
| 249 | apply(frule_tac x=a in spec) | |
| 250 | apply(erule_tac x=d in allE) | |
| 251 | apply (simp add: less_imp_le) | |
| 252 | done | |
| 253 | ||
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 254 | subsubsection {* Intersection *}
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 255 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 256 | context linorder | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 257 | begin | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 258 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 259 | lemma Int_atLeastAtMost[simp]: "{a..b} Int {c..d} = {max a c .. min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 260 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 261 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 262 | lemma Int_atLeastAtMostR1[simp]: "{..b} Int {c..d} = {c .. min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 263 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 264 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 265 | lemma Int_atLeastAtMostR2[simp]: "{a..} Int {c..d} = {max a c .. d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 266 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 267 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 268 | lemma Int_atLeastAtMostL1[simp]: "{a..b} Int {..d} = {a .. min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 269 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 270 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 271 | lemma Int_atLeastAtMostL2[simp]: "{a..b} Int {c..} = {max a c .. b}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 272 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 273 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 274 | lemma Int_atLeastLessThan[simp]: "{a..<b} Int {c..<d} = {max a c ..< min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 275 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 276 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 277 | lemma Int_greaterThanAtMost[simp]: "{a<..b} Int {c<..d} = {max a c <.. min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 278 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 279 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 280 | lemma Int_greaterThanLessThan[simp]: "{a<..<b} Int {c<..<d} = {max a c <..< min b d}"
 | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 281 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 282 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 283 | end | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 284 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 285 | |
| 14485 | 286 | subsection {* Intervals of natural numbers *}
 | 
| 287 | ||
| 15047 | 288 | subsubsection {* The Constant @{term lessThan} *}
 | 
| 289 | ||
| 14485 | 290 | lemma lessThan_0 [simp]: "lessThan (0::nat) = {}"
 | 
| 291 | by (simp add: lessThan_def) | |
| 292 | ||
| 293 | lemma lessThan_Suc: "lessThan (Suc k) = insert k (lessThan k)" | |
| 294 | by (simp add: lessThan_def less_Suc_eq, blast) | |
| 295 | ||
| 296 | lemma lessThan_Suc_atMost: "lessThan (Suc k) = atMost k" | |
| 297 | by (simp add: lessThan_def atMost_def less_Suc_eq_le) | |
| 298 | ||
| 299 | lemma UN_lessThan_UNIV: "(UN m::nat. lessThan m) = UNIV" | |
| 300 | by blast | |
| 301 | ||
| 15047 | 302 | subsubsection {* The Constant @{term greaterThan} *}
 | 
| 303 | ||
| 14485 | 304 | lemma greaterThan_0 [simp]: "greaterThan 0 = range Suc" | 
| 305 | apply (simp add: greaterThan_def) | |
| 306 | apply (blast dest: gr0_conv_Suc [THEN iffD1]) | |
| 307 | done | |
| 308 | ||
| 309 | lemma greaterThan_Suc: "greaterThan (Suc k) = greaterThan k - {Suc k}"
 | |
| 310 | apply (simp add: greaterThan_def) | |
| 311 | apply (auto elim: linorder_neqE) | |
| 312 | done | |
| 313 | ||
| 314 | lemma INT_greaterThan_UNIV: "(INT m::nat. greaterThan m) = {}"
 | |
| 315 | by blast | |
| 316 | ||
| 15047 | 317 | subsubsection {* The Constant @{term atLeast} *}
 | 
| 318 | ||
| 14485 | 319 | lemma atLeast_0 [simp]: "atLeast (0::nat) = UNIV" | 
| 320 | by (unfold atLeast_def UNIV_def, simp) | |
| 321 | ||
| 322 | lemma atLeast_Suc: "atLeast (Suc k) = atLeast k - {k}"
 | |
| 323 | apply (simp add: atLeast_def) | |
| 324 | apply (simp add: Suc_le_eq) | |
| 325 | apply (simp add: order_le_less, blast) | |
| 326 | done | |
| 327 | ||
| 328 | lemma atLeast_Suc_greaterThan: "atLeast (Suc k) = greaterThan k" | |
| 329 | by (auto simp add: greaterThan_def atLeast_def less_Suc_eq_le) | |
| 330 | ||
| 331 | lemma UN_atLeast_UNIV: "(UN m::nat. atLeast m) = UNIV" | |
| 332 | by blast | |
| 333 | ||
| 15047 | 334 | subsubsection {* The Constant @{term atMost} *}
 | 
| 335 | ||
| 14485 | 336 | lemma atMost_0 [simp]: "atMost (0::nat) = {0}"
 | 
| 337 | by (simp add: atMost_def) | |
| 338 | ||
| 339 | lemma atMost_Suc: "atMost (Suc k) = insert (Suc k) (atMost k)" | |
| 340 | apply (simp add: atMost_def) | |
| 341 | apply (simp add: less_Suc_eq order_le_less, blast) | |
| 342 | done | |
| 343 | ||
| 344 | lemma UN_atMost_UNIV: "(UN m::nat. atMost m) = UNIV" | |
| 345 | by blast | |
| 346 | ||
| 15047 | 347 | subsubsection {* The Constant @{term atLeastLessThan} *}
 | 
| 348 | ||
| 28068 | 349 | text{*The orientation of the following 2 rules is tricky. The lhs is
 | 
| 24449 | 350 | defined in terms of the rhs. Hence the chosen orientation makes sense | 
| 351 | in this theory --- the reverse orientation complicates proofs (eg | |
| 352 | nontermination). But outside, when the definition of the lhs is rarely | |
| 353 | used, the opposite orientation seems preferable because it reduces a | |
| 354 | specific concept to a more general one. *} | |
| 28068 | 355 | |
| 15047 | 356 | lemma atLeast0LessThan: "{0::nat..<n} = {..<n}"
 | 
| 15042 | 357 | by(simp add:lessThan_def atLeastLessThan_def) | 
| 24449 | 358 | |
| 28068 | 359 | lemma atLeast0AtMost: "{0..n::nat} = {..n}"
 | 
| 360 | by(simp add:atMost_def atLeastAtMost_def) | |
| 361 | ||
| 31998 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31509diff
changeset | 362 | declare atLeast0LessThan[symmetric, code_unfold] | 
| 
2c7a24f74db9
code attributes use common underscore convention
 haftmann parents: 
31509diff
changeset | 363 | atLeast0AtMost[symmetric, code_unfold] | 
| 24449 | 364 | |
| 365 | lemma atLeastLessThan0: "{m..<0::nat} = {}"
 | |
| 15047 | 366 | by (simp add: atLeastLessThan_def) | 
| 24449 | 367 | |
| 15047 | 368 | subsubsection {* Intervals of nats with @{term Suc} *}
 | 
| 369 | ||
| 370 | text{*Not a simprule because the RHS is too messy.*}
 | |
| 371 | lemma atLeastLessThanSuc: | |
| 372 |     "{m..<Suc n} = (if m \<le> n then insert n {m..<n} else {})"
 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 373 | by (auto simp add: atLeastLessThan_def) | 
| 15047 | 374 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 375 | lemma atLeastLessThan_singleton [simp]: "{m..<Suc m} = {m}"
 | 
| 15047 | 376 | by (auto simp add: atLeastLessThan_def) | 
| 16041 | 377 | (* | 
| 15047 | 378 | lemma atLeast_sum_LessThan [simp]: "{m + k..<k::nat} = {}"
 | 
| 379 | by (induct k, simp_all add: atLeastLessThanSuc) | |
| 380 | ||
| 381 | lemma atLeastSucLessThan [simp]: "{Suc n..<n} = {}"
 | |
| 382 | by (auto simp add: atLeastLessThan_def) | |
| 16041 | 383 | *) | 
| 15045 | 384 | lemma atLeastLessThanSuc_atLeastAtMost: "{l..<Suc u} = {l..u}"
 | 
| 14485 | 385 | by (simp add: lessThan_Suc_atMost atLeastAtMost_def atLeastLessThan_def) | 
| 386 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 387 | lemma atLeastSucAtMost_greaterThanAtMost: "{Suc l..u} = {l<..u}"
 | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 388 | by (simp add: atLeast_Suc_greaterThan atLeastAtMost_def | 
| 14485 | 389 | greaterThanAtMost_def) | 
| 390 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 391 | lemma atLeastSucLessThan_greaterThanLessThan: "{Suc l..<u} = {l<..<u}"
 | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 392 | by (simp add: atLeast_Suc_greaterThan atLeastLessThan_def | 
| 14485 | 393 | greaterThanLessThan_def) | 
| 394 | ||
| 15554 | 395 | lemma atLeastAtMostSuc_conv: "m \<le> Suc n \<Longrightarrow> {m..Suc n} = insert (Suc n) {m..n}"
 | 
| 396 | by (auto simp add: atLeastAtMost_def) | |
| 397 | ||
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 398 | subsubsection {* Image *}
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 399 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 400 | lemma image_add_atLeastAtMost: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 401 |   "(%n::nat. n+k) ` {i..j} = {i+k..j+k}" (is "?A = ?B")
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 402 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 403 | show "?A \<subseteq> ?B" by auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 404 | next | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 405 | show "?B \<subseteq> ?A" | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 406 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 407 | fix n assume a: "n : ?B" | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19538diff
changeset | 408 |     hence "n - k : {i..j}" by auto
 | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 409 | moreover have "n = (n - k) + k" using a by auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 410 | ultimately show "n : ?A" by blast | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 411 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 412 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 413 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 414 | lemma image_add_atLeastLessThan: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 415 |   "(%n::nat. n+k) ` {i..<j} = {i+k..<j+k}" (is "?A = ?B")
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 416 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 417 | show "?A \<subseteq> ?B" by auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 418 | next | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 419 | show "?B \<subseteq> ?A" | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 420 | proof | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 421 | fix n assume a: "n : ?B" | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19538diff
changeset | 422 |     hence "n - k : {i..<j}" by auto
 | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 423 | moreover have "n = (n - k) + k" using a by auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 424 | ultimately show "n : ?A" by blast | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 425 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 426 | qed | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 427 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 428 | corollary image_Suc_atLeastAtMost[simp]: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 429 |   "Suc ` {i..j} = {Suc i..Suc j}"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 430 | using image_add_atLeastAtMost[where k="Suc 0"] by simp | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 431 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 432 | corollary image_Suc_atLeastLessThan[simp]: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 433 |   "Suc ` {i..<j} = {Suc i..<Suc j}"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 434 | using image_add_atLeastLessThan[where k="Suc 0"] by simp | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 435 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 436 | lemma image_add_int_atLeastLessThan: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 437 |     "(%x. x + (l::int)) ` {0..<u-l} = {l..<u}"
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 438 | apply (auto simp add: image_def) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 439 | apply (rule_tac x = "x - l" in bexI) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 440 | apply auto | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 441 | done | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 442 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 443 | |
| 14485 | 444 | subsubsection {* Finiteness *}
 | 
| 445 | ||
| 15045 | 446 | lemma finite_lessThan [iff]: fixes k :: nat shows "finite {..<k}"
 | 
| 14485 | 447 | by (induct k) (simp_all add: lessThan_Suc) | 
| 448 | ||
| 449 | lemma finite_atMost [iff]: fixes k :: nat shows "finite {..k}"
 | |
| 450 | by (induct k) (simp_all add: atMost_Suc) | |
| 451 | ||
| 452 | lemma finite_greaterThanLessThan [iff]: | |
| 15045 | 453 |   fixes l :: nat shows "finite {l<..<u}"
 | 
| 14485 | 454 | by (simp add: greaterThanLessThan_def) | 
| 455 | ||
| 456 | lemma finite_atLeastLessThan [iff]: | |
| 15045 | 457 |   fixes l :: nat shows "finite {l..<u}"
 | 
| 14485 | 458 | by (simp add: atLeastLessThan_def) | 
| 459 | ||
| 460 | lemma finite_greaterThanAtMost [iff]: | |
| 15045 | 461 |   fixes l :: nat shows "finite {l<..u}"
 | 
| 14485 | 462 | by (simp add: greaterThanAtMost_def) | 
| 463 | ||
| 464 | lemma finite_atLeastAtMost [iff]: | |
| 465 |   fixes l :: nat shows "finite {l..u}"
 | |
| 466 | by (simp add: atLeastAtMost_def) | |
| 467 | ||
| 28068 | 468 | text {* A bounded set of natural numbers is finite. *}
 | 
| 14485 | 469 | lemma bounded_nat_set_is_finite: | 
| 24853 | 470 | "(ALL i:N. i < (n::nat)) ==> finite N" | 
| 28068 | 471 | apply (rule finite_subset) | 
| 472 | apply (rule_tac [2] finite_lessThan, auto) | |
| 473 | done | |
| 474 | ||
| 31044 | 475 | text {* A set of natural numbers is finite iff it is bounded. *}
 | 
| 476 | lemma finite_nat_set_iff_bounded: | |
| 477 | "finite(N::nat set) = (EX m. ALL n:N. n<m)" (is "?F = ?B") | |
| 478 | proof | |
| 479 | assume f:?F show ?B | |
| 480 | using Max_ge[OF `?F`, simplified less_Suc_eq_le[symmetric]] by blast | |
| 481 | next | |
| 482 | assume ?B show ?F using `?B` by(blast intro:bounded_nat_set_is_finite) | |
| 483 | qed | |
| 484 | ||
| 485 | lemma finite_nat_set_iff_bounded_le: | |
| 486 | "finite(N::nat set) = (EX m. ALL n:N. n<=m)" | |
| 487 | apply(simp add:finite_nat_set_iff_bounded) | |
| 488 | apply(blast dest:less_imp_le_nat le_imp_less_Suc) | |
| 489 | done | |
| 490 | ||
| 28068 | 491 | lemma finite_less_ub: | 
| 492 |      "!!f::nat=>nat. (!!n. n \<le> f n) ==> finite {n. f n \<le> u}"
 | |
| 493 | by (rule_tac B="{..u}" in finite_subset, auto intro: order_trans)
 | |
| 14485 | 494 | |
| 24853 | 495 | text{* Any subset of an interval of natural numbers the size of the
 | 
| 496 | subset is exactly that interval. *} | |
| 497 | ||
| 498 | lemma subset_card_intvl_is_intvl: | |
| 499 |   "A <= {k..<k+card A} \<Longrightarrow> A = {k..<k+card A}" (is "PROP ?P")
 | |
| 500 | proof cases | |
| 501 | assume "finite A" | |
| 502 | thus "PROP ?P" | |
| 32006 | 503 | proof(induct A rule:finite_linorder_max_induct) | 
| 24853 | 504 | case empty thus ?case by auto | 
| 505 | next | |
| 506 | case (insert A b) | |
| 507 | moreover hence "b ~: A" by auto | |
| 508 |     moreover have "A <= {k..<k+card A}" and "b = k+card A"
 | |
| 509 | using `b ~: A` insert by fastsimp+ | |
| 510 | ultimately show ?case by auto | |
| 511 | qed | |
| 512 | next | |
| 513 | assume "~finite A" thus "PROP ?P" by simp | |
| 514 | qed | |
| 515 | ||
| 516 | ||
| 32596 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 517 | subsubsection {* Proving Inclusions and Equalities between Unions *}
 | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 518 | |
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 519 | lemma UN_UN_finite_eq: "(\<Union>n::nat. \<Union>i\<in>{0..<n}. A i) = (\<Union>n. A n)"
 | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 520 | by (auto simp add: atLeast0LessThan) | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 521 | |
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 522 | lemma UN_finite_subset: "(!!n::nat. (\<Union>i\<in>{0..<n}. A i) \<subseteq> C) \<Longrightarrow> (\<Union>n. A n) \<subseteq> C"
 | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 523 | by (subst UN_UN_finite_eq [symmetric]) blast | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 524 | |
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 525 | lemma UN_finite2_subset: | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 526 |   assumes sb: "!!n::nat. (\<Union>i\<in>{0..<n}. A i) \<subseteq> (\<Union>i\<in>{0..<n}. B i)"
 | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 527 | shows "(\<Union>n. A n) \<subseteq> (\<Union>n. B n)" | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 528 | proof (rule UN_finite_subset) | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 529 | fix n | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 530 |   have "(\<Union>i\<in>{0..<n}. A i) \<subseteq> (\<Union>i\<in>{0..<n}. B i)" by (rule sb)
 | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 531 |   also have "...  \<subseteq> (\<Union>n::nat. \<Union>i\<in>{0..<n}. B i)" by blast
 | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 532 | also have "... = (\<Union>n. B n)" by (simp add: UN_UN_finite_eq) | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 533 |   finally show "(\<Union>i\<in>{0..<n}. A i) \<subseteq> (\<Union>n. B n)" .
 | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 534 | qed | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 535 | |
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 536 | lemma UN_finite2_eq: | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 537 |   "(!!n::nat. (\<Union>i\<in>{0..<n}. A i) = (\<Union>i\<in>{0..<n}. B i)) \<Longrightarrow> (\<Union>n. A n) = (\<Union>n. B n)"
 | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 538 | by (iprover intro: subset_antisym UN_finite2_subset elim: equalityE) | 
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 539 | |
| 
bd68c04dace1
New theorems for proving equalities and inclusions involving unions
 paulson parents: 
32456diff
changeset | 540 | |
| 14485 | 541 | subsubsection {* Cardinality *}
 | 
| 542 | ||
| 15045 | 543 | lemma card_lessThan [simp]: "card {..<u} = u"
 | 
| 15251 | 544 | by (induct u, simp_all add: lessThan_Suc) | 
| 14485 | 545 | |
| 546 | lemma card_atMost [simp]: "card {..u} = Suc u"
 | |
| 547 | by (simp add: lessThan_Suc_atMost [THEN sym]) | |
| 548 | ||
| 15045 | 549 | lemma card_atLeastLessThan [simp]: "card {l..<u} = u - l"
 | 
| 550 |   apply (subgoal_tac "card {l..<u} = card {..<u-l}")
 | |
| 14485 | 551 | apply (erule ssubst, rule card_lessThan) | 
| 15045 | 552 |   apply (subgoal_tac "(%x. x + l) ` {..<u-l} = {l..<u}")
 | 
| 14485 | 553 | apply (erule subst) | 
| 554 | apply (rule card_image) | |
| 555 | apply (simp add: inj_on_def) | |
| 556 | apply (auto simp add: image_def atLeastLessThan_def lessThan_def) | |
| 557 | apply (rule_tac x = "x - l" in exI) | |
| 558 | apply arith | |
| 559 | done | |
| 560 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 561 | lemma card_atLeastAtMost [simp]: "card {l..u} = Suc u - l"
 | 
| 14485 | 562 | by (subst atLeastLessThanSuc_atLeastAtMost [THEN sym], simp) | 
| 563 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 564 | lemma card_greaterThanAtMost [simp]: "card {l<..u} = u - l"
 | 
| 14485 | 565 | by (subst atLeastSucAtMost_greaterThanAtMost [THEN sym], simp) | 
| 566 | ||
| 15045 | 567 | lemma card_greaterThanLessThan [simp]: "card {l<..<u} = u - Suc l"
 | 
| 14485 | 568 | by (subst atLeastSucLessThan_greaterThanLessThan [THEN sym], simp) | 
| 569 | ||
| 26105 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 570 | lemma ex_bij_betw_nat_finite: | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 571 |   "finite M \<Longrightarrow> \<exists>h. bij_betw h {0..<card M} M"
 | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 572 | apply(drule finite_imp_nat_seg_image_inj_on) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 573 | apply(auto simp:atLeast0LessThan[symmetric] lessThan_def[symmetric] card_image bij_betw_def) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 574 | done | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 575 | |
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 576 | lemma ex_bij_betw_finite_nat: | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 577 |   "finite M \<Longrightarrow> \<exists>h. bij_betw h M {0..<card M}"
 | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 578 | by (blast dest: ex_bij_betw_nat_finite bij_betw_inv) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 579 | |
| 31438 | 580 | lemma finite_same_card_bij: | 
| 581 | "finite A \<Longrightarrow> finite B \<Longrightarrow> card A = card B \<Longrightarrow> EX h. bij_betw h A B" | |
| 582 | apply(drule ex_bij_betw_finite_nat) | |
| 583 | apply(drule ex_bij_betw_nat_finite) | |
| 584 | apply(auto intro!:bij_betw_trans) | |
| 585 | done | |
| 586 | ||
| 587 | lemma ex_bij_betw_nat_finite_1: | |
| 588 |   "finite M \<Longrightarrow> \<exists>h. bij_betw h {1 .. card M} M"
 | |
| 589 | by (rule finite_same_card_bij) auto | |
| 590 | ||
| 26105 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
26072diff
changeset | 591 | |
| 14485 | 592 | subsection {* Intervals of integers *}
 | 
| 593 | ||
| 15045 | 594 | lemma atLeastLessThanPlusOne_atLeastAtMost_int: "{l..<u+1} = {l..(u::int)}"
 | 
| 14485 | 595 | by (auto simp add: atLeastAtMost_def atLeastLessThan_def) | 
| 596 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 597 | lemma atLeastPlusOneAtMost_greaterThanAtMost_int: "{l+1..u} = {l<..(u::int)}"
 | 
| 14485 | 598 | by (auto simp add: atLeastAtMost_def greaterThanAtMost_def) | 
| 599 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 600 | lemma atLeastPlusOneLessThan_greaterThanLessThan_int: | 
| 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 601 |     "{l+1..<u} = {l<..<u::int}"
 | 
| 14485 | 602 | by (auto simp add: atLeastLessThan_def greaterThanLessThan_def) | 
| 603 | ||
| 604 | subsubsection {* Finiteness *}
 | |
| 605 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 606 | lemma image_atLeastZeroLessThan_int: "0 \<le> u ==> | 
| 15045 | 607 |     {(0::int)..<u} = int ` {..<nat u}"
 | 
| 14485 | 608 | apply (unfold image_def lessThan_def) | 
| 609 | apply auto | |
| 610 | apply (rule_tac x = "nat x" in exI) | |
| 611 | apply (auto simp add: zless_nat_conj zless_nat_eq_int_zless [THEN sym]) | |
| 612 | done | |
| 613 | ||
| 15045 | 614 | lemma finite_atLeastZeroLessThan_int: "finite {(0::int)..<u}"
 | 
| 14485 | 615 | apply (case_tac "0 \<le> u") | 
| 616 | apply (subst image_atLeastZeroLessThan_int, assumption) | |
| 617 | apply (rule finite_imageI) | |
| 618 | apply auto | |
| 619 | done | |
| 620 | ||
| 15045 | 621 | lemma finite_atLeastLessThan_int [iff]: "finite {l..<u::int}"
 | 
| 622 |   apply (subgoal_tac "(%x. x + l) ` {0..<u-l} = {l..<u}")
 | |
| 14485 | 623 | apply (erule subst) | 
| 624 | apply (rule finite_imageI) | |
| 625 | apply (rule finite_atLeastZeroLessThan_int) | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 626 | apply (rule image_add_int_atLeastLessThan) | 
| 14485 | 627 | done | 
| 628 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 629 | lemma finite_atLeastAtMost_int [iff]: "finite {l..(u::int)}"
 | 
| 14485 | 630 | by (subst atLeastLessThanPlusOne_atLeastAtMost_int [THEN sym], simp) | 
| 631 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 632 | lemma finite_greaterThanAtMost_int [iff]: "finite {l<..(u::int)}"
 | 
| 14485 | 633 | by (subst atLeastPlusOneAtMost_greaterThanAtMost_int [THEN sym], simp) | 
| 634 | ||
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 635 | lemma finite_greaterThanLessThan_int [iff]: "finite {l<..<u::int}"
 | 
| 14485 | 636 | by (subst atLeastPlusOneLessThan_greaterThanLessThan_int [THEN sym], simp) | 
| 637 | ||
| 24853 | 638 | |
| 14485 | 639 | subsubsection {* Cardinality *}
 | 
| 640 | ||
| 15045 | 641 | lemma card_atLeastZeroLessThan_int: "card {(0::int)..<u} = nat u"
 | 
| 14485 | 642 | apply (case_tac "0 \<le> u") | 
| 643 | apply (subst image_atLeastZeroLessThan_int, assumption) | |
| 644 | apply (subst card_image) | |
| 645 | apply (auto simp add: inj_on_def) | |
| 646 | done | |
| 647 | ||
| 15045 | 648 | lemma card_atLeastLessThan_int [simp]: "card {l..<u} = nat (u - l)"
 | 
| 649 |   apply (subgoal_tac "card {l..<u} = card {0..<u-l}")
 | |
| 14485 | 650 | apply (erule ssubst, rule card_atLeastZeroLessThan_int) | 
| 15045 | 651 |   apply (subgoal_tac "(%x. x + l) ` {0..<u-l} = {l..<u}")
 | 
| 14485 | 652 | apply (erule subst) | 
| 653 | apply (rule card_image) | |
| 654 | apply (simp add: inj_on_def) | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 655 | apply (rule image_add_int_atLeastLessThan) | 
| 14485 | 656 | done | 
| 657 | ||
| 658 | lemma card_atLeastAtMost_int [simp]: "card {l..u} = nat (u - l + 1)"
 | |
| 29667 | 659 | apply (subst atLeastLessThanPlusOne_atLeastAtMost_int [THEN sym]) | 
| 660 | apply (auto simp add: algebra_simps) | |
| 661 | done | |
| 14485 | 662 | |
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 663 | lemma card_greaterThanAtMost_int [simp]: "card {l<..u} = nat (u - l)"
 | 
| 29667 | 664 | by (subst atLeastPlusOneAtMost_greaterThanAtMost_int [THEN sym], simp) | 
| 14485 | 665 | |
| 15045 | 666 | lemma card_greaterThanLessThan_int [simp]: "card {l<..<u} = nat (u - (l + 1))"
 | 
| 29667 | 667 | by (subst atLeastPlusOneLessThan_greaterThanLessThan_int [THEN sym], simp) | 
| 14485 | 668 | |
| 27656 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 669 | lemma finite_M_bounded_by_nat: "finite {k. P k \<and> k < (i::nat)}"
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 670 | proof - | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 671 |   have "{k. P k \<and> k < i} \<subseteq> {..<i}" by auto
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 672 | with finite_lessThan[of "i"] show ?thesis by (simp add: finite_subset) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 673 | qed | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 674 | |
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 675 | lemma card_less: | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 676 | assumes zero_in_M: "0 \<in> M" | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 677 | shows "card {k \<in> M. k < Suc i} \<noteq> 0"
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 678 | proof - | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 679 |   from zero_in_M have "{k \<in> M. k < Suc i} \<noteq> {}" by auto
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 680 | with finite_M_bounded_by_nat show ?thesis by (auto simp add: card_eq_0_iff) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 681 | qed | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 682 | |
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 683 | lemma card_less_Suc2: "0 \<notin> M \<Longrightarrow> card {k. Suc k \<in> M \<and> k < i} = card {k \<in> M. k < Suc i}"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 684 | apply (rule card_bij_eq [of "Suc" _ _ "\<lambda>x. x - Suc 0"]) | 
| 27656 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 685 | apply simp | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 686 | apply fastsimp | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 687 | apply auto | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 688 | apply (rule inj_on_diff_nat) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 689 | apply auto | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 690 | apply (case_tac x) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 691 | apply auto | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 692 | apply (case_tac xa) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 693 | apply auto | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 694 | apply (case_tac xa) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 695 | apply auto | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 696 | done | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 697 | |
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 698 | lemma card_less_Suc: | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 699 | assumes zero_in_M: "0 \<in> M" | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 700 |     shows "Suc (card {k. Suc k \<in> M \<and> k < i}) = card {k \<in> M. k < Suc i}"
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 701 | proof - | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 702 |   from assms have a: "0 \<in> {k \<in> M. k < Suc i}" by simp
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 703 |   hence c: "{k \<in> M. k < Suc i} = insert 0 ({k \<in> M. k < Suc i} - {0})"
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 704 | by (auto simp only: insert_Diff) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 705 |   have b: "{k \<in> M. k < Suc i} - {0} = {k \<in> M - {0}. k < Suc i}"  by auto
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 706 |   from finite_M_bounded_by_nat[of "\<lambda>x. x \<in> M" "Suc i"] have "Suc (card {k. Suc k \<in> M \<and> k < i}) = card (insert 0 ({k \<in> M. k < Suc i} - {0}))"
 | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 707 | apply (subst card_insert) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 708 | apply simp_all | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 709 | apply (subst b) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 710 | apply (subst card_less_Suc2[symmetric]) | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 711 | apply simp_all | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 712 | done | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 713 | with c show ?thesis by simp | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 714 | qed | 
| 
d4f6e64ee7cc
added verification framework for the HeapMonad and quicksort as example for this framework
 bulwahn parents: 
26105diff
changeset | 715 | |
| 14485 | 716 | |
| 13850 | 717 | subsection {*Lemmas useful with the summation operator setsum*}
 | 
| 718 | ||
| 16102 
c5f6726d9bb1
Locale expressions: rename with optional mixfix syntax.
 ballarin parents: 
16052diff
changeset | 719 | text {* For examples, see Algebra/poly/UnivPoly2.thy *}
 | 
| 13735 | 720 | |
| 14577 | 721 | subsubsection {* Disjoint Unions *}
 | 
| 13735 | 722 | |
| 14577 | 723 | text {* Singletons and open intervals *}
 | 
| 13735 | 724 | |
| 725 | lemma ivl_disj_un_singleton: | |
| 15045 | 726 |   "{l::'a::linorder} Un {l<..} = {l..}"
 | 
| 727 |   "{..<u} Un {u::'a::linorder} = {..u}"
 | |
| 728 |   "(l::'a::linorder) < u ==> {l} Un {l<..<u} = {l..<u}"
 | |
| 729 |   "(l::'a::linorder) < u ==> {l<..<u} Un {u} = {l<..u}"
 | |
| 730 |   "(l::'a::linorder) <= u ==> {l} Un {l<..u} = {l..u}"
 | |
| 731 |   "(l::'a::linorder) <= u ==> {l..<u} Un {u} = {l..u}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 732 | by auto | 
| 13735 | 733 | |
| 14577 | 734 | text {* One- and two-sided intervals *}
 | 
| 13735 | 735 | |
| 736 | lemma ivl_disj_un_one: | |
| 15045 | 737 |   "(l::'a::linorder) < u ==> {..l} Un {l<..<u} = {..<u}"
 | 
| 738 |   "(l::'a::linorder) <= u ==> {..<l} Un {l..<u} = {..<u}"
 | |
| 739 |   "(l::'a::linorder) <= u ==> {..l} Un {l<..u} = {..u}"
 | |
| 740 |   "(l::'a::linorder) <= u ==> {..<l} Un {l..u} = {..u}"
 | |
| 741 |   "(l::'a::linorder) <= u ==> {l<..u} Un {u<..} = {l<..}"
 | |
| 742 |   "(l::'a::linorder) < u ==> {l<..<u} Un {u..} = {l<..}"
 | |
| 743 |   "(l::'a::linorder) <= u ==> {l..u} Un {u<..} = {l..}"
 | |
| 744 |   "(l::'a::linorder) <= u ==> {l..<u} Un {u..} = {l..}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 745 | by auto | 
| 13735 | 746 | |
| 14577 | 747 | text {* Two- and two-sided intervals *}
 | 
| 13735 | 748 | |
| 749 | lemma ivl_disj_un_two: | |
| 15045 | 750 |   "[| (l::'a::linorder) < m; m <= u |] ==> {l<..<m} Un {m..<u} = {l<..<u}"
 | 
| 751 |   "[| (l::'a::linorder) <= m; m < u |] ==> {l<..m} Un {m<..<u} = {l<..<u}"
 | |
| 752 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l..<m} Un {m..<u} = {l..<u}"
 | |
| 753 |   "[| (l::'a::linorder) <= m; m < u |] ==> {l..m} Un {m<..<u} = {l..<u}"
 | |
| 754 |   "[| (l::'a::linorder) < m; m <= u |] ==> {l<..<m} Un {m..u} = {l<..u}"
 | |
| 755 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l<..m} Un {m<..u} = {l<..u}"
 | |
| 756 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l..<m} Un {m..u} = {l..u}"
 | |
| 757 |   "[| (l::'a::linorder) <= m; m <= u |] ==> {l..m} Un {m<..u} = {l..u}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 758 | by auto | 
| 13735 | 759 | |
| 760 | lemmas ivl_disj_un = ivl_disj_un_singleton ivl_disj_un_one ivl_disj_un_two | |
| 761 | ||
| 14577 | 762 | subsubsection {* Disjoint Intersections *}
 | 
| 13735 | 763 | |
| 14577 | 764 | text {* One- and two-sided intervals *}
 | 
| 13735 | 765 | |
| 766 | lemma ivl_disj_int_one: | |
| 15045 | 767 |   "{..l::'a::order} Int {l<..<u} = {}"
 | 
| 768 |   "{..<l} Int {l..<u} = {}"
 | |
| 769 |   "{..l} Int {l<..u} = {}"
 | |
| 770 |   "{..<l} Int {l..u} = {}"
 | |
| 771 |   "{l<..u} Int {u<..} = {}"
 | |
| 772 |   "{l<..<u} Int {u..} = {}"
 | |
| 773 |   "{l..u} Int {u<..} = {}"
 | |
| 774 |   "{l..<u} Int {u..} = {}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 775 | by auto | 
| 13735 | 776 | |
| 14577 | 777 | text {* Two- and two-sided intervals *}
 | 
| 13735 | 778 | |
| 779 | lemma ivl_disj_int_two: | |
| 15045 | 780 |   "{l::'a::order<..<m} Int {m..<u} = {}"
 | 
| 781 |   "{l<..m} Int {m<..<u} = {}"
 | |
| 782 |   "{l..<m} Int {m..<u} = {}"
 | |
| 783 |   "{l..m} Int {m<..<u} = {}"
 | |
| 784 |   "{l<..<m} Int {m..u} = {}"
 | |
| 785 |   "{l<..m} Int {m<..u} = {}"
 | |
| 786 |   "{l..<m} Int {m..u} = {}"
 | |
| 787 |   "{l..m} Int {m<..u} = {}"
 | |
| 14398 
c5c47703f763
Efficient, graph-based reasoner for linear and partial orders.
 ballarin parents: 
13850diff
changeset | 788 | by auto | 
| 13735 | 789 | |
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32436diff
changeset | 790 | lemmas ivl_disj_int = ivl_disj_int_one ivl_disj_int_two | 
| 13735 | 791 | |
| 15542 | 792 | subsubsection {* Some Differences *}
 | 
| 793 | ||
| 794 | lemma ivl_diff[simp]: | |
| 795 |  "i \<le> n \<Longrightarrow> {i..<m} - {i..<n} = {n..<(m::'a::linorder)}"
 | |
| 796 | by(auto) | |
| 797 | ||
| 798 | ||
| 799 | subsubsection {* Some Subset Conditions *}
 | |
| 800 | ||
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23496diff
changeset | 801 | lemma ivl_subset [simp,noatp]: | 
| 15542 | 802 |  "({i..<j} \<subseteq> {m..<n}) = (j \<le> i | m \<le> i & j \<le> (n::'a::linorder))"
 | 
| 803 | apply(auto simp:linorder_not_le) | |
| 804 | apply(rule ccontr) | |
| 805 | apply(insert linorder_le_less_linear[of i n]) | |
| 806 | apply(clarsimp simp:linorder_not_le) | |
| 807 | apply(fastsimp) | |
| 808 | done | |
| 809 | ||
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 810 | |
| 15042 | 811 | subsection {* Summation indexed over intervals *}
 | 
| 812 | ||
| 813 | syntax | |
| 814 |   "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _ = _.._./ _)" [0,0,0,10] 10)
 | |
| 15048 | 815 |   "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 16052 | 816 |   "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _<_./ _)" [0,0,10] 10)
 | 
| 817 |   "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(SUM _<=_./ _)" [0,0,10] 10)
 | |
| 15042 | 818 | syntax (xsymbols) | 
| 819 |   "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _.._./ _)" [0,0,0,10] 10)
 | |
| 15048 | 820 |   "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 16052 | 821 |   "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_<_./ _)" [0,0,10] 10)
 | 
| 822 |   "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_\<le>_./ _)" [0,0,10] 10)
 | |
| 15042 | 823 | syntax (HTML output) | 
| 824 |   "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _.._./ _)" [0,0,0,10] 10)
 | |
| 15048 | 825 |   "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 16052 | 826 |   "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_<_./ _)" [0,0,10] 10)
 | 
| 827 |   "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sum>_\<le>_./ _)" [0,0,10] 10)
 | |
| 15056 | 828 | syntax (latex_sum output) | 
| 15052 | 829 | "_from_to_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 830 |  ("(3\<^raw:$\sum_{>_ = _\<^raw:}^{>_\<^raw:}$> _)" [0,0,0,10] 10)
 | |
| 831 | "_from_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | |
| 832 |  ("(3\<^raw:$\sum_{>_ = _\<^raw:}^{<>_\<^raw:}$> _)" [0,0,0,10] 10)
 | |
| 16052 | 833 | "_upt_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 834 |  ("(3\<^raw:$\sum_{>_ < _\<^raw:}$> _)" [0,0,10] 10)
 | |
| 15052 | 835 | "_upto_setsum" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 16052 | 836 |  ("(3\<^raw:$\sum_{>_ \<le> _\<^raw:}$> _)" [0,0,10] 10)
 | 
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 837 | |
| 15048 | 838 | translations | 
| 28853 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28068diff
changeset | 839 |   "\<Sum>x=a..b. t" == "CONST setsum (%x. t) {a..b}"
 | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28068diff
changeset | 840 |   "\<Sum>x=a..<b. t" == "CONST setsum (%x. t) {a..<b}"
 | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28068diff
changeset | 841 |   "\<Sum>i\<le>n. t" == "CONST setsum (\<lambda>i. t) {..n}"
 | 
| 
69eb69659bf3
Added new fold operator and renamed the old oe to fold_image.
 nipkow parents: 
28068diff
changeset | 842 |   "\<Sum>i<n. t" == "CONST setsum (\<lambda>i. t) {..<n}"
 | 
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 843 | |
| 15052 | 844 | text{* The above introduces some pretty alternative syntaxes for
 | 
| 15056 | 845 | summation over intervals: | 
| 15052 | 846 | \begin{center}
 | 
| 847 | \begin{tabular}{lll}
 | |
| 15056 | 848 | Old & New & \LaTeX\\ | 
| 849 | @{term[source]"\<Sum>x\<in>{a..b}. e"} & @{term"\<Sum>x=a..b. e"} & @{term[mode=latex_sum]"\<Sum>x=a..b. e"}\\
 | |
| 850 | @{term[source]"\<Sum>x\<in>{a..<b}. e"} & @{term"\<Sum>x=a..<b. e"} & @{term[mode=latex_sum]"\<Sum>x=a..<b. e"}\\
 | |
| 16052 | 851 | @{term[source]"\<Sum>x\<in>{..b}. e"} & @{term"\<Sum>x\<le>b. e"} & @{term[mode=latex_sum]"\<Sum>x\<le>b. e"}\\
 | 
| 15056 | 852 | @{term[source]"\<Sum>x\<in>{..<b}. e"} & @{term"\<Sum>x<b. e"} & @{term[mode=latex_sum]"\<Sum>x<b. e"}
 | 
| 15052 | 853 | \end{tabular}
 | 
| 854 | \end{center}
 | |
| 15056 | 855 | The left column shows the term before introduction of the new syntax, | 
| 856 | the middle column shows the new (default) syntax, and the right column | |
| 857 | shows a special syntax. The latter is only meaningful for latex output | |
| 858 | and has to be activated explicitly by setting the print mode to | |
| 21502 | 859 | @{text latex_sum} (e.g.\ via @{text "mode = latex_sum"} in
 | 
| 15056 | 860 | antiquotations). It is not the default \LaTeX\ output because it only | 
| 861 | works well with italic-style formulae, not tt-style. | |
| 15052 | 862 | |
| 863 | Note that for uniformity on @{typ nat} it is better to use
 | |
| 864 | @{term"\<Sum>x::nat=0..<n. e"} rather than @{text"\<Sum>x<n. e"}: @{text setsum} may
 | |
| 865 | not provide all lemmas available for @{term"{m..<n}"} also in the
 | |
| 866 | special form for @{term"{..<n}"}. *}
 | |
| 867 | ||
| 15542 | 868 | text{* This congruence rule should be used for sums over intervals as
 | 
| 869 | the standard theorem @{text[source]setsum_cong} does not work well
 | |
| 870 | with the simplifier who adds the unsimplified premise @{term"x:B"} to
 | |
| 871 | the context. *} | |
| 872 | ||
| 873 | lemma setsum_ivl_cong: | |
| 874 | "\<lbrakk>a = c; b = d; !!x. \<lbrakk> c \<le> x; x < d \<rbrakk> \<Longrightarrow> f x = g x \<rbrakk> \<Longrightarrow> | |
| 875 |  setsum f {a..<b} = setsum g {c..<d}"
 | |
| 876 | by(rule setsum_cong, simp_all) | |
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 877 | |
| 16041 | 878 | (* FIXME why are the following simp rules but the corresponding eqns | 
| 879 | on intervals are not? *) | |
| 880 | ||
| 16052 | 881 | lemma setsum_atMost_Suc[simp]: "(\<Sum>i \<le> Suc n. f i) = (\<Sum>i \<le> n. f i) + f(Suc n)" | 
| 882 | by (simp add:atMost_Suc add_ac) | |
| 883 | ||
| 16041 | 884 | lemma setsum_lessThan_Suc[simp]: "(\<Sum>i < Suc n. f i) = (\<Sum>i < n. f i) + f n" | 
| 885 | by (simp add:lessThan_Suc add_ac) | |
| 15041 
a6b1f0cef7b3
Got rid of Summation and made it a translation into setsum instead.
 nipkow parents: 
14846diff
changeset | 886 | |
| 15911 | 887 | lemma setsum_cl_ivl_Suc[simp]: | 
| 15561 | 888 |   "setsum f {m..Suc n} = (if Suc n < m then 0 else setsum f {m..n} + f(Suc n))"
 | 
| 889 | by (auto simp:add_ac atLeastAtMostSuc_conv) | |
| 890 | ||
| 15911 | 891 | lemma setsum_op_ivl_Suc[simp]: | 
| 15561 | 892 |   "setsum f {m..<Suc n} = (if n < m then 0 else setsum f {m..<n} + f(n))"
 | 
| 893 | by (auto simp:add_ac atLeastLessThanSuc) | |
| 16041 | 894 | (* | 
| 15561 | 895 | lemma setsum_cl_ivl_add_one_nat: "(n::nat) <= m + 1 ==> | 
| 896 | (\<Sum>i=n..m+1. f i) = (\<Sum>i=n..m. f i) + f(m + 1)" | |
| 897 | by (auto simp:add_ac atLeastAtMostSuc_conv) | |
| 16041 | 898 | *) | 
| 28068 | 899 | |
| 900 | lemma setsum_head: | |
| 901 | fixes n :: nat | |
| 902 | assumes mn: "m <= n" | |
| 903 |   shows "(\<Sum>x\<in>{m..n}. P x) = P m + (\<Sum>x\<in>{m<..n}. P x)" (is "?lhs = ?rhs")
 | |
| 904 | proof - | |
| 905 | from mn | |
| 906 |   have "{m..n} = {m} \<union> {m<..n}"
 | |
| 907 | by (auto intro: ivl_disj_un_singleton) | |
| 908 |   hence "?lhs = (\<Sum>x\<in>{m} \<union> {m<..n}. P x)"
 | |
| 909 | by (simp add: atLeast0LessThan) | |
| 910 | also have "\<dots> = ?rhs" by simp | |
| 911 | finally show ?thesis . | |
| 912 | qed | |
| 913 | ||
| 914 | lemma setsum_head_Suc: | |
| 915 |   "m \<le> n \<Longrightarrow> setsum f {m..n} = f m + setsum f {Suc m..n}"
 | |
| 916 | by (simp add: setsum_head atLeastSucAtMost_greaterThanAtMost) | |
| 917 | ||
| 918 | lemma setsum_head_upt_Suc: | |
| 919 |   "m < n \<Longrightarrow> setsum f {m..<n} = f m + setsum f {Suc m..<n}"
 | |
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 920 | apply(insert setsum_head_Suc[of m "n - Suc 0" f]) | 
| 29667 | 921 | apply (simp add: atLeastLessThanSuc_atLeastAtMost[symmetric] algebra_simps) | 
| 28068 | 922 | done | 
| 923 | ||
| 31501 | 924 | lemma setsum_ub_add_nat: assumes "(m::nat) \<le> n + 1" | 
| 925 |   shows "setsum f {m..n + p} = setsum f {m..n} + setsum f {n + 1..n + p}"
 | |
| 926 | proof- | |
| 927 |   have "{m .. n+p} = {m..n} \<union> {n+1..n+p}" using `m \<le> n+1` by auto
 | |
| 928 | thus ?thesis by (auto simp: ivl_disj_int setsum_Un_disjoint | |
| 929 | atLeastSucAtMost_greaterThanAtMost) | |
| 930 | qed | |
| 28068 | 931 | |
| 15539 | 932 | lemma setsum_add_nat_ivl: "\<lbrakk> m \<le> n; n \<le> p \<rbrakk> \<Longrightarrow> | 
| 933 |   setsum f {m..<n} + setsum f {n..<p} = setsum f {m..<p::nat}"
 | |
| 934 | by (simp add:setsum_Un_disjoint[symmetric] ivl_disj_int ivl_disj_un) | |
| 935 | ||
| 936 | lemma setsum_diff_nat_ivl: | |
| 937 | fixes f :: "nat \<Rightarrow> 'a::ab_group_add" | |
| 938 | shows "\<lbrakk> m \<le> n; n \<le> p \<rbrakk> \<Longrightarrow> | |
| 939 |   setsum f {m..<p} - setsum f {m..<n} = setsum f {n..<p}"
 | |
| 940 | using setsum_add_nat_ivl [of m n p f,symmetric] | |
| 941 | apply (simp add: add_ac) | |
| 942 | done | |
| 943 | ||
| 31505 | 944 | lemma setsum_natinterval_difff: | 
| 945 |   fixes f:: "nat \<Rightarrow> ('a::ab_group_add)"
 | |
| 946 |   shows  "setsum (\<lambda>k. f k - f(k + 1)) {(m::nat) .. n} =
 | |
| 947 | (if m <= n then f m - f(n + 1) else 0)" | |
| 948 | by (induct n, auto simp add: algebra_simps not_le le_Suc_eq) | |
| 949 | ||
| 31509 | 950 | lemmas setsum_restrict_set' = setsum_restrict_set[unfolded Int_def] | 
| 951 | ||
| 952 | lemma setsum_setsum_restrict: | |
| 953 |   "finite S \<Longrightarrow> finite T \<Longrightarrow> setsum (\<lambda>x. setsum (\<lambda>y. f x y) {y. y\<in> T \<and> R x y}) S = setsum (\<lambda>y. setsum (\<lambda>x. f x y) {x. x \<in> S \<and> R x y}) T"
 | |
| 954 | by (simp add: setsum_restrict_set'[unfolded mem_def] mem_def) | |
| 955 | (rule setsum_commute) | |
| 956 | ||
| 957 | lemma setsum_image_gen: assumes fS: "finite S" | |
| 958 |   shows "setsum g S = setsum (\<lambda>y. setsum g {x. x \<in> S \<and> f x = y}) (f ` S)"
 | |
| 959 | proof- | |
| 960 |   { fix x assume "x \<in> S" then have "{y. y\<in> f`S \<and> f x = y} = {f x}" by auto }
 | |
| 961 |   hence "setsum g S = setsum (\<lambda>x. setsum (\<lambda>y. g x) {y. y\<in> f`S \<and> f x = y}) S"
 | |
| 962 | by simp | |
| 963 |   also have "\<dots> = setsum (\<lambda>y. setsum g {x. x \<in> S \<and> f x = y}) (f ` S)"
 | |
| 964 | by (rule setsum_setsum_restrict[OF fS finite_imageI[OF fS]]) | |
| 965 | finally show ?thesis . | |
| 966 | qed | |
| 967 | ||
| 968 | lemma setsum_multicount_gen: | |
| 969 |   assumes "finite s" "finite t" "\<forall>j\<in>t. (card {i\<in>s. R i j} = k j)"
 | |
| 970 |   shows "setsum (\<lambda>i. (card {j\<in>t. R i j})) s = setsum k t" (is "?l = ?r")
 | |
| 971 | proof- | |
| 972 |   have "?l = setsum (\<lambda>i. setsum (\<lambda>x.1) {j\<in>t. R i j}) s" by auto
 | |
| 973 | also have "\<dots> = ?r" unfolding setsum_setsum_restrict[OF assms(1-2)] | |
| 974 | using assms(3) by auto | |
| 975 | finally show ?thesis . | |
| 976 | qed | |
| 977 | ||
| 978 | lemma setsum_multicount: | |
| 979 |   assumes "finite S" "finite T" "\<forall>j\<in>T. (card {i\<in>S. R i j} = k)"
 | |
| 980 |   shows "setsum (\<lambda>i. card {j\<in>T. R i j}) S = k * card T" (is "?l = ?r")
 | |
| 981 | proof- | |
| 982 | have "?l = setsum (\<lambda>i. k) T" by(rule setsum_multicount_gen)(auto simp:assms) | |
| 983 | also have "\<dots> = ?r" by(simp add: setsum_constant mult_commute) | |
| 984 | finally show ?thesis by auto | |
| 985 | qed | |
| 986 | ||
| 28068 | 987 | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 988 | subsection{* Shifting bounds *}
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 989 | |
| 15539 | 990 | lemma setsum_shift_bounds_nat_ivl: | 
| 991 |   "setsum f {m+k..<n+k} = setsum (%i. f(i + k)){m..<n::nat}"
 | |
| 992 | by (induct "n", auto simp:atLeastLessThanSuc) | |
| 993 | ||
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 994 | lemma setsum_shift_bounds_cl_nat_ivl: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 995 |   "setsum f {m+k..n+k} = setsum (%i. f(i + k)){m..n::nat}"
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 996 | apply (insert setsum_reindex[OF inj_on_add_nat, where h=f and B = "{m..n}"])
 | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 997 | apply (simp add:image_add_atLeastAtMost o_def) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 998 | done | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 999 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1000 | corollary setsum_shift_bounds_cl_Suc_ivl: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1001 |   "setsum f {Suc m..Suc n} = setsum (%i. f(Suc i)){m..n}"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 1002 | by (simp add:setsum_shift_bounds_cl_nat_ivl[where k="Suc 0", simplified]) | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1003 | |
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1004 | corollary setsum_shift_bounds_Suc_ivl: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1005 |   "setsum f {Suc m..<Suc n} = setsum (%i. f(Suc i)){m..<n}"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 1006 | by (simp add:setsum_shift_bounds_nat_ivl[where k="Suc 0", simplified]) | 
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16102diff
changeset | 1007 | |
| 28068 | 1008 | lemma setsum_shift_lb_Suc0_0: | 
| 1009 |   "f(0::nat) = (0::nat) \<Longrightarrow> setsum f {Suc 0..k} = setsum f {0..k}"
 | |
| 1010 | by(simp add:setsum_head_Suc) | |
| 19106 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
 kleing parents: 
19022diff
changeset | 1011 | |
| 28068 | 1012 | lemma setsum_shift_lb_Suc0_0_upt: | 
| 1013 |   "f(0::nat) = 0 \<Longrightarrow> setsum f {Suc 0..<k} = setsum f {0..<k}"
 | |
| 1014 | apply(cases k)apply simp | |
| 1015 | apply(simp add:setsum_head_upt_Suc) | |
| 1016 | done | |
| 19022 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1017 | |
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 1018 | subsection {* The formula for geometric sums *}
 | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 1019 | |
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 1020 | lemma geometric_sum: | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 1021 | "x ~= 1 ==> (\<Sum>i=0..<n. x ^ i) = | 
| 31017 | 1022 |   (x ^ n - 1) / (x - 1::'a::{field})"
 | 
| 23496 | 1023 | by (induct "n") (simp_all add:field_simps power_Suc) | 
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
16733diff
changeset | 1024 | |
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1025 | subsection {* The formula for arithmetic sums *}
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1026 | |
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1027 | lemma gauss_sum: | 
| 23277 | 1028 |   "((1::'a::comm_semiring_1) + 1)*(\<Sum>i\<in>{1..n}. of_nat i) =
 | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1029 | of_nat n*((of_nat n)+1)" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1030 | proof (induct n) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1031 | case 0 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1032 | show ?case by simp | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1033 | next | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1034 | case (Suc n) | 
| 29667 | 1035 | then show ?case by (simp add: algebra_simps) | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1036 | qed | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1037 | |
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1038 | theorem arith_series_general: | 
| 23277 | 1039 |   "((1::'a::comm_semiring_1) + 1) * (\<Sum>i\<in>{..<n}. a + of_nat i * d) =
 | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1040 | of_nat n * (a + (a + of_nat(n - 1)*d))" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1041 | proof cases | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1042 | assume ngt1: "n > 1" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1043 | let ?I = "\<lambda>i. of_nat i" and ?n = "of_nat n" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1044 | have | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1045 |     "(\<Sum>i\<in>{..<n}. a+?I i*d) =
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1046 |      ((\<Sum>i\<in>{..<n}. a) + (\<Sum>i\<in>{..<n}. ?I i*d))"
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1047 | by (rule setsum_addf) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1048 |   also from ngt1 have "\<dots> = ?n*a + (\<Sum>i\<in>{..<n}. ?I i*d)" by simp
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1049 |   also from ngt1 have "\<dots> = (?n*a + d*(\<Sum>i\<in>{1..<n}. ?I i))"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 1050 | unfolding One_nat_def | 
| 28068 | 1051 | by (simp add: setsum_right_distrib atLeast0LessThan[symmetric] setsum_shift_lb_Suc0_0_upt mult_ac) | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1052 |   also have "(1+1)*\<dots> = (1+1)*?n*a + d*(1+1)*(\<Sum>i\<in>{1..<n}. ?I i)"
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1053 | by (simp add: left_distrib right_distrib) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1054 |   also from ngt1 have "{1..<n} = {1..n - 1}"
 | 
| 28068 | 1055 | by (cases n) (auto simp: atLeastLessThanSuc_atLeastAtMost) | 
| 1056 | also from ngt1 | |
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1057 |   have "(1+1)*?n*a + d*(1+1)*(\<Sum>i\<in>{1..n - 1}. ?I i) = ((1+1)*?n*a + d*?I (n - 1)*?I n)"
 | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 1058 | by (simp only: mult_ac gauss_sum [of "n - 1"], unfold One_nat_def) | 
| 23431 
25ca91279a9b
change simp rules for of_nat to work like int did previously (reorient of_nat_Suc, remove of_nat_mult [simp]); preserve original variable names in legacy int theorems
 huffman parents: 
23413diff
changeset | 1059 | (simp add: mult_ac trans [OF add_commute of_nat_Suc [symmetric]]) | 
| 29667 | 1060 | finally show ?thesis by (simp add: algebra_simps) | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1061 | next | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1062 | assume "\<not>(n > 1)" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1063 | hence "n = 1 \<or> n = 0" by auto | 
| 29667 | 1064 | thus ?thesis by (auto simp: algebra_simps) | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1065 | qed | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1066 | |
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1067 | lemma arith_series_nat: | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1068 |   "Suc (Suc 0) * (\<Sum>i\<in>{..<n}. a+i*d) = n * (a + (a+(n - 1)*d))"
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1069 | proof - | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1070 | have | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1071 |     "((1::nat) + 1) * (\<Sum>i\<in>{..<n::nat}. a + of_nat(i)*d) =
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1072 | of_nat(n) * (a + (a + of_nat(n - 1)*d))" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1073 | by (rule arith_series_general) | 
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 1074 | thus ?thesis | 
| 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
29960diff
changeset | 1075 | unfolding One_nat_def by (auto simp add: of_nat_id) | 
| 19469 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1076 | qed | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1077 | |
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1078 | lemma arith_series_int: | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1079 |   "(2::int) * (\<Sum>i\<in>{..<n}. a + of_nat i * d) =
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1080 | of_nat n * (a + (a + of_nat(n - 1)*d))" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1081 | proof - | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1082 | have | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1083 |     "((1::int) + 1) * (\<Sum>i\<in>{..<n}. a + of_nat i * d) =
 | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1084 | of_nat(n) * (a + (a + of_nat(n - 1)*d))" | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1085 | by (rule arith_series_general) | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1086 | thus ?thesis by simp | 
| 
958d2f2dd8d4
moved arithmetic series to geometric series in SetInterval
 kleing parents: 
19376diff
changeset | 1087 | qed | 
| 15418 
e28853da5df5
removed two looping simplifications in SetInterval.thy; deleted the .ML file
 paulson parents: 
15402diff
changeset | 1088 | |
| 19022 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1089 | lemma sum_diff_distrib: | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1090 | fixes P::"nat\<Rightarrow>nat" | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1091 | shows | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1092 | "\<forall>x. Q x \<le> P x \<Longrightarrow> | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1093 | (\<Sum>x<n. P x) - (\<Sum>x<n. Q x) = (\<Sum>x<n. P x - Q x)" | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1094 | proof (induct n) | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1095 | case 0 show ?case by simp | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1096 | next | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1097 | case (Suc n) | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1098 | |
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1099 | let ?lhs = "(\<Sum>x<n. P x) - (\<Sum>x<n. Q x)" | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1100 | let ?rhs = "\<Sum>x<n. P x - Q x" | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1101 | |
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1102 | from Suc have "?lhs = ?rhs" by simp | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1103 | moreover | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1104 | from Suc have "?lhs + P n - Q n = ?rhs + (P n - Q n)" by simp | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1105 | moreover | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1106 | from Suc have | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1107 | "(\<Sum>x<n. P x) + P n - ((\<Sum>x<n. Q x) + Q n) = ?rhs + (P n - Q n)" | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1108 | by (subst diff_diff_left[symmetric], | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1109 | subst diff_add_assoc2) | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1110 | (auto simp: diff_add_assoc2 intro: setsum_mono) | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1111 | ultimately | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1112 | show ?case by simp | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1113 | qed | 
| 
0e6ec4fd204c
* moved ThreeDivides from Isar_examples to better suited HOL/ex
 kleing parents: 
17719diff
changeset | 1114 | |
| 29960 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1115 | subsection {* Products indexed over intervals *}
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1116 | |
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1117 | syntax | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1118 |   "_from_to_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(PROD _ = _.._./ _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1119 |   "_from_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(PROD _ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1120 |   "_upt_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(PROD _<_./ _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1121 |   "_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(PROD _<=_./ _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1122 | syntax (xsymbols) | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1123 |   "_from_to_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_ = _.._./ _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1124 |   "_from_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1125 |   "_upt_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_<_./ _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1126 |   "_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_\<le>_./ _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1127 | syntax (HTML output) | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1128 |   "_from_to_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_ = _.._./ _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1129 |   "_from_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_ = _..<_./ _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1130 |   "_upt_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_<_./ _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1131 |   "_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Prod>_\<le>_./ _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1132 | syntax (latex_prod output) | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1133 | "_from_to_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1134 |  ("(3\<^raw:$\prod_{>_ = _\<^raw:}^{>_\<^raw:}$> _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1135 | "_from_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1136 |  ("(3\<^raw:$\prod_{>_ = _\<^raw:}^{<>_\<^raw:}$> _)" [0,0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1137 | "_upt_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1138 |  ("(3\<^raw:$\prod_{>_ < _\<^raw:}$> _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1139 | "_upto_setprod" :: "idt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b" | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1140 |  ("(3\<^raw:$\prod_{>_ \<le> _\<^raw:}$> _)" [0,0,10] 10)
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1141 | |
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1142 | translations | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1143 |   "\<Prod>x=a..b. t" == "CONST setprod (%x. t) {a..b}"
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1144 |   "\<Prod>x=a..<b. t" == "CONST setprod (%x. t) {a..<b}"
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1145 |   "\<Prod>i\<le>n. t" == "CONST setprod (\<lambda>i. t) {..n}"
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1146 |   "\<Prod>i<n. t" == "CONST setprod (\<lambda>i. t) {..<n}"
 | 
| 
9d5c6f376768
 Syntactic support for products over set intervals
 paulson parents: 
29920diff
changeset | 1147 | |
| 8924 | 1148 | end |