| author | paulson | 
| Mon, 17 Aug 1998 13:06:29 +0200 | |
| changeset 5324 | ec84178243ff | 
| parent 3837 | d7f033c74b38 | 
| child 9249 | c71db8c28727 | 
| permissions | -rw-r--r-- | 
| 1459 | 1  | 
(* Title: CTT/arith  | 
| 0 | 2  | 
ID: $Id$  | 
| 1459 | 3  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
| 0 | 4  | 
Copyright 1991 University of Cambridge  | 
5  | 
||
6  | 
Theorems for arith.thy (Arithmetic operators)  | 
|
7  | 
||
8  | 
Proofs about elementary arithmetic: addition, multiplication, etc.  | 
|
9  | 
Tests definitions and simplifier.  | 
|
10  | 
*)  | 
|
11  | 
||
12  | 
open Arith;  | 
|
13  | 
val arith_defs = [add_def, diff_def, absdiff_def, mult_def, mod_def, div_def];  | 
|
14  | 
||
15  | 
||
16  | 
(** Addition *)  | 
|
17  | 
||
18  | 
(*typing of add: short and long versions*)  | 
|
19  | 
||
| 1294 | 20  | 
qed_goalw "add_typing" Arith.thy arith_defs  | 
| 0 | 21  | 
"[| a:N; b:N |] ==> a #+ b : N"  | 
| 
354
 
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
 
lcp 
parents: 
0 
diff
changeset
 | 
22  | 
(fn prems=> [ (typechk_tac prems) ]);  | 
| 0 | 23  | 
|
| 1294 | 24  | 
qed_goalw "add_typingL" Arith.thy arith_defs  | 
| 0 | 25  | 
"[| a=c:N; b=d:N |] ==> a #+ b = c #+ d : N"  | 
| 
354
 
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
 
lcp 
parents: 
0 
diff
changeset
 | 
26  | 
(fn prems=> [ (equal_tac prems) ]);  | 
| 0 | 27  | 
|
28  | 
||
29  | 
(*computation for add: 0 and successor cases*)  | 
|
30  | 
||
| 1294 | 31  | 
qed_goalw "addC0" Arith.thy arith_defs  | 
| 0 | 32  | 
"b:N ==> 0 #+ b = b : N"  | 
| 
354
 
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
 
lcp 
parents: 
0 
diff
changeset
 | 
33  | 
(fn prems=> [ (rew_tac prems) ]);  | 
| 0 | 34  | 
|
| 1294 | 35  | 
qed_goalw "addC_succ" Arith.thy arith_defs  | 
| 0 | 36  | 
"[| a:N; b:N |] ==> succ(a) #+ b = succ(a #+ b) : N"  | 
| 
354
 
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
 
lcp 
parents: 
0 
diff
changeset
 | 
37  | 
(fn prems=> [ (rew_tac prems) ]);  | 
| 0 | 38  | 
|
39  | 
||
40  | 
(** Multiplication *)  | 
|
41  | 
||
42  | 
(*typing of mult: short and long versions*)  | 
|
43  | 
||
| 1294 | 44  | 
qed_goalw "mult_typing" Arith.thy arith_defs  | 
| 0 | 45  | 
"[| a:N; b:N |] ==> a #* b : N"  | 
46  | 
(fn prems=>  | 
|
| 
354
 
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
 
lcp 
parents: 
0 
diff
changeset
 | 
47  | 
[ (typechk_tac([add_typing]@prems)) ]);  | 
| 0 | 48  | 
|
| 1294 | 49  | 
qed_goalw "mult_typingL" Arith.thy arith_defs  | 
| 0 | 50  | 
"[| a=c:N; b=d:N |] ==> a #* b = c #* d : N"  | 
51  | 
(fn prems=>  | 
|
| 
354
 
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
 
lcp 
parents: 
0 
diff
changeset
 | 
52  | 
[ (equal_tac (prems@[add_typingL])) ]);  | 
| 0 | 53  | 
|
54  | 
(*computation for mult: 0 and successor cases*)  | 
|
55  | 
||
| 1294 | 56  | 
qed_goalw "multC0" Arith.thy arith_defs  | 
| 0 | 57  | 
"b:N ==> 0 #* b = 0 : N"  | 
| 
354
 
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
 
lcp 
parents: 
0 
diff
changeset
 | 
58  | 
(fn prems=> [ (rew_tac prems) ]);  | 
| 0 | 59  | 
|
| 1294 | 60  | 
qed_goalw "multC_succ" Arith.thy arith_defs  | 
| 0 | 61  | 
"[| a:N; b:N |] ==> succ(a) #* b = b #+ (a #* b) : N"  | 
| 
354
 
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
 
lcp 
parents: 
0 
diff
changeset
 | 
62  | 
(fn prems=> [ (rew_tac prems) ]);  | 
| 0 | 63  | 
|
64  | 
||
65  | 
(** Difference *)  | 
|
66  | 
||
67  | 
(*typing of difference*)  | 
|
68  | 
||
| 1294 | 69  | 
qed_goalw "diff_typing" Arith.thy arith_defs  | 
| 0 | 70  | 
"[| a:N; b:N |] ==> a - b : N"  | 
| 
354
 
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
 
lcp 
parents: 
0 
diff
changeset
 | 
71  | 
(fn prems=> [ (typechk_tac prems) ]);  | 
| 0 | 72  | 
|
| 1294 | 73  | 
qed_goalw "diff_typingL" Arith.thy arith_defs  | 
| 0 | 74  | 
"[| a=c:N; b=d:N |] ==> a - b = c - d : N"  | 
| 
354
 
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
 
lcp 
parents: 
0 
diff
changeset
 | 
75  | 
(fn prems=> [ (equal_tac prems) ]);  | 
| 0 | 76  | 
|
77  | 
||
78  | 
||
79  | 
(*computation for difference: 0 and successor cases*)  | 
|
80  | 
||
| 1294 | 81  | 
qed_goalw "diffC0" Arith.thy arith_defs  | 
| 0 | 82  | 
"a:N ==> a - 0 = a : N"  | 
| 
354
 
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
 
lcp 
parents: 
0 
diff
changeset
 | 
83  | 
(fn prems=> [ (rew_tac prems) ]);  | 
| 0 | 84  | 
|
85  | 
(*Note: rec(a, 0, %z w.z) is pred(a). *)  | 
|
86  | 
||
| 1294 | 87  | 
qed_goalw "diff_0_eq_0" Arith.thy arith_defs  | 
| 0 | 88  | 
"b:N ==> 0 - b = 0 : N"  | 
89  | 
(fn prems=>  | 
|
90  | 
[ (NE_tac "b" 1),  | 
|
91  | 
(hyp_rew_tac prems) ]);  | 
|
92  | 
||
93  | 
||
94  | 
(*Essential to simplify FIRST!! (Else we get a critical pair)  | 
|
95  | 
succ(a) - succ(b) rewrites to pred(succ(a) - b) *)  | 
|
| 1294 | 96  | 
qed_goalw "diff_succ_succ" Arith.thy arith_defs  | 
| 0 | 97  | 
"[| a:N; b:N |] ==> succ(a) - succ(b) = a - b : N"  | 
98  | 
(fn prems=>  | 
|
| 
354
 
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
 
lcp 
parents: 
0 
diff
changeset
 | 
99  | 
[ (hyp_rew_tac prems),  | 
| 0 | 100  | 
(NE_tac "b" 1),  | 
101  | 
(hyp_rew_tac prems) ]);  | 
|
102  | 
||
103  | 
||
104  | 
||
105  | 
(*** Simplification *)  | 
|
106  | 
||
107  | 
val arith_typing_rls =  | 
|
108  | 
[add_typing, mult_typing, diff_typing];  | 
|
109  | 
||
110  | 
val arith_congr_rls =  | 
|
111  | 
[add_typingL, mult_typingL, diff_typingL];  | 
|
112  | 
||
113  | 
val congr_rls = arith_congr_rls@standard_congr_rls;  | 
|
114  | 
||
115  | 
val arithC_rls =  | 
|
116  | 
[addC0, addC_succ,  | 
|
117  | 
multC0, multC_succ,  | 
|
118  | 
diffC0, diff_0_eq_0, diff_succ_succ];  | 
|
119  | 
||
120  | 
||
121  | 
structure Arith_simp_data: TSIMP_DATA =  | 
|
122  | 
struct  | 
|
| 1459 | 123  | 
val refl = refl_elem  | 
124  | 
val sym = sym_elem  | 
|
125  | 
val trans = trans_elem  | 
|
126  | 
val refl_red = refl_red  | 
|
127  | 
val trans_red = trans_red  | 
|
128  | 
val red_if_equal = red_if_equal  | 
|
129  | 
val default_rls = arithC_rls @ comp_rls  | 
|
130  | 
val routine_tac = routine_tac (arith_typing_rls @ routine_rls)  | 
|
| 0 | 131  | 
end;  | 
132  | 
||
133  | 
structure Arith_simp = TSimpFun (Arith_simp_data);  | 
|
134  | 
||
135  | 
fun arith_rew_tac prems = make_rew_tac  | 
|
136  | 
(Arith_simp.norm_tac(congr_rls, prems));  | 
|
137  | 
||
138  | 
fun hyp_arith_rew_tac prems = make_rew_tac  | 
|
139  | 
(Arith_simp.cond_norm_tac(prove_cond_tac, congr_rls, prems));  | 
|
140  | 
||
141  | 
||
142  | 
(**********  | 
|
143  | 
Addition  | 
|
144  | 
**********)  | 
|
145  | 
||
146  | 
(*Associative law for addition*)  | 
|
| 1294 | 147  | 
qed_goal "add_assoc" Arith.thy  | 
| 0 | 148  | 
"[| a:N; b:N; c:N |] ==> (a #+ b) #+ c = a #+ (b #+ c) : N"  | 
149  | 
(fn prems=>  | 
|
150  | 
[ (NE_tac "a" 1),  | 
|
151  | 
(hyp_arith_rew_tac prems) ]);  | 
|
152  | 
||
153  | 
||
154  | 
(*Commutative law for addition. Can be proved using three inductions.  | 
|
155  | 
Must simplify after first induction! Orientation of rewrites is delicate*)  | 
|
| 1294 | 156  | 
qed_goal "add_commute" Arith.thy  | 
| 0 | 157  | 
"[| a:N; b:N |] ==> a #+ b = b #+ a : N"  | 
158  | 
(fn prems=>  | 
|
159  | 
[ (NE_tac "a" 1),  | 
|
160  | 
(hyp_arith_rew_tac prems),  | 
|
161  | 
(NE_tac "b" 2),  | 
|
| 1459 | 162  | 
(rtac sym_elem 1),  | 
| 0 | 163  | 
(NE_tac "b" 1),  | 
164  | 
(hyp_arith_rew_tac prems) ]);  | 
|
165  | 
||
166  | 
||
167  | 
(****************  | 
|
168  | 
Multiplication  | 
|
169  | 
****************)  | 
|
170  | 
||
171  | 
(*Commutative law for multiplication  | 
|
| 1294 | 172  | 
qed_goal "mult_commute" Arith.thy  | 
| 0 | 173  | 
"[| a:N; b:N |] ==> a #* b = b #* a : N"  | 
174  | 
(fn prems=>  | 
|
175  | 
[ (NE_tac "a" 1),  | 
|
176  | 
(hyp_arith_rew_tac prems),  | 
|
177  | 
(NE_tac "b" 2),  | 
|
| 1459 | 178  | 
(rtac sym_elem 1),  | 
| 0 | 179  | 
(NE_tac "b" 1),  | 
180  | 
(hyp_arith_rew_tac prems) ]); NEEDS COMMUTATIVE MATCHING  | 
|
181  | 
***************)  | 
|
182  | 
||
183  | 
(*right annihilation in product*)  | 
|
| 1294 | 184  | 
qed_goal "mult_0_right" Arith.thy  | 
| 0 | 185  | 
"a:N ==> a #* 0 = 0 : N"  | 
186  | 
(fn prems=>  | 
|
187  | 
[ (NE_tac "a" 1),  | 
|
188  | 
(hyp_arith_rew_tac prems) ]);  | 
|
189  | 
||
190  | 
(*right successor law for multiplication*)  | 
|
| 1294 | 191  | 
qed_goal "mult_succ_right" Arith.thy  | 
| 0 | 192  | 
"[| a:N; b:N |] ==> a #* succ(b) = a #+ (a #* b) : N"  | 
193  | 
(fn prems=>  | 
|
194  | 
[ (NE_tac "a" 1),  | 
|
195  | 
(*swap round the associative law of addition*)  | 
|
196  | 
(hyp_arith_rew_tac (prems @ [add_assoc RS sym_elem])),  | 
|
197  | 
(*leaves a goal involving a commutative law*)  | 
|
198  | 
(REPEAT (assume_tac 1 ORELSE  | 
|
199  | 
resolve_tac  | 
|
200  | 
(prems@[add_commute,mult_typingL,add_typingL]@  | 
|
| 1459 | 201  | 
intrL_rls@[refl_elem]) 1)) ]);  | 
| 0 | 202  | 
|
203  | 
(*Commutative law for multiplication*)  | 
|
| 1294 | 204  | 
qed_goal "mult_commute" Arith.thy  | 
| 0 | 205  | 
"[| a:N; b:N |] ==> a #* b = b #* a : N"  | 
206  | 
(fn prems=>  | 
|
207  | 
[ (NE_tac "a" 1),  | 
|
208  | 
(hyp_arith_rew_tac (prems @ [mult_0_right, mult_succ_right])) ]);  | 
|
209  | 
||
210  | 
(*addition distributes over multiplication*)  | 
|
| 1294 | 211  | 
qed_goal "add_mult_distrib" Arith.thy  | 
| 0 | 212  | 
"[| a:N; b:N; c:N |] ==> (a #+ b) #* c = (a #* c) #+ (b #* c) : N"  | 
213  | 
(fn prems=>  | 
|
214  | 
[ (NE_tac "a" 1),  | 
|
215  | 
(*swap round the associative law of addition*)  | 
|
216  | 
(hyp_arith_rew_tac (prems @ [add_assoc RS sym_elem])) ]);  | 
|
217  | 
||
218  | 
||
219  | 
(*Associative law for multiplication*)  | 
|
| 1294 | 220  | 
qed_goal "mult_assoc" Arith.thy  | 
| 0 | 221  | 
"[| a:N; b:N; c:N |] ==> (a #* b) #* c = a #* (b #* c) : N"  | 
222  | 
(fn prems=>  | 
|
223  | 
[ (NE_tac "a" 1),  | 
|
224  | 
(hyp_arith_rew_tac (prems @ [add_mult_distrib])) ]);  | 
|
225  | 
||
226  | 
||
227  | 
(************  | 
|
228  | 
Difference  | 
|
229  | 
************  | 
|
230  | 
||
231  | 
Difference on natural numbers, without negative numbers  | 
|
232  | 
a - b = 0 iff a<=b a - b = succ(c) iff a>b *)  | 
|
233  | 
||
| 1294 | 234  | 
qed_goal "diff_self_eq_0" Arith.thy  | 
| 0 | 235  | 
"a:N ==> a - a = 0 : N"  | 
236  | 
(fn prems=>  | 
|
237  | 
[ (NE_tac "a" 1),  | 
|
238  | 
(hyp_arith_rew_tac prems) ]);  | 
|
239  | 
||
240  | 
||
241  | 
(* [| c : N; 0 : N; c : N |] ==> c #+ 0 = c : N *)  | 
|
242  | 
val add_0_right = addC0 RSN (3, add_commute RS trans_elem);  | 
|
243  | 
||
244  | 
(*Addition is the inverse of subtraction: if b<=x then b#+(x-b) = x.  | 
|
245  | 
An example of induction over a quantified formula (a product).  | 
|
246  | 
Uses rewriting with a quantified, implicative inductive hypothesis.*)  | 
|
247  | 
val prems =  | 
|
248  | 
goal Arith.thy  | 
|
249  | 
"b:N ==> ?a : PROD x:N. Eq(N, b-x, 0) --> Eq(N, b #+ (x-b), x)";  | 
|
250  | 
by (NE_tac "b" 1);  | 
|
251  | 
(*strip one "universal quantifier" but not the "implication"*)  | 
|
252  | 
by (resolve_tac intr_rls 3);  | 
|
253  | 
(*case analysis on x in  | 
|
254  | 
(succ(u) <= x) --> (succ(u)#+(x-succ(u)) = x) *)  | 
|
255  | 
by (NE_tac "x" 4 THEN assume_tac 4);  | 
|
256  | 
(*Prepare for simplification of types -- the antecedent succ(u)<=x *)  | 
|
| 1459 | 257  | 
by (rtac replace_type 5);  | 
258  | 
by (rtac replace_type 4);  | 
|
| 0 | 259  | 
by (arith_rew_tac prems);  | 
260  | 
(*Solves first 0 goal, simplifies others. Two sugbgoals remain.  | 
|
261  | 
Both follow by rewriting, (2) using quantified induction hyp*)  | 
|
262  | 
by (intr_tac[]); (*strips remaining PRODs*)  | 
|
263  | 
by (hyp_arith_rew_tac (prems@[add_0_right]));  | 
|
264  | 
by (assume_tac 1);  | 
|
| 1294 | 265  | 
qed "add_diff_inverse_lemma";  | 
| 0 | 266  | 
|
267  | 
||
268  | 
(*Version of above with premise b-a=0 i.e. a >= b.  | 
|
269  | 
Using ProdE does not work -- for ?B(?a) is ambiguous.  | 
|
270  | 
Instead, add_diff_inverse_lemma states the desired induction scheme;  | 
|
271  | 
the use of RS below instantiates Vars in ProdE automatically. *)  | 
|
272  | 
val prems =  | 
|
273  | 
goal Arith.thy "[| a:N; b:N; b-a = 0 : N |] ==> b #+ (a-b) = a : N";  | 
|
| 1459 | 274  | 
by (rtac EqE 1);  | 
| 0 | 275  | 
by (resolve_tac [ add_diff_inverse_lemma RS ProdE RS ProdE ] 1);  | 
276  | 
by (REPEAT (resolve_tac (prems@[EqI]) 1));  | 
|
| 1294 | 277  | 
qed "add_diff_inverse";  | 
| 0 | 278  | 
|
279  | 
||
280  | 
(********************  | 
|
281  | 
Absolute difference  | 
|
282  | 
********************)  | 
|
283  | 
||
284  | 
(*typing of absolute difference: short and long versions*)  | 
|
285  | 
||
| 1294 | 286  | 
qed_goalw "absdiff_typing" Arith.thy arith_defs  | 
| 0 | 287  | 
"[| a:N; b:N |] ==> a |-| b : N"  | 
| 
354
 
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
 
lcp 
parents: 
0 
diff
changeset
 | 
288  | 
(fn prems=> [ (typechk_tac prems) ]);  | 
| 0 | 289  | 
|
| 1294 | 290  | 
qed_goalw "absdiff_typingL" Arith.thy arith_defs  | 
| 0 | 291  | 
"[| a=c:N; b=d:N |] ==> a |-| b = c |-| d : N"  | 
| 
354
 
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
 
lcp 
parents: 
0 
diff
changeset
 | 
292  | 
(fn prems=> [ (equal_tac prems) ]);  | 
| 0 | 293  | 
|
| 1294 | 294  | 
qed_goalw "absdiff_self_eq_0" Arith.thy [absdiff_def]  | 
| 0 | 295  | 
"a:N ==> a |-| a = 0 : N"  | 
296  | 
(fn prems=>  | 
|
| 
354
 
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
 
lcp 
parents: 
0 
diff
changeset
 | 
297  | 
[ (arith_rew_tac (prems@[diff_self_eq_0])) ]);  | 
| 0 | 298  | 
|
| 1294 | 299  | 
qed_goalw "absdiffC0" Arith.thy [absdiff_def]  | 
| 0 | 300  | 
"a:N ==> 0 |-| a = a : N"  | 
301  | 
(fn prems=>  | 
|
| 
354
 
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
 
lcp 
parents: 
0 
diff
changeset
 | 
302  | 
[ (hyp_arith_rew_tac prems) ]);  | 
| 0 | 303  | 
|
304  | 
||
| 1294 | 305  | 
qed_goalw "absdiff_succ_succ" Arith.thy [absdiff_def]  | 
| 0 | 306  | 
"[| a:N; b:N |] ==> succ(a) |-| succ(b) = a |-| b : N"  | 
307  | 
(fn prems=>  | 
|
| 
354
 
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
 
lcp 
parents: 
0 
diff
changeset
 | 
308  | 
[ (hyp_arith_rew_tac prems) ]);  | 
| 0 | 309  | 
|
310  | 
(*Note how easy using commutative laws can be? ...not always... *)  | 
|
| 
354
 
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
 
lcp 
parents: 
0 
diff
changeset
 | 
311  | 
val prems = goalw Arith.thy [absdiff_def]  | 
| 
 
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
 
lcp 
parents: 
0 
diff
changeset
 | 
312  | 
"[| a:N; b:N |] ==> a |-| b = b |-| a : N";  | 
| 1459 | 313  | 
by (rtac add_commute 1);  | 
| 0 | 314  | 
by (typechk_tac ([diff_typing]@prems));  | 
| 1294 | 315  | 
qed "absdiff_commute";  | 
| 0 | 316  | 
|
317  | 
(*If a+b=0 then a=0. Surprisingly tedious*)  | 
|
318  | 
val prems =  | 
|
319  | 
goal Arith.thy "[| a:N; b:N |] ==> ?c : PROD u: Eq(N,a#+b,0) . Eq(N,a,0)";  | 
|
320  | 
by (NE_tac "a" 1);  | 
|
| 1459 | 321  | 
by (rtac replace_type 3);  | 
| 0 | 322  | 
by (arith_rew_tac prems);  | 
323  | 
by (intr_tac[]); (*strips remaining PRODs*)  | 
|
324  | 
by (resolve_tac [ zero_ne_succ RS FE ] 2);  | 
|
325  | 
by (etac (EqE RS sym_elem) 3);  | 
|
326  | 
by (typechk_tac ([add_typing] @prems));  | 
|
| 1294 | 327  | 
qed "add_eq0_lemma";  | 
| 0 | 328  | 
|
329  | 
(*Version of above with the premise a+b=0.  | 
|
330  | 
Again, resolution instantiates variables in ProdE *)  | 
|
331  | 
val prems =  | 
|
332  | 
goal Arith.thy "[| a:N; b:N; a #+ b = 0 : N |] ==> a = 0 : N";  | 
|
| 1459 | 333  | 
by (rtac EqE 1);  | 
| 0 | 334  | 
by (resolve_tac [add_eq0_lemma RS ProdE] 1);  | 
| 1459 | 335  | 
by (rtac EqI 3);  | 
| 0 | 336  | 
by (ALLGOALS (resolve_tac prems));  | 
| 1294 | 337  | 
qed "add_eq0";  | 
| 0 | 338  | 
|
339  | 
(*Here is a lemma to infer a-b=0 and b-a=0 from a|-|b=0, below. *)  | 
|
| 
354
 
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
 
lcp 
parents: 
0 
diff
changeset
 | 
340  | 
val prems = goalw Arith.thy [absdiff_def]  | 
| 0 | 341  | 
"[| a:N; b:N; a |-| b = 0 : N |] ==> \  | 
342  | 
\ ?a : SUM v: Eq(N, a-b, 0) . Eq(N, b-a, 0)";  | 
|
343  | 
by (intr_tac[]);  | 
|
344  | 
by eqintr_tac;  | 
|
| 1459 | 345  | 
by (rtac add_eq0 2);  | 
346  | 
by (rtac add_eq0 1);  | 
|
| 0 | 347  | 
by (resolve_tac [add_commute RS trans_elem] 6);  | 
| 
354
 
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
 
lcp 
parents: 
0 
diff
changeset
 | 
348  | 
by (typechk_tac (diff_typing::prems));  | 
| 1294 | 349  | 
qed "absdiff_eq0_lem";  | 
| 0 | 350  | 
|
351  | 
(*if a |-| b = 0 then a = b  | 
|
352  | 
proof: a-b=0 and b-a=0, so b = a+(b-a) = a+0 = a*)  | 
|
353  | 
val prems =  | 
|
354  | 
goal Arith.thy "[| a |-| b = 0 : N; a:N; b:N |] ==> a = b : N";  | 
|
| 1459 | 355  | 
by (rtac EqE 1);  | 
| 0 | 356  | 
by (resolve_tac [absdiff_eq0_lem RS SumE] 1);  | 
357  | 
by (TRYALL (resolve_tac prems));  | 
|
358  | 
by eqintr_tac;  | 
|
359  | 
by (resolve_tac [add_diff_inverse RS sym_elem RS trans_elem] 1);  | 
|
| 1459 | 360  | 
by (rtac EqE 3 THEN assume_tac 3);  | 
| 0 | 361  | 
by (hyp_arith_rew_tac (prems@[add_0_right]));  | 
| 1294 | 362  | 
qed "absdiff_eq0";  | 
| 0 | 363  | 
|
364  | 
(***********************  | 
|
365  | 
Remainder and Quotient  | 
|
366  | 
***********************)  | 
|
367  | 
||
368  | 
(*typing of remainder: short and long versions*)  | 
|
369  | 
||
| 1294 | 370  | 
qed_goalw "mod_typing" Arith.thy [mod_def]  | 
| 0 | 371  | 
"[| a:N; b:N |] ==> a mod b : N"  | 
372  | 
(fn prems=>  | 
|
| 
354
 
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
 
lcp 
parents: 
0 
diff
changeset
 | 
373  | 
[ (typechk_tac (absdiff_typing::prems)) ]);  | 
| 0 | 374  | 
|
| 1294 | 375  | 
qed_goalw "mod_typingL" Arith.thy [mod_def]  | 
| 0 | 376  | 
"[| a=c:N; b=d:N |] ==> a mod b = c mod d : N"  | 
377  | 
(fn prems=>  | 
|
| 
354
 
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
 
lcp 
parents: 
0 
diff
changeset
 | 
378  | 
[ (equal_tac (prems@[absdiff_typingL])) ]);  | 
| 0 | 379  | 
|
380  | 
||
381  | 
(*computation for mod : 0 and successor cases*)  | 
|
382  | 
||
| 1294 | 383  | 
qed_goalw "modC0" Arith.thy [mod_def] "b:N ==> 0 mod b = 0 : N"  | 
| 0 | 384  | 
(fn prems=>  | 
| 
354
 
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
 
lcp 
parents: 
0 
diff
changeset
 | 
385  | 
[ (rew_tac(absdiff_typing::prems)) ]);  | 
| 0 | 386  | 
|
| 1294 | 387  | 
qed_goalw "modC_succ" Arith.thy [mod_def]  | 
| 3837 | 388  | 
"[| a:N; b:N |] ==> succ(a) mod b = rec(succ(a mod b) |-| b, 0, %x y. succ(a mod b)) : N"  | 
| 0 | 389  | 
(fn prems=>  | 
| 
354
 
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
 
lcp 
parents: 
0 
diff
changeset
 | 
390  | 
[ (rew_tac(absdiff_typing::prems)) ]);  | 
| 0 | 391  | 
|
392  | 
||
393  | 
(*typing of quotient: short and long versions*)  | 
|
394  | 
||
| 1294 | 395  | 
qed_goalw "div_typing" Arith.thy [div_def] "[| a:N; b:N |] ==> a div b : N"  | 
| 0 | 396  | 
(fn prems=>  | 
| 
354
 
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
 
lcp 
parents: 
0 
diff
changeset
 | 
397  | 
[ (typechk_tac ([absdiff_typing,mod_typing]@prems)) ]);  | 
| 0 | 398  | 
|
| 1294 | 399  | 
qed_goalw "div_typingL" Arith.thy [div_def]  | 
| 0 | 400  | 
"[| a=c:N; b=d:N |] ==> a div b = c div d : N"  | 
401  | 
(fn prems=>  | 
|
| 
354
 
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
 
lcp 
parents: 
0 
diff
changeset
 | 
402  | 
[ (equal_tac (prems @ [absdiff_typingL, mod_typingL])) ]);  | 
| 0 | 403  | 
|
404  | 
val div_typing_rls = [mod_typing, div_typing, absdiff_typing];  | 
|
405  | 
||
406  | 
||
407  | 
(*computation for quotient: 0 and successor cases*)  | 
|
408  | 
||
| 1294 | 409  | 
qed_goalw "divC0" Arith.thy [div_def] "b:N ==> 0 div b = 0 : N"  | 
| 0 | 410  | 
(fn prems=>  | 
| 
354
 
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
 
lcp 
parents: 
0 
diff
changeset
 | 
411  | 
[ (rew_tac([mod_typing, absdiff_typing] @ prems)) ]);  | 
| 0 | 412  | 
|
413  | 
val divC_succ =  | 
|
| 
354
 
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
 
lcp 
parents: 
0 
diff
changeset
 | 
414  | 
prove_goalw Arith.thy [div_def] "[| a:N; b:N |] ==> succ(a) div b = \  | 
| 0 | 415  | 
\ rec(succ(a) mod b, succ(a div b), %x y. a div b) : N"  | 
416  | 
(fn prems=>  | 
|
| 
354
 
edf1ffedf139
CTT/Arith.ML: replaced many rewrite_goals_tac calls by prove_goalw
 
lcp 
parents: 
0 
diff
changeset
 | 
417  | 
[ (rew_tac([mod_typing]@prems)) ]);  | 
| 0 | 418  | 
|
419  | 
||
420  | 
(*Version of above with same condition as the mod one*)  | 
|
| 1294 | 421  | 
qed_goal "divC_succ2" Arith.thy  | 
| 0 | 422  | 
"[| a:N; b:N |] ==> \  | 
423  | 
\ succ(a) div b =rec(succ(a mod b) |-| b, succ(a div b), %x y. a div b) : N"  | 
|
424  | 
(fn prems=>  | 
|
425  | 
[ (resolve_tac [ divC_succ RS trans_elem ] 1),  | 
|
426  | 
(rew_tac(div_typing_rls @ prems @ [modC_succ])),  | 
|
427  | 
(NE_tac "succ(a mod b)|-|b" 1),  | 
|
428  | 
(rew_tac ([mod_typing, div_typing, absdiff_typing] @prems)) ]);  | 
|
429  | 
||
430  | 
(*for case analysis on whether a number is 0 or a successor*)  | 
|
| 1294 | 431  | 
qed_goal "iszero_decidable" Arith.thy  | 
| 3837 | 432  | 
"a:N ==> rec(a, inl(eq), %ka kb. inr(<ka, eq>)) : \  | 
| 1459 | 433  | 
\ Eq(N,a,0) + (SUM x:N. Eq(N,a, succ(x)))"  | 
| 0 | 434  | 
(fn prems=>  | 
435  | 
[ (NE_tac "a" 1),  | 
|
| 1459 | 436  | 
(rtac PlusI_inr 3),  | 
437  | 
(rtac PlusI_inl 2),  | 
|
| 0 | 438  | 
eqintr_tac,  | 
439  | 
(equal_tac prems) ]);  | 
|
440  | 
||
441  | 
(*Main Result. Holds when b is 0 since a mod 0 = a and a div 0 = 0 *)  | 
|
442  | 
val prems =  | 
|
443  | 
goal Arith.thy "[| a:N; b:N |] ==> a mod b #+ (a div b) #* b = a : N";  | 
|
444  | 
by (NE_tac "a" 1);  | 
|
445  | 
by (arith_rew_tac (div_typing_rls@prems@[modC0,modC_succ,divC0,divC_succ2]));  | 
|
| 1459 | 446  | 
by (rtac EqE 1);  | 
| 0 | 447  | 
(*case analysis on succ(u mod b)|-|b *)  | 
448  | 
by (res_inst_tac [("a1", "succ(u mod b) |-| b")] 
 | 
|
449  | 
(iszero_decidable RS PlusE) 1);  | 
|
450  | 
by (etac SumE 3);  | 
|
451  | 
by (hyp_arith_rew_tac (prems @ div_typing_rls @  | 
|
| 1459 | 452  | 
[modC0,modC_succ, divC0, divC_succ2]));  | 
| 0 | 453  | 
(*Replace one occurence of b by succ(u mod b). Clumsy!*)  | 
454  | 
by (resolve_tac [ add_typingL RS trans_elem ] 1);  | 
|
455  | 
by (eresolve_tac [EqE RS absdiff_eq0 RS sym_elem] 1);  | 
|
| 1459 | 456  | 
by (rtac refl_elem 3);  | 
| 0 | 457  | 
by (hyp_arith_rew_tac (prems @ div_typing_rls));  | 
| 1294 | 458  | 
qed "mod_div_equality";  | 
| 0 | 459  | 
|
460  | 
writeln"Reached end of file.";  |