| author | lcp | 
| Tue, 18 Jan 1994 15:57:40 +0100 | |
| changeset 230 | ec8a2b6aa8a7 | 
| parent 8 | c3d2c6dcf3f0 | 
| permissions | -rw-r--r-- | 
| 0 | 1  | 
(* Title: set/set  | 
2  | 
ID: $Id$  | 
|
3  | 
||
4  | 
For set.thy.  | 
|
5  | 
||
6  | 
Modified version of  | 
|
7  | 
Title: HOL/set  | 
|
8  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
9  | 
Copyright 1991 University of Cambridge  | 
|
10  | 
||
11  | 
For set.thy. Set theory for higher-order logic. A set is simply a predicate.  | 
|
12  | 
*)  | 
|
13  | 
||
14  | 
open Set;  | 
|
15  | 
||
16  | 
val [prem] = goal Set.thy "[| P(a) |] ==> a : {x.P(x)}";
 | 
|
17  | 
by (rtac (mem_Collect_iff RS iffD2) 1);  | 
|
18  | 
by (rtac prem 1);  | 
|
19  | 
val CollectI = result();  | 
|
20  | 
||
21  | 
val prems = goal Set.thy "[| a : {x.P(x)} |] ==> P(a)";
 | 
|
22  | 
by (resolve_tac (prems RL [mem_Collect_iff RS iffD1]) 1);  | 
|
23  | 
val CollectD = result();  | 
|
24  | 
||
| 
8
 
c3d2c6dcf3f0
Installation of new simplfier.  Previously appeared to set up the old
 
lcp 
parents: 
0 
diff
changeset
 | 
25  | 
val CollectE = make_elim CollectD;  | 
| 
 
c3d2c6dcf3f0
Installation of new simplfier.  Previously appeared to set up the old
 
lcp 
parents: 
0 
diff
changeset
 | 
26  | 
|
| 0 | 27  | 
val [prem] = goal Set.thy "[| !!x. x:A <-> x:B |] ==> A = B";  | 
28  | 
by (rtac (set_extension RS iffD2) 1);  | 
|
29  | 
by (rtac (prem RS allI) 1);  | 
|
30  | 
val set_ext = result();  | 
|
31  | 
||
32  | 
(*** Bounded quantifiers ***)  | 
|
33  | 
||
34  | 
val prems = goalw Set.thy [Ball_def]  | 
|
35  | 
"[| !!x. x:A ==> P(x) |] ==> ALL x:A. P(x)";  | 
|
36  | 
by (REPEAT (ares_tac (prems @ [allI,impI]) 1));  | 
|
37  | 
val ballI = result();  | 
|
38  | 
||
39  | 
val [major,minor] = goalw Set.thy [Ball_def]  | 
|
40  | 
"[| ALL x:A. P(x); x:A |] ==> P(x)";  | 
|
41  | 
by (rtac (minor RS (major RS spec RS mp)) 1);  | 
|
42  | 
val bspec = result();  | 
|
43  | 
||
44  | 
val major::prems = goalw Set.thy [Ball_def]  | 
|
45  | 
"[| ALL x:A. P(x); P(x) ==> Q; ~ x:A ==> Q |] ==> Q";  | 
|
46  | 
by (rtac (major RS spec RS impCE) 1);  | 
|
47  | 
by (REPEAT (eresolve_tac prems 1));  | 
|
48  | 
val ballE = result();  | 
|
49  | 
||
50  | 
(*Takes assumptions ALL x:A.P(x) and a:A; creates assumption P(a)*)  | 
|
51  | 
fun ball_tac i = etac ballE i THEN contr_tac (i+1);  | 
|
52  | 
||
53  | 
val prems = goalw Set.thy [Bex_def]  | 
|
54  | 
"[| P(x); x:A |] ==> EX x:A. P(x)";  | 
|
55  | 
by (REPEAT (ares_tac (prems @ [exI,conjI]) 1));  | 
|
56  | 
val bexI = result();  | 
|
57  | 
||
58  | 
val bexCI = prove_goal Set.thy  | 
|
59  | 
"[| EX x:A. ~P(x) ==> P(a); a:A |] ==> EX x:A.P(x)"  | 
|
60  | 
(fn prems=>  | 
|
61  | 
[ (rtac classical 1),  | 
|
62  | 
(REPEAT (ares_tac (prems@[bexI,ballI,notI,notE]) 1)) ]);  | 
|
63  | 
||
64  | 
val major::prems = goalw Set.thy [Bex_def]  | 
|
65  | 
"[| EX x:A. P(x); !!x. [| x:A; P(x) |] ==> Q |] ==> Q";  | 
|
66  | 
by (rtac (major RS exE) 1);  | 
|
67  | 
by (REPEAT (eresolve_tac (prems @ [asm_rl,conjE]) 1));  | 
|
68  | 
val bexE = result();  | 
|
69  | 
||
70  | 
(*Trival rewrite rule; (! x:A.P)=P holds only if A is nonempty!*)  | 
|
71  | 
val prems = goal Set.thy  | 
|
72  | 
"(ALL x:A. True) <-> True";  | 
|
73  | 
by (REPEAT (ares_tac [TrueI,ballI,iffI] 1));  | 
|
74  | 
val ball_rew = result();  | 
|
75  | 
||
76  | 
(** Congruence rules **)  | 
|
77  | 
||
78  | 
val prems = goal Set.thy  | 
|
79  | 
"[| A=A'; !!x. x:A' ==> P(x) <-> P'(x) |] ==> \  | 
|
80  | 
\ (ALL x:A. P(x)) <-> (ALL x:A'. P'(x))";  | 
|
81  | 
by (resolve_tac (prems RL [ssubst,iffD2]) 1);  | 
|
82  | 
by (REPEAT (ares_tac [ballI,iffI] 1  | 
|
83  | 
ORELSE eresolve_tac ([make_elim bspec, mp] @ (prems RL [iffE])) 1));  | 
|
84  | 
val ball_cong = result();  | 
|
85  | 
||
86  | 
val prems = goal Set.thy  | 
|
87  | 
"[| A=A'; !!x. x:A' ==> P(x) <-> P'(x) |] ==> \  | 
|
88  | 
\ (EX x:A. P(x)) <-> (EX x:A'. P'(x))";  | 
|
89  | 
by (resolve_tac (prems RL [ssubst,iffD2]) 1);  | 
|
90  | 
by (REPEAT (etac bexE 1  | 
|
91  | 
ORELSE ares_tac ([bexI,iffI] @ (prems RL [iffD1,iffD2])) 1));  | 
|
92  | 
val bex_cong = result();  | 
|
93  | 
||
94  | 
(*** Rules for subsets ***)  | 
|
95  | 
||
96  | 
val prems = goalw Set.thy [subset_def] "(!!x.x:A ==> x:B) ==> A <= B";  | 
|
97  | 
by (REPEAT (ares_tac (prems @ [ballI]) 1));  | 
|
98  | 
val subsetI = result();  | 
|
99  | 
||
100  | 
(*Rule in Modus Ponens style*)  | 
|
101  | 
val major::prems = goalw Set.thy [subset_def] "[| A <= B; c:A |] ==> c:B";  | 
|
102  | 
by (rtac (major RS bspec) 1);  | 
|
103  | 
by (resolve_tac prems 1);  | 
|
104  | 
val subsetD = result();  | 
|
105  | 
||
106  | 
(*Classical elimination rule*)  | 
|
107  | 
val major::prems = goalw Set.thy [subset_def]  | 
|
108  | 
"[| A <= B; ~(c:A) ==> P; c:B ==> P |] ==> P";  | 
|
109  | 
by (rtac (major RS ballE) 1);  | 
|
110  | 
by (REPEAT (eresolve_tac prems 1));  | 
|
111  | 
val subsetCE = result();  | 
|
112  | 
||
113  | 
(*Takes assumptions A<=B; c:A and creates the assumption c:B *)  | 
|
114  | 
fun set_mp_tac i = etac subsetCE i THEN mp_tac i;  | 
|
115  | 
||
116  | 
val subset_refl = prove_goal Set.thy "A <= A"  | 
|
117  | 
(fn _=> [ (REPEAT (ares_tac [subsetI] 1)) ]);  | 
|
118  | 
||
119  | 
goal Set.thy "!!A B C. [| A<=B; B<=C |] ==> A<=C";  | 
|
120  | 
br subsetI 1;  | 
|
121  | 
by (REPEAT (eresolve_tac [asm_rl, subsetD] 1));  | 
|
122  | 
val subset_trans = result();  | 
|
123  | 
||
124  | 
||
125  | 
(*** Rules for equality ***)  | 
|
126  | 
||
127  | 
(*Anti-symmetry of the subset relation*)  | 
|
128  | 
val prems = goal Set.thy "[| A <= B; B <= A |] ==> A = B";  | 
|
129  | 
by (rtac (iffI RS set_ext) 1);  | 
|
130  | 
by (REPEAT (ares_tac (prems RL [subsetD]) 1));  | 
|
131  | 
val subset_antisym = result();  | 
|
132  | 
val equalityI = subset_antisym;  | 
|
133  | 
||
134  | 
(* Equality rules from ZF set theory -- are they appropriate here? *)  | 
|
135  | 
val prems = goal Set.thy "A = B ==> A<=B";  | 
|
136  | 
by (resolve_tac (prems RL [subst]) 1);  | 
|
137  | 
by (rtac subset_refl 1);  | 
|
138  | 
val equalityD1 = result();  | 
|
139  | 
||
140  | 
val prems = goal Set.thy "A = B ==> B<=A";  | 
|
141  | 
by (resolve_tac (prems RL [subst]) 1);  | 
|
142  | 
by (rtac subset_refl 1);  | 
|
143  | 
val equalityD2 = result();  | 
|
144  | 
||
145  | 
val prems = goal Set.thy  | 
|
146  | 
"[| A = B; [| A<=B; B<=A |] ==> P |] ==> P";  | 
|
147  | 
by (resolve_tac prems 1);  | 
|
148  | 
by (REPEAT (resolve_tac (prems RL [equalityD1,equalityD2]) 1));  | 
|
149  | 
val equalityE = result();  | 
|
150  | 
||
151  | 
val major::prems = goal Set.thy  | 
|
152  | 
"[| A = B; [| c:A; c:B |] ==> P; [| ~ c:A; ~ c:B |] ==> P |] ==> P";  | 
|
153  | 
by (rtac (major RS equalityE) 1);  | 
|
154  | 
by (REPEAT (contr_tac 1 ORELSE eresolve_tac ([asm_rl,subsetCE]@prems) 1));  | 
|
155  | 
val equalityCE = result();  | 
|
156  | 
||
157  | 
(*Lemma for creating induction formulae -- for "pattern matching" on p  | 
|
158  | 
To make the induction hypotheses usable, apply "spec" or "bspec" to  | 
|
159  | 
put universal quantifiers over the free variables in p. *)  | 
|
160  | 
val prems = goal Set.thy  | 
|
161  | 
"[| p:A; !!z. z:A ==> p=z --> R |] ==> R";  | 
|
162  | 
by (rtac mp 1);  | 
|
163  | 
by (REPEAT (resolve_tac (refl::prems) 1));  | 
|
164  | 
val setup_induction = result();  | 
|
165  | 
||
166  | 
goal Set.thy "{x.x:A} = A";
 | 
|
167  | 
by (REPEAT (ares_tac [equalityI,subsetI,CollectI] 1 ORELSE eresolve_tac [CollectD] 1));  | 
|
168  | 
val trivial_set = result();  | 
|
169  | 
||
170  | 
(*** Rules for binary union -- Un ***)  | 
|
171  | 
||
172  | 
val prems = goalw Set.thy [Un_def] "c:A ==> c : A Un B";  | 
|
173  | 
by (REPEAT (resolve_tac (prems @ [CollectI,disjI1]) 1));  | 
|
174  | 
val UnI1 = result();  | 
|
175  | 
||
176  | 
val prems = goalw Set.thy [Un_def] "c:B ==> c : A Un B";  | 
|
177  | 
by (REPEAT (resolve_tac (prems @ [CollectI,disjI2]) 1));  | 
|
178  | 
val UnI2 = result();  | 
|
179  | 
||
180  | 
(*Classical introduction rule: no commitment to A vs B*)  | 
|
181  | 
val UnCI = prove_goal Set.thy "(~c:B ==> c:A) ==> c : A Un B"  | 
|
182  | 
(fn prems=>  | 
|
183  | 
[ (rtac classical 1),  | 
|
184  | 
(REPEAT (ares_tac (prems@[UnI1,notI]) 1)),  | 
|
185  | 
(REPEAT (ares_tac (prems@[UnI2,notE]) 1)) ]);  | 
|
186  | 
||
187  | 
val major::prems = goalw Set.thy [Un_def]  | 
|
188  | 
"[| c : A Un B; c:A ==> P; c:B ==> P |] ==> P";  | 
|
189  | 
by (rtac (major RS CollectD RS disjE) 1);  | 
|
190  | 
by (REPEAT (eresolve_tac prems 1));  | 
|
191  | 
val UnE = result();  | 
|
192  | 
||
193  | 
||
194  | 
(*** Rules for small intersection -- Int ***)  | 
|
195  | 
||
196  | 
val prems = goalw Set.thy [Int_def]  | 
|
197  | 
"[| c:A; c:B |] ==> c : A Int B";  | 
|
198  | 
by (REPEAT (resolve_tac (prems @ [CollectI,conjI]) 1));  | 
|
199  | 
val IntI = result();  | 
|
200  | 
||
201  | 
val [major] = goalw Set.thy [Int_def] "c : A Int B ==> c:A";  | 
|
202  | 
by (rtac (major RS CollectD RS conjunct1) 1);  | 
|
203  | 
val IntD1 = result();  | 
|
204  | 
||
205  | 
val [major] = goalw Set.thy [Int_def] "c : A Int B ==> c:B";  | 
|
206  | 
by (rtac (major RS CollectD RS conjunct2) 1);  | 
|
207  | 
val IntD2 = result();  | 
|
208  | 
||
209  | 
val [major,minor] = goal Set.thy  | 
|
210  | 
"[| c : A Int B; [| c:A; c:B |] ==> P |] ==> P";  | 
|
211  | 
by (rtac minor 1);  | 
|
212  | 
by (rtac (major RS IntD1) 1);  | 
|
213  | 
by (rtac (major RS IntD2) 1);  | 
|
214  | 
val IntE = result();  | 
|
215  | 
||
216  | 
||
217  | 
(*** Rules for set complement -- Compl ***)  | 
|
218  | 
||
219  | 
val prems = goalw Set.thy [Compl_def]  | 
|
220  | 
"[| c:A ==> False |] ==> c : Compl(A)";  | 
|
221  | 
by (REPEAT (ares_tac (prems @ [CollectI,notI]) 1));  | 
|
222  | 
val ComplI = result();  | 
|
223  | 
||
224  | 
(*This form, with negated conclusion, works well with the Classical prover.  | 
|
225  | 
Negated assumptions behave like formulae on the right side of the notional  | 
|
226  | 
turnstile...*)  | 
|
227  | 
val major::prems = goalw Set.thy [Compl_def]  | 
|
228  | 
"[| c : Compl(A) |] ==> ~c:A";  | 
|
229  | 
by (rtac (major RS CollectD) 1);  | 
|
230  | 
val ComplD = result();  | 
|
231  | 
||
232  | 
val ComplE = make_elim ComplD;  | 
|
233  | 
||
234  | 
||
235  | 
(*** Empty sets ***)  | 
|
236  | 
||
237  | 
goalw Set.thy [empty_def] "{x.False} = {}";
 | 
|
238  | 
br refl 1;  | 
|
239  | 
val empty_eq = result();  | 
|
240  | 
||
241  | 
val [prem] = goalw Set.thy [empty_def] "a : {} ==> P";
 | 
|
242  | 
by (rtac (prem RS CollectD RS FalseE) 1);  | 
|
243  | 
val emptyD = result();  | 
|
244  | 
||
245  | 
val emptyE = make_elim emptyD;  | 
|
246  | 
||
247  | 
val [prem] = goal Set.thy "~ A={} ==> (EX x.x:A)";
 | 
|
248  | 
br (prem RS swap) 1;  | 
|
249  | 
br equalityI 1;  | 
|
250  | 
by (ALLGOALS (fast_tac (FOL_cs addSIs [subsetI] addSEs [emptyD])));  | 
|
251  | 
val not_emptyD = result();  | 
|
252  | 
||
253  | 
(*** Singleton sets ***)  | 
|
254  | 
||
255  | 
goalw Set.thy [singleton_def] "a : {a}";
 | 
|
256  | 
by (rtac CollectI 1);  | 
|
257  | 
by (rtac refl 1);  | 
|
258  | 
val singletonI = result();  | 
|
259  | 
||
260  | 
val [major] = goalw Set.thy [singleton_def] "b : {a} ==> b=a"; 
 | 
|
261  | 
by (rtac (major RS CollectD) 1);  | 
|
262  | 
val singletonD = result();  | 
|
263  | 
||
264  | 
val singletonE = make_elim singletonD;  | 
|
265  | 
||
266  | 
(*** Unions of families ***)  | 
|
267  | 
||
268  | 
(*The order of the premises presupposes that A is rigid; b may be flexible*)  | 
|
269  | 
val prems = goalw Set.thy [UNION_def]  | 
|
270  | 
"[| a:A; b: B(a) |] ==> b: (UN x:A. B(x))";  | 
|
271  | 
by (REPEAT (resolve_tac (prems @ [bexI,CollectI]) 1));  | 
|
272  | 
val UN_I = result();  | 
|
273  | 
||
274  | 
val major::prems = goalw Set.thy [UNION_def]  | 
|
275  | 
"[| b : (UN x:A. B(x)); !!x.[| x:A; b: B(x) |] ==> R |] ==> R";  | 
|
276  | 
by (rtac (major RS CollectD RS bexE) 1);  | 
|
277  | 
by (REPEAT (ares_tac prems 1));  | 
|
278  | 
val UN_E = result();  | 
|
279  | 
||
280  | 
val prems = goal Set.thy  | 
|
281  | 
"[| A=B; !!x. x:B ==> C(x) = D(x) |] ==> \  | 
|
282  | 
\ (UN x:A. C(x)) = (UN x:B. D(x))";  | 
|
283  | 
by (REPEAT (etac UN_E 1  | 
|
284  | 
ORELSE ares_tac ([UN_I,equalityI,subsetI] @  | 
|
285  | 
(prems RL [equalityD1,equalityD2] RL [subsetD])) 1));  | 
|
286  | 
val UN_cong = result();  | 
|
287  | 
||
288  | 
(*** Intersections of families -- INTER x:A. B(x) is Inter(B)``A ) *)  | 
|
289  | 
||
290  | 
val prems = goalw Set.thy [INTER_def]  | 
|
291  | 
"(!!x. x:A ==> b: B(x)) ==> b : (INT x:A. B(x))";  | 
|
292  | 
by (REPEAT (ares_tac ([CollectI,ballI] @ prems) 1));  | 
|
293  | 
val INT_I = result();  | 
|
294  | 
||
295  | 
val major::prems = goalw Set.thy [INTER_def]  | 
|
296  | 
"[| b : (INT x:A. B(x)); a:A |] ==> b: B(a)";  | 
|
297  | 
by (rtac (major RS CollectD RS bspec) 1);  | 
|
298  | 
by (resolve_tac prems 1);  | 
|
299  | 
val INT_D = result();  | 
|
300  | 
||
301  | 
(*"Classical" elimination rule -- does not require proving X:C *)  | 
|
302  | 
val major::prems = goalw Set.thy [INTER_def]  | 
|
303  | 
"[| b : (INT x:A. B(x)); b: B(a) ==> R; ~ a:A ==> R |] ==> R";  | 
|
304  | 
by (rtac (major RS CollectD RS ballE) 1);  | 
|
305  | 
by (REPEAT (eresolve_tac prems 1));  | 
|
306  | 
val INT_E = result();  | 
|
307  | 
||
308  | 
val prems = goal Set.thy  | 
|
309  | 
"[| A=B; !!x. x:B ==> C(x) = D(x) |] ==> \  | 
|
310  | 
\ (INT x:A. C(x)) = (INT x:B. D(x))";  | 
|
311  | 
by (REPEAT_FIRST (resolve_tac [INT_I,equalityI,subsetI]));  | 
|
312  | 
by (REPEAT (dtac INT_D 1  | 
|
313  | 
ORELSE ares_tac (prems RL [equalityD1,equalityD2] RL [subsetD]) 1));  | 
|
314  | 
val INT_cong = result();  | 
|
315  | 
||
316  | 
(*** Rules for Unions ***)  | 
|
317  | 
||
318  | 
(*The order of the premises presupposes that C is rigid; A may be flexible*)  | 
|
319  | 
val prems = goalw Set.thy [Union_def]  | 
|
320  | 
"[| X:C; A:X |] ==> A : Union(C)";  | 
|
321  | 
by (REPEAT (resolve_tac (prems @ [UN_I]) 1));  | 
|
322  | 
val UnionI = result();  | 
|
323  | 
||
324  | 
val major::prems = goalw Set.thy [Union_def]  | 
|
325  | 
"[| A : Union(C); !!X.[| A:X; X:C |] ==> R |] ==> R";  | 
|
326  | 
by (rtac (major RS UN_E) 1);  | 
|
327  | 
by (REPEAT (ares_tac prems 1));  | 
|
328  | 
val UnionE = result();  | 
|
329  | 
||
330  | 
(*** Rules for Inter ***)  | 
|
331  | 
||
332  | 
val prems = goalw Set.thy [Inter_def]  | 
|
333  | 
"[| !!X. X:C ==> A:X |] ==> A : Inter(C)";  | 
|
334  | 
by (REPEAT (ares_tac ([INT_I] @ prems) 1));  | 
|
335  | 
val InterI = result();  | 
|
336  | 
||
337  | 
(*A "destruct" rule -- every X in C contains A as an element, but  | 
|
338  | 
A:X can hold when X:C does not! This rule is analogous to "spec". *)  | 
|
339  | 
val major::prems = goalw Set.thy [Inter_def]  | 
|
340  | 
"[| A : Inter(C); X:C |] ==> A:X";  | 
|
341  | 
by (rtac (major RS INT_D) 1);  | 
|
342  | 
by (resolve_tac prems 1);  | 
|
343  | 
val InterD = result();  | 
|
344  | 
||
345  | 
(*"Classical" elimination rule -- does not require proving X:C *)  | 
|
346  | 
val major::prems = goalw Set.thy [Inter_def]  | 
|
347  | 
"[| A : Inter(C); A:X ==> R; ~ X:C ==> R |] ==> R";  | 
|
348  | 
by (rtac (major RS INT_E) 1);  | 
|
349  | 
by (REPEAT (eresolve_tac prems 1));  | 
|
350  | 
val InterE = result();  |