src/HOL/Algebra/Coset.thy
author wenzelm
Sat, 30 Dec 2006 16:08:06 +0100
changeset 21966 edab0ecfbd7c
parent 21404 eb85850d3eb7
child 23350 50c5b0912a0c
permissions -rw-r--r--
removed misleading OuterLex.eq_token;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
14706
71590b7733b7 tuned document;
wenzelm
parents: 14666
diff changeset
     1
(*  Title:      HOL/Algebra/Coset.thy
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
     2
    ID:         $Id$
20318
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
     3
    Author:     Florian Kammueller, with new proofs by L C Paulson, and
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
     4
                Stephan Hohe
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
     5
*)
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
     6
20318
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
     7
theory Coset imports Group Exponent begin
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
     8
20318
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
     9
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
    10
section {*Cosets and Quotient Groups*}
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
    11
14651
02b8f3bcf7fe improved notation;
wenzelm
parents: 14530
diff changeset
    12
constdefs (structure G)
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
    13
  r_coset    :: "[_, 'a set, 'a] \<Rightarrow> 'a set"    (infixl "#>\<index>" 60)
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
    14
  "H #> a \<equiv> \<Union>h\<in>H. {h \<otimes> a}"
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
    15
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
    16
  l_coset    :: "[_, 'a, 'a set] \<Rightarrow> 'a set"    (infixl "<#\<index>" 60)
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
    17
  "a <# H \<equiv> \<Union>h\<in>H. {a \<otimes> h}"
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
    18
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
    19
  RCOSETS  :: "[_, 'a set] \<Rightarrow> ('a set)set"   ("rcosets\<index> _" [81] 80)
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
    20
  "rcosets H \<equiv> \<Union>a\<in>carrier G. {H #> a}"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
    21
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
    22
  set_mult  :: "[_, 'a set ,'a set] \<Rightarrow> 'a set" (infixl "<#>\<index>" 60)
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
    23
  "H <#> K \<equiv> \<Union>h\<in>H. \<Union>k\<in>K. {h \<otimes> k}"
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
    24
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
    25
  SET_INV :: "[_,'a set] \<Rightarrow> 'a set"  ("set'_inv\<index> _" [81] 80)
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
    26
  "set_inv H \<equiv> \<Union>h\<in>H. {inv h}"
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
    27
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
    28
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
    29
locale normal = subgroup + group +
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
    30
  assumes coset_eq: "(\<forall>x \<in> carrier G. H #> x = x <# H)"
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
    31
19380
b808efaa5828 tuned syntax/abbreviations;
wenzelm
parents: 16417
diff changeset
    32
abbreviation
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 20318
diff changeset
    33
  normal_rel :: "['a set, ('a, 'b) monoid_scheme] \<Rightarrow> bool"  (infixl "\<lhd>" 60) where
19380
b808efaa5828 tuned syntax/abbreviations;
wenzelm
parents: 16417
diff changeset
    34
  "H \<lhd> G \<equiv> normal H G"
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
    35
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
    36
14803
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
    37
subsection {*Basic Properties of Cosets*}
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
    38
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
    39
lemma (in group) coset_mult_assoc:
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
    40
     "[| M \<subseteq> carrier G; g \<in> carrier G; h \<in> carrier G |]
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
    41
      ==> (M #> g) #> h = M #> (g \<otimes> h)"
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
    42
by (force simp add: r_coset_def m_assoc)
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
    43
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
    44
lemma (in group) coset_mult_one [simp]: "M \<subseteq> carrier G ==> M #> \<one> = M"
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
    45
by (force simp add: r_coset_def)
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
    46
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
    47
lemma (in group) coset_mult_inv1:
14666
65f8680c3f16 improved notation;
wenzelm
parents: 14651
diff changeset
    48
     "[| M #> (x \<otimes> (inv y)) = M;  x \<in> carrier G ; y \<in> carrier G;
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
    49
         M \<subseteq> carrier G |] ==> M #> x = M #> y"
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
    50
apply (erule subst [of concl: "%z. M #> x = z #> y"])
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
    51
apply (simp add: coset_mult_assoc m_assoc)
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
    52
done
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
    53
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
    54
lemma (in group) coset_mult_inv2:
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
    55
     "[| M #> x = M #> y;  x \<in> carrier G;  y \<in> carrier G;  M \<subseteq> carrier G |]
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
    56
      ==> M #> (x \<otimes> (inv y)) = M "
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
    57
apply (simp add: coset_mult_assoc [symmetric])
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
    58
apply (simp add: coset_mult_assoc)
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
    59
done
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
    60
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
    61
lemma (in group) coset_join1:
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
    62
     "[| H #> x = H;  x \<in> carrier G;  subgroup H G |] ==> x \<in> H"
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
    63
apply (erule subst)
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
    64
apply (simp add: r_coset_def)
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
    65
apply (blast intro: l_one subgroup.one_closed sym)
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
    66
done
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
    67
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
    68
lemma (in group) solve_equation:
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
    69
    "\<lbrakk>subgroup H G; x \<in> H; y \<in> H\<rbrakk> \<Longrightarrow> \<exists>h\<in>H. y = h \<otimes> x"
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
    70
apply (rule bexI [of _ "y \<otimes> (inv x)"])
14666
65f8680c3f16 improved notation;
wenzelm
parents: 14651
diff changeset
    71
apply (auto simp add: subgroup.m_closed subgroup.m_inv_closed m_assoc
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
    72
                      subgroup.subset [THEN subsetD])
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
    73
done
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
    74
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
    75
lemma (in group) repr_independence:
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
    76
     "\<lbrakk>y \<in> H #> x;  x \<in> carrier G; subgroup H G\<rbrakk> \<Longrightarrow> H #> x = H #> y"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
    77
by (auto simp add: r_coset_def m_assoc [symmetric]
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
    78
                   subgroup.subset [THEN subsetD]
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
    79
                   subgroup.m_closed solve_equation)
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
    80
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
    81
lemma (in group) coset_join2:
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
    82
     "\<lbrakk>x \<in> carrier G;  subgroup H G;  x\<in>H\<rbrakk> \<Longrightarrow> H #> x = H"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
    83
  --{*Alternative proof is to put @{term "x=\<one>"} in @{text repr_independence}.*}
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
    84
by (force simp add: subgroup.m_closed r_coset_def solve_equation)
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
    85
20318
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
    86
lemma (in monoid) r_coset_subset_G:
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
    87
     "[| H \<subseteq> carrier G; x \<in> carrier G |] ==> H #> x \<subseteq> carrier G"
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
    88
by (auto simp add: r_coset_def)
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
    89
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
    90
lemma (in group) rcosI:
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
    91
     "[| h \<in> H; H \<subseteq> carrier G; x \<in> carrier G|] ==> h \<otimes> x \<in> H #> x"
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
    92
by (auto simp add: r_coset_def)
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
    93
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
    94
lemma (in group) rcosetsI:
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
    95
     "\<lbrakk>H \<subseteq> carrier G; x \<in> carrier G\<rbrakk> \<Longrightarrow> H #> x \<in> rcosets H"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
    96
by (auto simp add: RCOSETS_def)
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
    97
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
    98
text{*Really needed?*}
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
    99
lemma (in group) transpose_inv:
14666
65f8680c3f16 improved notation;
wenzelm
parents: 14651
diff changeset
   100
     "[| x \<otimes> y = z;  x \<in> carrier G;  y \<in> carrier G;  z \<in> carrier G |]
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   101
      ==> (inv x) \<otimes> z = y"
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   102
by (force simp add: m_assoc [symmetric])
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   103
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   104
lemma (in group) rcos_self: "[| x \<in> carrier G; subgroup H G |] ==> x \<in> H #> x"
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   105
apply (simp add: r_coset_def)
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   106
apply (blast intro: sym l_one subgroup.subset [THEN subsetD]
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   107
                    subgroup.one_closed)
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   108
done
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   109
20318
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   110
text {* Opposite of @{thm [locale=group,source] "repr_independence"} *}
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   111
lemma (in group) repr_independenceD:
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   112
  includes subgroup H G
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   113
  assumes ycarr: "y \<in> carrier G"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   114
      and repr:  "H #> x = H #> y"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   115
  shows "y \<in> H #> x"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   116
  by (subst repr, intro rcos_self)
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   117
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   118
text {* Elements of a right coset are in the carrier *}
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   119
lemma (in subgroup) elemrcos_carrier:
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   120
  includes group
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   121
  assumes acarr: "a \<in> carrier G"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   122
    and a': "a' \<in> H #> a"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   123
  shows "a' \<in> carrier G"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   124
proof -
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   125
  from subset and acarr
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   126
  have "H #> a \<subseteq> carrier G" by (rule r_coset_subset_G)
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   127
  from this and a'
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   128
  show "a' \<in> carrier G"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   129
    by fast
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   130
qed
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   131
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   132
lemma (in subgroup) rcos_const:
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   133
  includes group
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   134
  assumes hH: "h \<in> H"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   135
  shows "H #> h = H"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   136
  apply (unfold r_coset_def)
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   137
  apply rule apply rule
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   138
  apply clarsimp
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   139
  apply (intro subgroup.m_closed)
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   140
  apply assumption+
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   141
  apply rule
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   142
  apply simp
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   143
proof -
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   144
  fix h'
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   145
  assume h'H: "h' \<in> H"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   146
  note carr = hH[THEN mem_carrier] h'H[THEN mem_carrier]
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   147
  from carr
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   148
  have a: "h' = (h' \<otimes> inv h) \<otimes> h" by (simp add: m_assoc)
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   149
  from h'H hH
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   150
  have "h' \<otimes> inv h \<in> H" by simp
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   151
  from this and a
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   152
  show "\<exists>x\<in>H. h' = x \<otimes> h" by fast
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   153
qed
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   154
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   155
text {* Step one for lemma @{text "rcos_module"} *}
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   156
lemma (in subgroup) rcos_module_imp:
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   157
  includes group
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   158
  assumes xcarr: "x \<in> carrier G"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   159
      and x'cos: "x' \<in> H #> x"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   160
  shows "(x' \<otimes> inv x) \<in> H"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   161
proof -
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   162
  from xcarr x'cos
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   163
      have x'carr: "x' \<in> carrier G"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   164
      by (rule elemrcos_carrier[OF is_group])
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   165
  from xcarr
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   166
      have ixcarr: "inv x \<in> carrier G"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   167
      by simp
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   168
  from x'cos
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   169
      have "\<exists>h\<in>H. x' = h \<otimes> x"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   170
      unfolding r_coset_def
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   171
      by fast
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   172
  from this
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   173
      obtain h
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   174
        where hH: "h \<in> H"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   175
        and x': "x' = h \<otimes> x"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   176
      by auto
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   177
  from hH and subset
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   178
      have hcarr: "h \<in> carrier G" by fast
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   179
  note carr = xcarr x'carr hcarr
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   180
  from x' and carr
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   181
      have "x' \<otimes> (inv x) = (h \<otimes> x) \<otimes> (inv x)" by fast
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   182
  also from carr
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   183
      have "\<dots> = h \<otimes> (x \<otimes> inv x)" by (simp add: m_assoc)
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   184
  also from carr
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   185
      have "\<dots> = h \<otimes> \<one>" by simp
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   186
  also from carr
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   187
      have "\<dots> = h" by simp
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   188
  finally
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   189
      have "x' \<otimes> (inv x) = h" by simp
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   190
  from hH this
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   191
      show "x' \<otimes> (inv x) \<in> H" by simp
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   192
qed
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   193
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   194
text {* Step two for lemma @{text "rcos_module"} *}
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   195
lemma (in subgroup) rcos_module_rev:
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   196
  includes group
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   197
  assumes carr: "x \<in> carrier G" "x' \<in> carrier G"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   198
      and xixH: "(x' \<otimes> inv x) \<in> H"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   199
  shows "x' \<in> H #> x"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   200
proof -
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   201
  from xixH
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   202
      have "\<exists>h\<in>H. x' \<otimes> (inv x) = h" by fast
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   203
  from this
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   204
      obtain h
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   205
        where hH: "h \<in> H"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   206
        and hsym: "x' \<otimes> (inv x) = h"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   207
      by fast
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   208
  from hH subset have hcarr: "h \<in> carrier G" by simp
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   209
  note carr = carr hcarr
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   210
  from hsym[symmetric] have "h \<otimes> x = x' \<otimes> (inv x) \<otimes> x" by fast
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   211
  also from carr
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   212
      have "\<dots> = x' \<otimes> ((inv x) \<otimes> x)" by (simp add: m_assoc)
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   213
  also from carr
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   214
      have "\<dots> = x' \<otimes> \<one>" by (simp add: l_inv)
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   215
  also from carr
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   216
      have "\<dots> = x'" by simp
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   217
  finally
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   218
      have "h \<otimes> x = x'" by simp
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   219
  from this[symmetric] and hH
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   220
      show "x' \<in> H #> x"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   221
      unfolding r_coset_def
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   222
      by fast
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   223
qed
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   224
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   225
text {* Module property of right cosets *}
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   226
lemma (in subgroup) rcos_module:
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   227
  includes group
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   228
  assumes carr: "x \<in> carrier G" "x' \<in> carrier G"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   229
  shows "(x' \<in> H #> x) = (x' \<otimes> inv x \<in> H)"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   230
proof
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   231
  assume "x' \<in> H #> x"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   232
  from this and carr
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   233
      show "x' \<otimes> inv x \<in> H"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   234
      by (intro rcos_module_imp[OF is_group])
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   235
next
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   236
  assume "x' \<otimes> inv x \<in> H"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   237
  from this and carr
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   238
      show "x' \<in> H #> x"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   239
      by (intro rcos_module_rev[OF is_group])
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   240
qed
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   241
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   242
text {* Right cosets are subsets of the carrier. *} 
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   243
lemma (in subgroup) rcosets_carrier:
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   244
  includes group
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   245
  assumes XH: "X \<in> rcosets H"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   246
  shows "X \<subseteq> carrier G"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   247
proof -
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   248
  from XH have "\<exists>x\<in> carrier G. X = H #> x"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   249
      unfolding RCOSETS_def
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   250
      by fast
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   251
  from this
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   252
      obtain x
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   253
        where xcarr: "x\<in> carrier G"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   254
        and X: "X = H #> x"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   255
      by fast
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   256
  from subset and xcarr
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   257
      show "X \<subseteq> carrier G"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   258
      unfolding X
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   259
      by (rule r_coset_subset_G)
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   260
qed
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   261
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   262
text {* Multiplication of general subsets *}
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   263
lemma (in monoid) set_mult_closed:
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   264
  assumes Acarr: "A \<subseteq> carrier G"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   265
      and Bcarr: "B \<subseteq> carrier G"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   266
  shows "A <#> B \<subseteq> carrier G"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   267
apply rule apply (simp add: set_mult_def, clarsimp)
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   268
proof -
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   269
  fix a b
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   270
  assume "a \<in> A"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   271
  from this and Acarr
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   272
      have acarr: "a \<in> carrier G" by fast
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   273
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   274
  assume "b \<in> B"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   275
  from this and Bcarr
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   276
      have bcarr: "b \<in> carrier G" by fast
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   277
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   278
  from acarr bcarr
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   279
      show "a \<otimes> b \<in> carrier G" by (rule m_closed)
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   280
qed
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   281
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   282
lemma (in comm_group) mult_subgroups:
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   283
  assumes subH: "subgroup H G"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   284
      and subK: "subgroup K G"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   285
  shows "subgroup (H <#> K) G"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   286
apply (rule subgroup.intro)
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   287
   apply (intro set_mult_closed subgroup.subset[OF subH] subgroup.subset[OF subK])
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   288
  apply (simp add: set_mult_def) apply clarsimp defer 1
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   289
  apply (simp add: set_mult_def) defer 1
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   290
  apply (simp add: set_mult_def, clarsimp) defer 1
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   291
proof -
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   292
  fix ha hb ka kb
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   293
  assume haH: "ha \<in> H" and hbH: "hb \<in> H" and kaK: "ka \<in> K" and kbK: "kb \<in> K"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   294
  note carr = haH[THEN subgroup.mem_carrier[OF subH]] hbH[THEN subgroup.mem_carrier[OF subH]]
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   295
              kaK[THEN subgroup.mem_carrier[OF subK]] kbK[THEN subgroup.mem_carrier[OF subK]]
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   296
  from carr
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   297
      have "(ha \<otimes> ka) \<otimes> (hb \<otimes> kb) = ha \<otimes> (ka \<otimes> hb) \<otimes> kb" by (simp add: m_assoc)
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   298
  also from carr
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   299
      have "\<dots> = ha \<otimes> (hb \<otimes> ka) \<otimes> kb" by (simp add: m_comm)
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   300
  also from carr
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   301
      have "\<dots> = (ha \<otimes> hb) \<otimes> (ka \<otimes> kb)" by (simp add: m_assoc)
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   302
  finally
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   303
      have eq: "(ha \<otimes> ka) \<otimes> (hb \<otimes> kb) = (ha \<otimes> hb) \<otimes> (ka \<otimes> kb)" .
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   304
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   305
  from haH hbH have hH: "ha \<otimes> hb \<in> H" by (simp add: subgroup.m_closed[OF subH])
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   306
  from kaK kbK have kK: "ka \<otimes> kb \<in> K" by (simp add: subgroup.m_closed[OF subK])
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   307
  
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   308
  from hH and kK and eq
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   309
      show "\<exists>h'\<in>H. \<exists>k'\<in>K. (ha \<otimes> ka) \<otimes> (hb \<otimes> kb) = h' \<otimes> k'" by fast
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   310
next
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   311
  have "\<one> = \<one> \<otimes> \<one>" by simp
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   312
  from subgroup.one_closed[OF subH] subgroup.one_closed[OF subK] this
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   313
      show "\<exists>h\<in>H. \<exists>k\<in>K. \<one> = h \<otimes> k" by fast
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   314
next
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   315
  fix h k
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   316
  assume hH: "h \<in> H"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   317
     and kK: "k \<in> K"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   318
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   319
  from hH[THEN subgroup.mem_carrier[OF subH]] kK[THEN subgroup.mem_carrier[OF subK]]
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   320
      have "inv (h \<otimes> k) = inv h \<otimes> inv k" by (simp add: inv_mult_group m_comm)
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   321
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   322
  from subgroup.m_inv_closed[OF subH hH] and subgroup.m_inv_closed[OF subK kK] and this
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   323
      show "\<exists>ha\<in>H. \<exists>ka\<in>K. inv (h \<otimes> k) = ha \<otimes> ka" by fast
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   324
qed
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   325
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   326
lemma (in subgroup) lcos_module_rev:
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   327
  includes group
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   328
  assumes carr: "x \<in> carrier G" "x' \<in> carrier G"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   329
      and xixH: "(inv x \<otimes> x') \<in> H"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   330
  shows "x' \<in> x <# H"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   331
proof -
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   332
  from xixH
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   333
      have "\<exists>h\<in>H. (inv x) \<otimes> x' = h" by fast
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   334
  from this
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   335
      obtain h
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   336
        where hH: "h \<in> H"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   337
        and hsym: "(inv x) \<otimes> x' = h"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   338
      by fast
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   339
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   340
  from hH subset have hcarr: "h \<in> carrier G" by simp
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   341
  note carr = carr hcarr
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   342
  from hsym[symmetric] have "x \<otimes> h = x \<otimes> ((inv x) \<otimes> x')" by fast
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   343
  also from carr
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   344
      have "\<dots> = (x \<otimes> (inv x)) \<otimes> x'" by (simp add: m_assoc[symmetric])
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   345
  also from carr
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   346
      have "\<dots> = \<one> \<otimes> x'" by simp
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   347
  also from carr
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   348
      have "\<dots> = x'" by simp
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   349
  finally
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   350
      have "x \<otimes> h = x'" by simp
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   351
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   352
  from this[symmetric] and hH
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   353
      show "x' \<in> x <# H"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   354
      unfolding l_coset_def
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   355
      by fast
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   356
qed
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   357
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   358
14666
65f8680c3f16 improved notation;
wenzelm
parents: 14651
diff changeset
   359
subsection {* Normal subgroups *}
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   360
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   361
lemma normal_imp_subgroup: "H \<lhd> G \<Longrightarrow> subgroup H G"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   362
  by (simp add: normal_def subgroup_def)
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   363
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   364
lemma (in group) normalI: 
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   365
  "subgroup H G \<Longrightarrow> (\<forall>x \<in> carrier G. H #> x = x <# H) \<Longrightarrow> H \<lhd> G";
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   366
  by (simp add: normal_def normal_axioms_def prems) 
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   367
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   368
lemma (in normal) inv_op_closed1:
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   369
     "\<lbrakk>x \<in> carrier G; h \<in> H\<rbrakk> \<Longrightarrow> (inv x) \<otimes> h \<otimes> x \<in> H"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   370
apply (insert coset_eq) 
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   371
apply (auto simp add: l_coset_def r_coset_def)
14666
65f8680c3f16 improved notation;
wenzelm
parents: 14651
diff changeset
   372
apply (drule bspec, assumption)
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   373
apply (drule equalityD1 [THEN subsetD], blast, clarify)
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   374
apply (simp add: m_assoc)
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   375
apply (simp add: m_assoc [symmetric])
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   376
done
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   377
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   378
lemma (in normal) inv_op_closed2:
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   379
     "\<lbrakk>x \<in> carrier G; h \<in> H\<rbrakk> \<Longrightarrow> x \<otimes> h \<otimes> (inv x) \<in> H"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   380
apply (subgoal_tac "inv (inv x) \<otimes> h \<otimes> (inv x) \<in> H") 
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   381
apply (simp add: ); 
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   382
apply (blast intro: inv_op_closed1) 
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   383
done
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   384
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   385
text{*Alternative characterization of normal subgroups*}
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   386
lemma (in group) normal_inv_iff:
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   387
     "(N \<lhd> G) = 
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   388
      (subgroup N G & (\<forall>x \<in> carrier G. \<forall>h \<in> N. x \<otimes> h \<otimes> (inv x) \<in> N))"
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   389
      (is "_ = ?rhs")
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   390
proof
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   391
  assume N: "N \<lhd> G"
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   392
  show ?rhs
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   393
    by (blast intro: N normal.inv_op_closed2 normal_imp_subgroup) 
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   394
next
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   395
  assume ?rhs
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   396
  hence sg: "subgroup N G" 
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   397
    and closed: "\<And>x. x\<in>carrier G \<Longrightarrow> \<forall>h\<in>N. x \<otimes> h \<otimes> inv x \<in> N" by auto
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   398
  hence sb: "N \<subseteq> carrier G" by (simp add: subgroup.subset) 
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   399
  show "N \<lhd> G"
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   400
  proof (intro normalI [OF sg], simp add: l_coset_def r_coset_def, clarify)
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   401
    fix x
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   402
    assume x: "x \<in> carrier G"
15120
f0359f75682e undid UN/INT syntax
nipkow
parents: 14963
diff changeset
   403
    show "(\<Union>h\<in>N. {h \<otimes> x}) = (\<Union>h\<in>N. {x \<otimes> h})"
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   404
    proof
15120
f0359f75682e undid UN/INT syntax
nipkow
parents: 14963
diff changeset
   405
      show "(\<Union>h\<in>N. {h \<otimes> x}) \<subseteq> (\<Union>h\<in>N. {x \<otimes> h})"
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   406
      proof clarify
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   407
        fix n
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   408
        assume n: "n \<in> N" 
15120
f0359f75682e undid UN/INT syntax
nipkow
parents: 14963
diff changeset
   409
        show "n \<otimes> x \<in> (\<Union>h\<in>N. {x \<otimes> h})"
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   410
        proof 
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   411
          from closed [of "inv x"]
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   412
          show "inv x \<otimes> n \<otimes> x \<in> N" by (simp add: x n)
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   413
          show "n \<otimes> x \<in> {x \<otimes> (inv x \<otimes> n \<otimes> x)}"
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   414
            by (simp add: x n m_assoc [symmetric] sb [THEN subsetD])
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   415
        qed
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   416
      qed
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   417
    next
15120
f0359f75682e undid UN/INT syntax
nipkow
parents: 14963
diff changeset
   418
      show "(\<Union>h\<in>N. {x \<otimes> h}) \<subseteq> (\<Union>h\<in>N. {h \<otimes> x})"
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   419
      proof clarify
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   420
        fix n
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   421
        assume n: "n \<in> N" 
15120
f0359f75682e undid UN/INT syntax
nipkow
parents: 14963
diff changeset
   422
        show "x \<otimes> n \<in> (\<Union>h\<in>N. {h \<otimes> x})"
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   423
        proof 
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   424
          show "x \<otimes> n \<otimes> inv x \<in> N" by (simp add: x n closed)
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   425
          show "x \<otimes> n \<in> {x \<otimes> n \<otimes> inv x \<otimes> x}"
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   426
            by (simp add: x n m_assoc sb [THEN subsetD])
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   427
        qed
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   428
      qed
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   429
    qed
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   430
  qed
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   431
qed
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   432
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   433
14803
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   434
subsection{*More Properties of Cosets*}
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   435
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   436
lemma (in group) lcos_m_assoc:
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   437
     "[| M \<subseteq> carrier G; g \<in> carrier G; h \<in> carrier G |]
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   438
      ==> g <# (h <# M) = (g \<otimes> h) <# M"
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   439
by (force simp add: l_coset_def m_assoc)
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   440
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   441
lemma (in group) lcos_mult_one: "M \<subseteq> carrier G ==> \<one> <# M = M"
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   442
by (force simp add: l_coset_def)
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   443
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   444
lemma (in group) l_coset_subset_G:
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   445
     "[| H \<subseteq> carrier G; x \<in> carrier G |] ==> x <# H \<subseteq> carrier G"
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   446
by (auto simp add: l_coset_def subsetD)
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   447
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   448
lemma (in group) l_coset_swap:
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   449
     "\<lbrakk>y \<in> x <# H;  x \<in> carrier G;  subgroup H G\<rbrakk> \<Longrightarrow> x \<in> y <# H"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   450
proof (simp add: l_coset_def)
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   451
  assume "\<exists>h\<in>H. y = x \<otimes> h"
14666
65f8680c3f16 improved notation;
wenzelm
parents: 14651
diff changeset
   452
    and x: "x \<in> carrier G"
14530
e94fd774ecf5 some (much longer) structured proofs
paulson
parents: 14254
diff changeset
   453
    and sb: "subgroup H G"
e94fd774ecf5 some (much longer) structured proofs
paulson
parents: 14254
diff changeset
   454
  then obtain h' where h': "h' \<in> H & x \<otimes> h' = y" by blast
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   455
  show "\<exists>h\<in>H. x = y \<otimes> h"
14530
e94fd774ecf5 some (much longer) structured proofs
paulson
parents: 14254
diff changeset
   456
  proof
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   457
    show "x = y \<otimes> inv h'" using h' x sb
14530
e94fd774ecf5 some (much longer) structured proofs
paulson
parents: 14254
diff changeset
   458
      by (auto simp add: m_assoc subgroup.subset [THEN subsetD])
e94fd774ecf5 some (much longer) structured proofs
paulson
parents: 14254
diff changeset
   459
    show "inv h' \<in> H" using h' sb
e94fd774ecf5 some (much longer) structured proofs
paulson
parents: 14254
diff changeset
   460
      by (auto simp add: subgroup.subset [THEN subsetD] subgroup.m_inv_closed)
e94fd774ecf5 some (much longer) structured proofs
paulson
parents: 14254
diff changeset
   461
  qed
e94fd774ecf5 some (much longer) structured proofs
paulson
parents: 14254
diff changeset
   462
qed
e94fd774ecf5 some (much longer) structured proofs
paulson
parents: 14254
diff changeset
   463
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   464
lemma (in group) l_coset_carrier:
14530
e94fd774ecf5 some (much longer) structured proofs
paulson
parents: 14254
diff changeset
   465
     "[| y \<in> x <# H;  x \<in> carrier G;  subgroup H G |] ==> y \<in> carrier G"
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   466
by (auto simp add: l_coset_def m_assoc
14530
e94fd774ecf5 some (much longer) structured proofs
paulson
parents: 14254
diff changeset
   467
                   subgroup.subset [THEN subsetD] subgroup.m_closed)
e94fd774ecf5 some (much longer) structured proofs
paulson
parents: 14254
diff changeset
   468
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   469
lemma (in group) l_repr_imp_subset:
14666
65f8680c3f16 improved notation;
wenzelm
parents: 14651
diff changeset
   470
  assumes y: "y \<in> x <# H" and x: "x \<in> carrier G" and sb: "subgroup H G"
14530
e94fd774ecf5 some (much longer) structured proofs
paulson
parents: 14254
diff changeset
   471
  shows "y <# H \<subseteq> x <# H"
e94fd774ecf5 some (much longer) structured proofs
paulson
parents: 14254
diff changeset
   472
proof -
e94fd774ecf5 some (much longer) structured proofs
paulson
parents: 14254
diff changeset
   473
  from y
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   474
  obtain h' where "h' \<in> H" "x \<otimes> h' = y" by (auto simp add: l_coset_def)
14530
e94fd774ecf5 some (much longer) structured proofs
paulson
parents: 14254
diff changeset
   475
  thus ?thesis using x sb
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   476
    by (auto simp add: l_coset_def m_assoc
14530
e94fd774ecf5 some (much longer) structured proofs
paulson
parents: 14254
diff changeset
   477
                       subgroup.subset [THEN subsetD] subgroup.m_closed)
e94fd774ecf5 some (much longer) structured proofs
paulson
parents: 14254
diff changeset
   478
qed
e94fd774ecf5 some (much longer) structured proofs
paulson
parents: 14254
diff changeset
   479
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   480
lemma (in group) l_repr_independence:
14666
65f8680c3f16 improved notation;
wenzelm
parents: 14651
diff changeset
   481
  assumes y: "y \<in> x <# H" and x: "x \<in> carrier G" and sb: "subgroup H G"
14530
e94fd774ecf5 some (much longer) structured proofs
paulson
parents: 14254
diff changeset
   482
  shows "x <# H = y <# H"
14666
65f8680c3f16 improved notation;
wenzelm
parents: 14651
diff changeset
   483
proof
14530
e94fd774ecf5 some (much longer) structured proofs
paulson
parents: 14254
diff changeset
   484
  show "x <# H \<subseteq> y <# H"
14666
65f8680c3f16 improved notation;
wenzelm
parents: 14651
diff changeset
   485
    by (rule l_repr_imp_subset,
14530
e94fd774ecf5 some (much longer) structured proofs
paulson
parents: 14254
diff changeset
   486
        (blast intro: l_coset_swap l_coset_carrier y x sb)+)
14666
65f8680c3f16 improved notation;
wenzelm
parents: 14651
diff changeset
   487
  show "y <# H \<subseteq> x <# H" by (rule l_repr_imp_subset [OF y x sb])
14530
e94fd774ecf5 some (much longer) structured proofs
paulson
parents: 14254
diff changeset
   488
qed
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   489
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   490
lemma (in group) setmult_subset_G:
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   491
     "\<lbrakk>H \<subseteq> carrier G; K \<subseteq> carrier G\<rbrakk> \<Longrightarrow> H <#> K \<subseteq> carrier G"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   492
by (auto simp add: set_mult_def subsetD)
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   493
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   494
lemma (in group) subgroup_mult_id: "subgroup H G \<Longrightarrow> H <#> H = H"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   495
apply (auto simp add: subgroup.m_closed set_mult_def Sigma_def image_def)
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   496
apply (rule_tac x = x in bexI)
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   497
apply (rule bexI [of _ "\<one>"])
14666
65f8680c3f16 improved notation;
wenzelm
parents: 14651
diff changeset
   498
apply (auto simp add: subgroup.m_closed subgroup.one_closed
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   499
                      r_one subgroup.subset [THEN subsetD])
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   500
done
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   501
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   502
20318
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   503
subsubsection {* Set of Inverses of an @{text r_coset}. *}
14666
65f8680c3f16 improved notation;
wenzelm
parents: 14651
diff changeset
   504
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   505
lemma (in normal) rcos_inv:
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   506
  assumes x:     "x \<in> carrier G"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   507
  shows "set_inv (H #> x) = H #> (inv x)" 
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   508
proof (simp add: r_coset_def SET_INV_def x inv_mult_group, safe)
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   509
  fix h
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   510
  assume "h \<in> H"
15120
f0359f75682e undid UN/INT syntax
nipkow
parents: 14963
diff changeset
   511
  show "inv x \<otimes> inv h \<in> (\<Union>j\<in>H. {j \<otimes> inv x})"
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   512
  proof
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   513
    show "inv x \<otimes> inv h \<otimes> x \<in> H"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   514
      by (simp add: inv_op_closed1 prems)
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   515
    show "inv x \<otimes> inv h \<in> {inv x \<otimes> inv h \<otimes> x \<otimes> inv x}"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   516
      by (simp add: prems m_assoc)
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   517
  qed
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   518
next
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   519
  fix h
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   520
  assume "h \<in> H"
15120
f0359f75682e undid UN/INT syntax
nipkow
parents: 14963
diff changeset
   521
  show "h \<otimes> inv x \<in> (\<Union>j\<in>H. {inv x \<otimes> inv j})"
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   522
  proof
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   523
    show "x \<otimes> inv h \<otimes> inv x \<in> H"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   524
      by (simp add: inv_op_closed2 prems)
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   525
    show "h \<otimes> inv x \<in> {inv x \<otimes> inv (x \<otimes> inv h \<otimes> inv x)}"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   526
      by (simp add: prems m_assoc [symmetric] inv_mult_group)
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   527
  qed
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   528
qed
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   529
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   530
14803
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   531
subsubsection {*Theorems for @{text "<#>"} with @{text "#>"} or @{text "<#"}.*}
14666
65f8680c3f16 improved notation;
wenzelm
parents: 14651
diff changeset
   532
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   533
lemma (in group) setmult_rcos_assoc:
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   534
     "\<lbrakk>H \<subseteq> carrier G; K \<subseteq> carrier G; x \<in> carrier G\<rbrakk>
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   535
      \<Longrightarrow> H <#> (K #> x) = (H <#> K) #> x"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   536
by (force simp add: r_coset_def set_mult_def m_assoc)
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   537
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   538
lemma (in group) rcos_assoc_lcos:
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   539
     "\<lbrakk>H \<subseteq> carrier G; K \<subseteq> carrier G; x \<in> carrier G\<rbrakk>
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   540
      \<Longrightarrow> (H #> x) <#> K = H <#> (x <# K)"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   541
by (force simp add: r_coset_def l_coset_def set_mult_def m_assoc)
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   542
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   543
lemma (in normal) rcos_mult_step1:
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   544
     "\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk>
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   545
      \<Longrightarrow> (H #> x) <#> (H #> y) = (H <#> (x <# H)) #> y"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   546
by (simp add: setmult_rcos_assoc subset
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   547
              r_coset_subset_G l_coset_subset_G rcos_assoc_lcos)
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   548
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   549
lemma (in normal) rcos_mult_step2:
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   550
     "\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk>
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   551
      \<Longrightarrow> (H <#> (x <# H)) #> y = (H <#> (H #> x)) #> y"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   552
by (insert coset_eq, simp add: normal_def)
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   553
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   554
lemma (in normal) rcos_mult_step3:
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   555
     "\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk>
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   556
      \<Longrightarrow> (H <#> (H #> x)) #> y = H #> (x \<otimes> y)"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   557
by (simp add: setmult_rcos_assoc coset_mult_assoc
19931
fb32b43e7f80 Restructured locales with predicates: import is now an interpretation.
ballarin
parents: 19380
diff changeset
   558
              subgroup_mult_id normal.axioms subset prems)
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   559
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   560
lemma (in normal) rcos_sum:
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   561
     "\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk>
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   562
      \<Longrightarrow> (H #> x) <#> (H #> y) = H #> (x \<otimes> y)"
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   563
by (simp add: rcos_mult_step1 rcos_mult_step2 rcos_mult_step3)
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   564
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   565
lemma (in normal) rcosets_mult_eq: "M \<in> rcosets H \<Longrightarrow> H <#> M = M"
14666
65f8680c3f16 improved notation;
wenzelm
parents: 14651
diff changeset
   566
  -- {* generalizes @{text subgroup_mult_id} *}
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   567
  by (auto simp add: RCOSETS_def subset
19931
fb32b43e7f80 Restructured locales with predicates: import is now an interpretation.
ballarin
parents: 19380
diff changeset
   568
        setmult_rcos_assoc subgroup_mult_id normal.axioms prems)
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   569
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   570
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   571
subsubsection{*An Equivalence Relation*}
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   572
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   573
constdefs (structure G)
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   574
  r_congruent :: "[('a,'b)monoid_scheme, 'a set] \<Rightarrow> ('a*'a)set"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   575
                  ("rcong\<index> _")
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   576
   "rcong H \<equiv> {(x,y). x \<in> carrier G & y \<in> carrier G & inv x \<otimes> y \<in> H}"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   577
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   578
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   579
lemma (in subgroup) equiv_rcong:
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   580
   includes group G
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   581
   shows "equiv (carrier G) (rcong H)"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   582
proof (intro equiv.intro)
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   583
  show "refl (carrier G) (rcong H)"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   584
    by (auto simp add: r_congruent_def refl_def) 
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   585
next
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   586
  show "sym (rcong H)"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   587
  proof (simp add: r_congruent_def sym_def, clarify)
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   588
    fix x y
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   589
    assume [simp]: "x \<in> carrier G" "y \<in> carrier G" 
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   590
       and "inv x \<otimes> y \<in> H"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   591
    hence "inv (inv x \<otimes> y) \<in> H" by (simp add: m_inv_closed) 
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   592
    thus "inv y \<otimes> x \<in> H" by (simp add: inv_mult_group)
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   593
  qed
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   594
next
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   595
  show "trans (rcong H)"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   596
  proof (simp add: r_congruent_def trans_def, clarify)
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   597
    fix x y z
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   598
    assume [simp]: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   599
       and "inv x \<otimes> y \<in> H" and "inv y \<otimes> z \<in> H"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   600
    hence "(inv x \<otimes> y) \<otimes> (inv y \<otimes> z) \<in> H" by simp
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   601
    hence "inv x \<otimes> (y \<otimes> inv y) \<otimes> z \<in> H" by (simp add: m_assoc del: r_inv) 
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   602
    thus "inv x \<otimes> z \<in> H" by simp
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   603
  qed
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   604
qed
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   605
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   606
text{*Equivalence classes of @{text rcong} correspond to left cosets.
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   607
  Was there a mistake in the definitions? I'd have expected them to
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   608
  correspond to right cosets.*}
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   609
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   610
(* CB: This is correct, but subtle.
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   611
   We call H #> a the right coset of a relative to H.  According to
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   612
   Jacobson, this is what the majority of group theory literature does.
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   613
   He then defines the notion of congruence relation ~ over monoids as
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   614
   equivalence relation with a ~ a' & b ~ b' \<Longrightarrow> a*b ~ a'*b'.
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   615
   Our notion of right congruence induced by K: rcong K appears only in
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   616
   the context where K is a normal subgroup.  Jacobson doesn't name it.
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   617
   But in this context left and right cosets are identical.
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   618
*)
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   619
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   620
lemma (in subgroup) l_coset_eq_rcong:
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   621
  includes group G
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   622
  assumes a: "a \<in> carrier G"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   623
  shows "a <# H = rcong H `` {a}"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   624
by (force simp add: r_congruent_def l_coset_def m_assoc [symmetric] a ) 
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   625
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   626
20318
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   627
subsubsection{*Two Distinct Right Cosets are Disjoint*}
14803
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   628
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   629
lemma (in group) rcos_equation:
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   630
  includes subgroup H G
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   631
  shows
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   632
     "\<lbrakk>ha \<otimes> a = h \<otimes> b; a \<in> carrier G;  b \<in> carrier G;  
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   633
        h \<in> H;  ha \<in> H;  hb \<in> H\<rbrakk>
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   634
      \<Longrightarrow> hb \<otimes> a \<in> (\<Union>h\<in>H. {h \<otimes> b})"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   635
apply (rule UN_I [of "hb \<otimes> ((inv ha) \<otimes> h)"])
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   636
apply (simp add: ); 
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   637
apply (simp add: m_assoc transpose_inv)
14803
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   638
done
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   639
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   640
lemma (in group) rcos_disjoint:
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   641
  includes subgroup H G
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   642
  shows "\<lbrakk>a \<in> rcosets H; b \<in> rcosets H; a\<noteq>b\<rbrakk> \<Longrightarrow> a \<inter> b = {}"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   643
apply (simp add: RCOSETS_def r_coset_def)
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   644
apply (blast intro: rcos_equation prems sym)
14803
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   645
done
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   646
20318
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   647
subsection {* Further lemmas for @{text "r_congruent"} *}
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   648
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   649
text {* The relation is a congruence *}
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   650
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   651
lemma (in normal) congruent_rcong:
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   652
  shows "congruent2 (rcong H) (rcong H) (\<lambda>a b. a \<otimes> b <# H)"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   653
proof (intro congruent2I[of "carrier G" _ "carrier G" _] equiv_rcong is_group)
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   654
  fix a b c
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   655
  assume abrcong: "(a, b) \<in> rcong H"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   656
    and ccarr: "c \<in> carrier G"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   657
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   658
  from abrcong
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   659
      have acarr: "a \<in> carrier G"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   660
        and bcarr: "b \<in> carrier G"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   661
        and abH: "inv a \<otimes> b \<in> H"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   662
      unfolding r_congruent_def
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   663
      by fast+
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   664
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   665
  note carr = acarr bcarr ccarr
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   666
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   667
  from ccarr and abH
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   668
      have "inv c \<otimes> (inv a \<otimes> b) \<otimes> c \<in> H" by (rule inv_op_closed1)
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   669
  moreover
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   670
      from carr and inv_closed
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   671
      have "inv c \<otimes> (inv a \<otimes> b) \<otimes> c = (inv c \<otimes> inv a) \<otimes> (b \<otimes> c)" 
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   672
      by (force cong: m_assoc)
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   673
  moreover 
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   674
      from carr and inv_closed
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   675
      have "\<dots> = (inv (a \<otimes> c)) \<otimes> (b \<otimes> c)"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   676
      by (simp add: inv_mult_group)
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   677
  ultimately
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   678
      have "(inv (a \<otimes> c)) \<otimes> (b \<otimes> c) \<in> H" by simp
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   679
  from carr and this
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   680
     have "(b \<otimes> c) \<in> (a \<otimes> c) <# H"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   681
     by (simp add: lcos_module_rev[OF is_group])
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   682
  from carr and this and is_subgroup
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   683
     show "(a \<otimes> c) <# H = (b \<otimes> c) <# H" by (intro l_repr_independence, simp+)
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   684
next
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   685
  fix a b c
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   686
  assume abrcong: "(a, b) \<in> rcong H"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   687
    and ccarr: "c \<in> carrier G"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   688
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   689
  from ccarr have "c \<in> Units G" by (simp add: Units_eq)
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   690
  hence cinvc_one: "inv c \<otimes> c = \<one>" by (rule Units_l_inv)
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   691
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   692
  from abrcong
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   693
      have acarr: "a \<in> carrier G"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   694
       and bcarr: "b \<in> carrier G"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   695
       and abH: "inv a \<otimes> b \<in> H"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   696
      by (unfold r_congruent_def, fast+)
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   697
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   698
  note carr = acarr bcarr ccarr
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   699
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   700
  from carr and inv_closed
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   701
     have "inv a \<otimes> b = inv a \<otimes> (\<one> \<otimes> b)" by simp
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   702
  also from carr and inv_closed
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   703
      have "\<dots> = inv a \<otimes> (inv c \<otimes> c) \<otimes> b" by simp
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   704
  also from carr and inv_closed
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   705
      have "\<dots> = (inv a \<otimes> inv c) \<otimes> (c \<otimes> b)" by (force cong: m_assoc)
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   706
  also from carr and inv_closed
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   707
      have "\<dots> = inv (c \<otimes> a) \<otimes> (c \<otimes> b)" by (simp add: inv_mult_group)
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   708
  finally
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   709
      have "inv a \<otimes> b = inv (c \<otimes> a) \<otimes> (c \<otimes> b)" .
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   710
  from abH and this
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   711
      have "inv (c \<otimes> a) \<otimes> (c \<otimes> b) \<in> H" by simp
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   712
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   713
  from carr and this
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   714
     have "(c \<otimes> b) \<in> (c \<otimes> a) <# H"
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   715
     by (simp add: lcos_module_rev[OF is_group])
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   716
  from carr and this and is_subgroup
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   717
     show "(c \<otimes> a) <# H = (c \<otimes> b) <# H" by (intro l_repr_independence, simp+)
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   718
qed
0e0ea63fe768 Restructured algebra library, added ideals and quotient rings.
ballarin
parents: 19931
diff changeset
   719
14803
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   720
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   721
subsection {*Order of a Group and Lagrange's Theorem*}
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   722
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   723
constdefs
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   724
  order :: "('a, 'b) monoid_scheme \<Rightarrow> nat"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   725
  "order S \<equiv> card (carrier S)"
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   726
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   727
lemma (in group) rcos_self:
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   728
  includes subgroup
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   729
  shows "x \<in> carrier G \<Longrightarrow> x \<in> H #> x"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   730
apply (simp add: r_coset_def)
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   731
apply (rule_tac x="\<one>" in bexI) 
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   732
apply (auto simp add: ); 
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   733
done
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   734
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   735
lemma (in group) rcosets_part_G:
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   736
  includes subgroup
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   737
  shows "\<Union>(rcosets H) = carrier G"
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   738
apply (rule equalityI)
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   739
 apply (force simp add: RCOSETS_def r_coset_def)
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   740
apply (auto simp add: RCOSETS_def intro: rcos_self prems)
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   741
done
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   742
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   743
lemma (in group) cosets_finite:
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   744
     "\<lbrakk>c \<in> rcosets H;  H \<subseteq> carrier G;  finite (carrier G)\<rbrakk> \<Longrightarrow> finite c"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   745
apply (auto simp add: RCOSETS_def)
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   746
apply (simp add: r_coset_subset_G [THEN finite_subset])
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   747
done
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   748
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   749
text{*The next two lemmas support the proof of @{text card_cosets_equal}.*}
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   750
lemma (in group) inj_on_f:
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   751
    "\<lbrakk>H \<subseteq> carrier G;  a \<in> carrier G\<rbrakk> \<Longrightarrow> inj_on (\<lambda>y. y \<otimes> inv a) (H #> a)"
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   752
apply (rule inj_onI)
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   753
apply (subgoal_tac "x \<in> carrier G & y \<in> carrier G")
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   754
 prefer 2 apply (blast intro: r_coset_subset_G [THEN subsetD])
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   755
apply (simp add: subsetD)
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   756
done
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   757
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   758
lemma (in group) inj_on_g:
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   759
    "\<lbrakk>H \<subseteq> carrier G;  a \<in> carrier G\<rbrakk> \<Longrightarrow> inj_on (\<lambda>y. y \<otimes> a) H"
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   760
by (force simp add: inj_on_def subsetD)
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   761
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   762
lemma (in group) card_cosets_equal:
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   763
     "\<lbrakk>c \<in> rcosets H;  H \<subseteq> carrier G; finite(carrier G)\<rbrakk>
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   764
      \<Longrightarrow> card c = card H"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   765
apply (auto simp add: RCOSETS_def)
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   766
apply (rule card_bij_eq)
14666
65f8680c3f16 improved notation;
wenzelm
parents: 14651
diff changeset
   767
     apply (rule inj_on_f, assumption+)
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   768
    apply (force simp add: m_assoc subsetD r_coset_def)
14666
65f8680c3f16 improved notation;
wenzelm
parents: 14651
diff changeset
   769
   apply (rule inj_on_g, assumption+)
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   770
  apply (force simp add: m_assoc subsetD r_coset_def)
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   771
 txt{*The sets @{term "H #> a"} and @{term "H"} are finite.*}
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   772
 apply (simp add: r_coset_subset_G [THEN finite_subset])
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   773
apply (blast intro: finite_subset)
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   774
done
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   775
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   776
lemma (in group) rcosets_subset_PowG:
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   777
     "subgroup H G  \<Longrightarrow> rcosets H \<subseteq> Pow(carrier G)"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   778
apply (simp add: RCOSETS_def)
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   779
apply (blast dest: r_coset_subset_G subgroup.subset)
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   780
done
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   781
14803
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   782
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   783
theorem (in group) lagrange:
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   784
     "\<lbrakk>finite(carrier G); subgroup H G\<rbrakk>
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   785
      \<Longrightarrow> card(rcosets H) * card(H) = order(G)"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   786
apply (simp (no_asm_simp) add: order_def rcosets_part_G [symmetric])
14803
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   787
apply (subst mult_commute)
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   788
apply (rule card_partition)
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   789
   apply (simp add: rcosets_subset_PowG [THEN finite_subset])
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   790
  apply (simp add: rcosets_part_G)
14803
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   791
 apply (simp add: card_cosets_equal subgroup.subset)
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   792
apply (simp add: rcos_disjoint)
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   793
done
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   794
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   795
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   796
subsection {*Quotient Groups: Factorization of a Group*}
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   797
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   798
constdefs
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   799
  FactGroup :: "[('a,'b) monoid_scheme, 'a set] \<Rightarrow> ('a set) monoid"
14803
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   800
     (infixl "Mod" 65)
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   801
    --{*Actually defined for groups rather than monoids*}
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   802
  "FactGroup G H \<equiv>
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   803
    \<lparr>carrier = rcosets\<^bsub>G\<^esub> H, mult = set_mult G, one = H\<rparr>"
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   804
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   805
lemma (in normal) setmult_closed:
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   806
     "\<lbrakk>K1 \<in> rcosets H; K2 \<in> rcosets H\<rbrakk> \<Longrightarrow> K1 <#> K2 \<in> rcosets H"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   807
by (auto simp add: rcos_sum RCOSETS_def)
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   808
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   809
lemma (in normal) setinv_closed:
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   810
     "K \<in> rcosets H \<Longrightarrow> set_inv K \<in> rcosets H"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   811
by (auto simp add: rcos_inv RCOSETS_def)
13889
6676ac2527fa Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents: 13870
diff changeset
   812
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   813
lemma (in normal) rcosets_assoc:
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   814
     "\<lbrakk>M1 \<in> rcosets H; M2 \<in> rcosets H; M3 \<in> rcosets H\<rbrakk>
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   815
      \<Longrightarrow> M1 <#> M2 <#> M3 = M1 <#> (M2 <#> M3)"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   816
by (auto simp add: RCOSETS_def rcos_sum m_assoc)
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   817
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   818
lemma (in subgroup) subgroup_in_rcosets:
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   819
  includes group G
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   820
  shows "H \<in> rcosets H"
13889
6676ac2527fa Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents: 13870
diff changeset
   821
proof -
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   822
  have "H #> \<one> = H"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   823
    by (rule coset_join2, auto)
13889
6676ac2527fa Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents: 13870
diff changeset
   824
  then show ?thesis
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   825
    by (auto simp add: RCOSETS_def)
13889
6676ac2527fa Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents: 13870
diff changeset
   826
qed
6676ac2527fa Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents: 13870
diff changeset
   827
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   828
lemma (in normal) rcosets_inv_mult_group_eq:
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   829
     "M \<in> rcosets H \<Longrightarrow> set_inv M <#> M = H"
19931
fb32b43e7f80 Restructured locales with predicates: import is now an interpretation.
ballarin
parents: 19380
diff changeset
   830
by (auto simp add: RCOSETS_def rcos_inv rcos_sum subgroup.subset normal.axioms prems)
13889
6676ac2527fa Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents: 13870
diff changeset
   831
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   832
theorem (in normal) factorgroup_is_group:
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   833
  "group (G Mod H)"
14666
65f8680c3f16 improved notation;
wenzelm
parents: 14651
diff changeset
   834
apply (simp add: FactGroup_def)
13936
d3671b878828 Greatly extended CRing. Added Module.
ballarin
parents: 13889
diff changeset
   835
apply (rule groupI)
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   836
    apply (simp add: setmult_closed)
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   837
   apply (simp add: normal_imp_subgroup subgroup_in_rcosets [OF is_group])
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   838
  apply (simp add: restrictI setmult_closed rcosets_assoc)
13889
6676ac2527fa Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents: 13870
diff changeset
   839
 apply (simp add: normal_imp_subgroup
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   840
                  subgroup_in_rcosets rcosets_mult_eq)
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   841
apply (auto dest: rcosets_inv_mult_group_eq simp add: setinv_closed)
13889
6676ac2527fa Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents: 13870
diff changeset
   842
done
6676ac2527fa Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents: 13870
diff changeset
   843
14803
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   844
lemma mult_FactGroup [simp]: "X \<otimes>\<^bsub>(G Mod H)\<^esub> X' = X <#>\<^bsub>G\<^esub> X'"
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   845
  by (simp add: FactGroup_def) 
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   846
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   847
lemma (in normal) inv_FactGroup:
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   848
     "X \<in> carrier (G Mod H) \<Longrightarrow> inv\<^bsub>G Mod H\<^esub> X = set_inv X"
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   849
apply (rule group.inv_equality [OF factorgroup_is_group]) 
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   850
apply (simp_all add: FactGroup_def setinv_closed rcosets_inv_mult_group_eq)
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   851
done
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   852
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   853
text{*The coset map is a homomorphism from @{term G} to the quotient group
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   854
  @{term "G Mod H"}*}
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   855
lemma (in normal) r_coset_hom_Mod:
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   856
  "(\<lambda>a. H #> a) \<in> hom G (G Mod H)"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   857
  by (auto simp add: FactGroup_def RCOSETS_def Pi_def hom_def rcos_sum)
14747
2eaff69d3d10 removal of locale coset
paulson
parents: 14706
diff changeset
   858
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   859
 
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   860
subsection{*The First Isomorphism Theorem*}
14803
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   861
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   862
text{*The quotient by the kernel of a homomorphism is isomorphic to the 
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   863
  range of that homomorphism.*}
14803
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   864
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   865
constdefs
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   866
  kernel :: "('a, 'm) monoid_scheme \<Rightarrow> ('b, 'n) monoid_scheme \<Rightarrow> 
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   867
             ('a \<Rightarrow> 'b) \<Rightarrow> 'a set" 
14803
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   868
    --{*the kernel of a homomorphism*}
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   869
  "kernel G H h \<equiv> {x. x \<in> carrier G & h x = \<one>\<^bsub>H\<^esub>}";
14803
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   870
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   871
lemma (in group_hom) subgroup_kernel: "subgroup (kernel G H h) G"
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   872
apply (rule subgroup.intro) 
14803
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   873
apply (auto simp add: kernel_def group.intro prems) 
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   874
done
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   875
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   876
text{*The kernel of a homomorphism is a normal subgroup*}
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   877
lemma (in group_hom) normal_kernel: "(kernel G H h) \<lhd> G"
19931
fb32b43e7f80 Restructured locales with predicates: import is now an interpretation.
ballarin
parents: 19380
diff changeset
   878
apply (simp add: G.normal_inv_iff subgroup_kernel)
fb32b43e7f80 Restructured locales with predicates: import is now an interpretation.
ballarin
parents: 19380
diff changeset
   879
apply (simp add: kernel_def)
14803
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   880
done
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   881
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   882
lemma (in group_hom) FactGroup_nonempty:
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   883
  assumes X: "X \<in> carrier (G Mod kernel G H h)"
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   884
  shows "X \<noteq> {}"
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   885
proof -
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   886
  from X
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   887
  obtain g where "g \<in> carrier G" 
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   888
             and "X = kernel G H h #> g"
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   889
    by (auto simp add: FactGroup_def RCOSETS_def)
14803
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   890
  thus ?thesis 
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   891
   by (auto simp add: kernel_def r_coset_def image_def intro: hom_one)
14803
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   892
qed
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   893
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   894
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   895
lemma (in group_hom) FactGroup_contents_mem:
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   896
  assumes X: "X \<in> carrier (G Mod (kernel G H h))"
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   897
  shows "contents (h`X) \<in> carrier H"
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   898
proof -
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   899
  from X
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   900
  obtain g where g: "g \<in> carrier G" 
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   901
             and "X = kernel G H h #> g"
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   902
    by (auto simp add: FactGroup_def RCOSETS_def)
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   903
  hence "h ` X = {h g}" by (auto simp add: kernel_def r_coset_def image_def g)
14803
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   904
  thus ?thesis by (auto simp add: g)
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   905
qed
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   906
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   907
lemma (in group_hom) FactGroup_hom:
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   908
     "(\<lambda>X. contents (h`X)) \<in> hom (G Mod (kernel G H h)) H"
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   909
apply (simp add: hom_def FactGroup_contents_mem  normal.factorgroup_is_group [OF normal_kernel] group.axioms monoid.m_closed)  
14803
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   910
proof (simp add: hom_def funcsetI FactGroup_contents_mem, intro ballI) 
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   911
  fix X and X'
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   912
  assume X:  "X  \<in> carrier (G Mod kernel G H h)"
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   913
     and X': "X' \<in> carrier (G Mod kernel G H h)"
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   914
  then
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   915
  obtain g and g'
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   916
           where "g \<in> carrier G" and "g' \<in> carrier G" 
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   917
             and "X = kernel G H h #> g" and "X' = kernel G H h #> g'"
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   918
    by (auto simp add: FactGroup_def RCOSETS_def)
14803
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   919
  hence all: "\<forall>x\<in>X. h x = h g" "\<forall>x\<in>X'. h x = h g'" 
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   920
    and Xsub: "X \<subseteq> carrier G" and X'sub: "X' \<subseteq> carrier G"
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   921
    by (force simp add: kernel_def r_coset_def image_def)+
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   922
  hence "h ` (X <#> X') = {h g \<otimes>\<^bsub>H\<^esub> h g'}" using X X'
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   923
    by (auto dest!: FactGroup_nonempty
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   924
             simp add: set_mult_def image_eq_UN 
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   925
                       subsetD [OF Xsub] subsetD [OF X'sub]) 
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   926
  thus "contents (h ` (X <#> X')) = contents (h ` X) \<otimes>\<^bsub>H\<^esub> contents (h ` X')"
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   927
    by (simp add: all image_eq_UN FactGroup_nonempty X X')  
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   928
qed
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   929
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   930
14803
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   931
text{*Lemma for the following injectivity result*}
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   932
lemma (in group_hom) FactGroup_subset:
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   933
     "\<lbrakk>g \<in> carrier G; g' \<in> carrier G; h g = h g'\<rbrakk>
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   934
      \<Longrightarrow>  kernel G H h #> g \<subseteq> kernel G H h #> g'"
14803
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   935
apply (clarsimp simp add: kernel_def r_coset_def image_def);
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   936
apply (rename_tac y)  
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   937
apply (rule_tac x="y \<otimes> g \<otimes> inv g'" in exI) 
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   938
apply (simp add: G.m_assoc); 
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   939
done
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   940
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   941
lemma (in group_hom) FactGroup_inj_on:
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   942
     "inj_on (\<lambda>X. contents (h ` X)) (carrier (G Mod kernel G H h))"
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   943
proof (simp add: inj_on_def, clarify) 
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   944
  fix X and X'
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   945
  assume X:  "X  \<in> carrier (G Mod kernel G H h)"
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   946
     and X': "X' \<in> carrier (G Mod kernel G H h)"
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   947
  then
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   948
  obtain g and g'
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   949
           where gX: "g \<in> carrier G"  "g' \<in> carrier G" 
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   950
              "X = kernel G H h #> g" "X' = kernel G H h #> g'"
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   951
    by (auto simp add: FactGroup_def RCOSETS_def)
14803
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   952
  hence all: "\<forall>x\<in>X. h x = h g" "\<forall>x\<in>X'. h x = h g'" 
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   953
    by (force simp add: kernel_def r_coset_def image_def)+
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   954
  assume "contents (h ` X) = contents (h ` X')"
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   955
  hence h: "h g = h g'"
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   956
    by (simp add: image_eq_UN all FactGroup_nonempty X X') 
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   957
  show "X=X'" by (rule equalityI) (simp_all add: FactGroup_subset h gX) 
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   958
qed
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   959
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   960
text{*If the homomorphism @{term h} is onto @{term H}, then so is the
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   961
homomorphism from the quotient group*}
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   962
lemma (in group_hom) FactGroup_onto:
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   963
  assumes h: "h ` carrier G = carrier H"
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   964
  shows "(\<lambda>X. contents (h ` X)) ` carrier (G Mod kernel G H h) = carrier H"
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   965
proof
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   966
  show "(\<lambda>X. contents (h ` X)) ` carrier (G Mod kernel G H h) \<subseteq> carrier H"
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   967
    by (auto simp add: FactGroup_contents_mem)
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   968
  show "carrier H \<subseteq> (\<lambda>X. contents (h ` X)) ` carrier (G Mod kernel G H h)"
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   969
  proof
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   970
    fix y
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   971
    assume y: "y \<in> carrier H"
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   972
    with h obtain g where g: "g \<in> carrier G" "h g = y"
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   973
      by (blast elim: equalityE); 
15120
f0359f75682e undid UN/INT syntax
nipkow
parents: 14963
diff changeset
   974
    hence "(\<Union>x\<in>kernel G H h #> g. {h x}) = {y}" 
14803
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   975
      by (auto simp add: y kernel_def r_coset_def) 
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   976
    with g show "y \<in> (\<lambda>X. contents (h ` X)) ` carrier (G Mod kernel G H h)" 
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   977
      by (auto intro!: bexI simp add: FactGroup_def RCOSETS_def image_eq_UN)
14803
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   978
  qed
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   979
qed
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   980
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   981
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   982
text{*If @{term h} is a homomorphism from @{term G} onto @{term H}, then the
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   983
 quotient group @{term "G Mod (kernel G H h)"} is isomorphic to @{term H}.*}
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   984
theorem (in group_hom) FactGroup_iso:
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   985
  "h ` carrier G = carrier H
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   986
   \<Longrightarrow> (\<lambda>X. contents (h`X)) \<in> (G Mod (kernel G H h)) \<cong> H"
14803
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   987
by (simp add: iso_def FactGroup_hom FactGroup_inj_on bij_betw_def 
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   988
              FactGroup_onto) 
f7557773cc87 more group isomorphisms
paulson
parents: 14761
diff changeset
   989
14963
d584e32f7d46 removal of magmas and semigroups
paulson
parents: 14803
diff changeset
   990
13870
cf947d1ec5ff moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff changeset
   991
end