author | wenzelm |
Sat, 30 Dec 2006 16:08:06 +0100 | |
changeset 21966 | edab0ecfbd7c |
parent 21404 | eb85850d3eb7 |
child 22027 | e4a08629c4bd |
permissions | -rw-r--r-- |
21256 | 1 |
(* Title: HOL/GCD.thy |
2 |
ID: $Id$ |
|
3 |
Author: Christophe Tabacznyj and Lawrence C Paulson |
|
4 |
Copyright 1996 University of Cambridge |
|
5 |
*) |
|
6 |
||
7 |
header {* The Greatest Common Divisor *} |
|
8 |
||
9 |
theory GCD |
|
10 |
imports Main |
|
11 |
begin |
|
12 |
||
13 |
text {* |
|
14 |
See \cite{davenport92}. |
|
15 |
\bigskip |
|
16 |
*} |
|
17 |
||
18 |
consts |
|
19 |
gcd :: "nat \<times> nat => nat" -- {* Euclid's algorithm *} |
|
20 |
||
21 |
recdef gcd "measure ((\<lambda>(m, n). n) :: nat \<times> nat => nat)" |
|
22 |
"gcd (m, n) = (if n = 0 then m else gcd (n, m mod n))" |
|
23 |
||
21263 | 24 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21263
diff
changeset
|
25 |
is_gcd :: "nat => nat => nat => bool" where -- {* @{term gcd} as a relation *} |
21263 | 26 |
"is_gcd p m n = (p dvd m \<and> p dvd n \<and> |
27 |
(\<forall>d. d dvd m \<and> d dvd n --> d dvd p))" |
|
21256 | 28 |
|
29 |
||
30 |
lemma gcd_induct: |
|
31 |
"(!!m. P m 0) ==> |
|
32 |
(!!m n. 0 < n ==> P n (m mod n) ==> P m n) |
|
33 |
==> P (m::nat) (n::nat)" |
|
34 |
apply (induct m n rule: gcd.induct) |
|
35 |
apply (case_tac "n = 0") |
|
36 |
apply simp_all |
|
37 |
done |
|
38 |
||
39 |
||
40 |
lemma gcd_0 [simp]: "gcd (m, 0) = m" |
|
21263 | 41 |
by simp |
21256 | 42 |
|
43 |
lemma gcd_non_0: "0 < n ==> gcd (m, n) = gcd (n, m mod n)" |
|
21263 | 44 |
by simp |
21256 | 45 |
|
46 |
declare gcd.simps [simp del] |
|
47 |
||
48 |
lemma gcd_1 [simp]: "gcd (m, Suc 0) = 1" |
|
21263 | 49 |
by (simp add: gcd_non_0) |
21256 | 50 |
|
51 |
text {* |
|
52 |
\medskip @{term "gcd (m, n)"} divides @{text m} and @{text n}. The |
|
53 |
conjunctions don't seem provable separately. |
|
54 |
*} |
|
55 |
||
56 |
lemma gcd_dvd1 [iff]: "gcd (m, n) dvd m" |
|
57 |
and gcd_dvd2 [iff]: "gcd (m, n) dvd n" |
|
58 |
apply (induct m n rule: gcd_induct) |
|
21263 | 59 |
apply (simp_all add: gcd_non_0) |
21256 | 60 |
apply (blast dest: dvd_mod_imp_dvd) |
61 |
done |
|
62 |
||
63 |
text {* |
|
64 |
\medskip Maximality: for all @{term m}, @{term n}, @{term k} |
|
65 |
naturals, if @{term k} divides @{term m} and @{term k} divides |
|
66 |
@{term n} then @{term k} divides @{term "gcd (m, n)"}. |
|
67 |
*} |
|
68 |
||
69 |
lemma gcd_greatest: "k dvd m ==> k dvd n ==> k dvd gcd (m, n)" |
|
21263 | 70 |
by (induct m n rule: gcd_induct) (simp_all add: gcd_non_0 dvd_mod) |
21256 | 71 |
|
72 |
lemma gcd_greatest_iff [iff]: "(k dvd gcd (m, n)) = (k dvd m \<and> k dvd n)" |
|
21263 | 73 |
by (blast intro!: gcd_greatest intro: dvd_trans) |
21256 | 74 |
|
75 |
lemma gcd_zero: "(gcd (m, n) = 0) = (m = 0 \<and> n = 0)" |
|
21263 | 76 |
by (simp only: dvd_0_left_iff [symmetric] gcd_greatest_iff) |
21256 | 77 |
|
78 |
||
79 |
text {* |
|
80 |
\medskip Function gcd yields the Greatest Common Divisor. |
|
81 |
*} |
|
82 |
||
83 |
lemma is_gcd: "is_gcd (gcd (m, n)) m n" |
|
84 |
apply (simp add: is_gcd_def gcd_greatest) |
|
85 |
done |
|
86 |
||
87 |
text {* |
|
88 |
\medskip Uniqueness of GCDs. |
|
89 |
*} |
|
90 |
||
91 |
lemma is_gcd_unique: "is_gcd m a b ==> is_gcd n a b ==> m = n" |
|
92 |
apply (simp add: is_gcd_def) |
|
93 |
apply (blast intro: dvd_anti_sym) |
|
94 |
done |
|
95 |
||
96 |
lemma is_gcd_dvd: "is_gcd m a b ==> k dvd a ==> k dvd b ==> k dvd m" |
|
97 |
apply (auto simp add: is_gcd_def) |
|
98 |
done |
|
99 |
||
100 |
||
101 |
text {* |
|
102 |
\medskip Commutativity |
|
103 |
*} |
|
104 |
||
105 |
lemma is_gcd_commute: "is_gcd k m n = is_gcd k n m" |
|
106 |
apply (auto simp add: is_gcd_def) |
|
107 |
done |
|
108 |
||
109 |
lemma gcd_commute: "gcd (m, n) = gcd (n, m)" |
|
110 |
apply (rule is_gcd_unique) |
|
111 |
apply (rule is_gcd) |
|
112 |
apply (subst is_gcd_commute) |
|
113 |
apply (simp add: is_gcd) |
|
114 |
done |
|
115 |
||
116 |
lemma gcd_assoc: "gcd (gcd (k, m), n) = gcd (k, gcd (m, n))" |
|
117 |
apply (rule is_gcd_unique) |
|
118 |
apply (rule is_gcd) |
|
119 |
apply (simp add: is_gcd_def) |
|
120 |
apply (blast intro: dvd_trans) |
|
121 |
done |
|
122 |
||
123 |
lemma gcd_0_left [simp]: "gcd (0, m) = m" |
|
124 |
apply (simp add: gcd_commute [of 0]) |
|
125 |
done |
|
126 |
||
127 |
lemma gcd_1_left [simp]: "gcd (Suc 0, m) = 1" |
|
128 |
apply (simp add: gcd_commute [of "Suc 0"]) |
|
129 |
done |
|
130 |
||
131 |
||
132 |
text {* |
|
133 |
\medskip Multiplication laws |
|
134 |
*} |
|
135 |
||
136 |
lemma gcd_mult_distrib2: "k * gcd (m, n) = gcd (k * m, k * n)" |
|
137 |
-- {* \cite[page 27]{davenport92} *} |
|
138 |
apply (induct m n rule: gcd_induct) |
|
139 |
apply simp |
|
140 |
apply (case_tac "k = 0") |
|
141 |
apply (simp_all add: mod_geq gcd_non_0 mod_mult_distrib2) |
|
142 |
done |
|
143 |
||
144 |
lemma gcd_mult [simp]: "gcd (k, k * n) = k" |
|
145 |
apply (rule gcd_mult_distrib2 [of k 1 n, simplified, symmetric]) |
|
146 |
done |
|
147 |
||
148 |
lemma gcd_self [simp]: "gcd (k, k) = k" |
|
149 |
apply (rule gcd_mult [of k 1, simplified]) |
|
150 |
done |
|
151 |
||
152 |
lemma relprime_dvd_mult: "gcd (k, n) = 1 ==> k dvd m * n ==> k dvd m" |
|
153 |
apply (insert gcd_mult_distrib2 [of m k n]) |
|
154 |
apply simp |
|
155 |
apply (erule_tac t = m in ssubst) |
|
156 |
apply simp |
|
157 |
done |
|
158 |
||
159 |
lemma relprime_dvd_mult_iff: "gcd (k, n) = 1 ==> (k dvd m * n) = (k dvd m)" |
|
160 |
apply (blast intro: relprime_dvd_mult dvd_trans) |
|
161 |
done |
|
162 |
||
163 |
lemma gcd_mult_cancel: "gcd (k, n) = 1 ==> gcd (k * m, n) = gcd (m, n)" |
|
164 |
apply (rule dvd_anti_sym) |
|
165 |
apply (rule gcd_greatest) |
|
166 |
apply (rule_tac n = k in relprime_dvd_mult) |
|
167 |
apply (simp add: gcd_assoc) |
|
168 |
apply (simp add: gcd_commute) |
|
169 |
apply (simp_all add: mult_commute) |
|
170 |
apply (blast intro: dvd_trans) |
|
171 |
done |
|
172 |
||
173 |
||
174 |
text {* \medskip Addition laws *} |
|
175 |
||
176 |
lemma gcd_add1 [simp]: "gcd (m + n, n) = gcd (m, n)" |
|
177 |
apply (case_tac "n = 0") |
|
178 |
apply (simp_all add: gcd_non_0) |
|
179 |
done |
|
180 |
||
181 |
lemma gcd_add2 [simp]: "gcd (m, m + n) = gcd (m, n)" |
|
182 |
proof - |
|
183 |
have "gcd (m, m + n) = gcd (m + n, m)" by (rule gcd_commute) |
|
184 |
also have "... = gcd (n + m, m)" by (simp add: add_commute) |
|
185 |
also have "... = gcd (n, m)" by simp |
|
186 |
also have "... = gcd (m, n)" by (rule gcd_commute) |
|
187 |
finally show ?thesis . |
|
188 |
qed |
|
189 |
||
190 |
lemma gcd_add2' [simp]: "gcd (m, n + m) = gcd (m, n)" |
|
191 |
apply (subst add_commute) |
|
192 |
apply (rule gcd_add2) |
|
193 |
done |
|
194 |
||
195 |
lemma gcd_add_mult: "gcd (m, k * m + n) = gcd (m, n)" |
|
21263 | 196 |
by (induct k) (simp_all add: add_assoc) |
21256 | 197 |
|
198 |
end |