| author | wenzelm | 
| Tue, 12 Mar 2024 11:18:38 +0100 | |
| changeset 79868 | ede8b298cfe8 | 
| parent 68756 | 7066e83dfe46 | 
| child 81995 | d67dadd69d07 | 
| permissions | -rw-r--r-- | 
| 66271 | 1  | 
(* Title: HOL/Library/State_Monad.thy  | 
2  | 
Author: Lars Hupel, TU München  | 
|
3  | 
*)  | 
|
4  | 
||
5  | 
section \<open>State monad\<close>  | 
|
6  | 
||
7  | 
theory State_Monad  | 
|
8  | 
imports Monad_Syntax  | 
|
9  | 
begin  | 
|
10  | 
||
11  | 
datatype ('s, 'a) state = State (run_state: "'s \<Rightarrow> ('a \<times> 's)")
 | 
|
12  | 
||
13  | 
lemma set_state_iff: "x \<in> set_state m \<longleftrightarrow> (\<exists>s s'. run_state m s = (x, s'))"  | 
|
14  | 
by (cases m) (simp add: prod_set_defs eq_fst_iff)  | 
|
15  | 
||
16  | 
lemma pred_stateI[intro]:  | 
|
17  | 
assumes "\<And>a s s'. run_state m s = (a, s') \<Longrightarrow> P a"  | 
|
18  | 
shows "pred_state P m"  | 
|
19  | 
proof (subst state.pred_set, rule)  | 
|
20  | 
fix x  | 
|
21  | 
assume "x \<in> set_state m"  | 
|
22  | 
then obtain s s' where "run_state m s = (x, s')"  | 
|
23  | 
by (auto simp: set_state_iff)  | 
|
24  | 
with assms show "P x" .  | 
|
25  | 
qed  | 
|
26  | 
||
27  | 
lemma pred_stateD[dest]:  | 
|
28  | 
assumes "pred_state P m" "run_state m s = (a, s')"  | 
|
29  | 
shows "P a"  | 
|
30  | 
proof (rule state.exhaust[of m])  | 
|
31  | 
fix f  | 
|
32  | 
assume "m = State f"  | 
|
33  | 
with assms have "pred_fun (\<lambda>_. True) (pred_prod P top) f"  | 
|
34  | 
by (metis state.pred_inject)  | 
|
35  | 
moreover have "f s = (a, s')"  | 
|
36  | 
using assms unfolding \<open>m = _\<close> by auto  | 
|
37  | 
ultimately show "P a"  | 
|
38  | 
unfolding pred_prod_beta pred_fun_def  | 
|
39  | 
by (metis fst_conv)  | 
|
40  | 
qed  | 
|
41  | 
||
42  | 
lemma pred_state_run_state: "pred_state P m \<Longrightarrow> P (fst (run_state m s))"  | 
|
43  | 
by (meson pred_stateD prod.exhaust_sel)  | 
|
44  | 
||
45  | 
definition state_io_rel :: "('s \<Rightarrow> 's \<Rightarrow> bool) \<Rightarrow> ('s, 'a) state \<Rightarrow> bool" where
 | 
|
46  | 
"state_io_rel P m = (\<forall>s. P s (snd (run_state m s)))"  | 
|
47  | 
||
48  | 
lemma state_io_relI[intro]:  | 
|
49  | 
assumes "\<And>a s s'. run_state m s = (a, s') \<Longrightarrow> P s s'"  | 
|
50  | 
shows "state_io_rel P m"  | 
|
51  | 
using assms unfolding state_io_rel_def  | 
|
52  | 
by (metis prod.collapse)  | 
|
53  | 
||
54  | 
lemma state_io_relD[dest]:  | 
|
55  | 
assumes "state_io_rel P m" "run_state m s = (a, s')"  | 
|
56  | 
shows "P s s'"  | 
|
57  | 
using assms unfolding state_io_rel_def  | 
|
58  | 
by (metis snd_conv)  | 
|
59  | 
||
60  | 
lemma state_io_rel_mono[mono]: "P \<le> Q \<Longrightarrow> state_io_rel P \<le> state_io_rel Q"  | 
|
61  | 
by blast  | 
|
62  | 
||
63  | 
lemma state_ext:  | 
|
64  | 
assumes "\<And>s. run_state m s = run_state n s"  | 
|
65  | 
shows "m = n"  | 
|
66  | 
using assms  | 
|
67  | 
by (cases m; cases n) auto  | 
|
68  | 
||
69  | 
context begin  | 
|
70  | 
||
71  | 
qualified definition return :: "'a \<Rightarrow> ('s, 'a) state" where
 | 
|
72  | 
"return a = State (Pair a)"  | 
|
73  | 
||
| 
66275
 
2c1d223c5417
additional lemmas for State_Monad, courtesy of Andreas Lochbihler
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
66271 
diff
changeset
 | 
74  | 
lemma run_state_return[simp]: "run_state (return x) s = (x, s)"  | 
| 
 
2c1d223c5417
additional lemmas for State_Monad, courtesy of Andreas Lochbihler
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
66271 
diff
changeset
 | 
75  | 
unfolding return_def  | 
| 
 
2c1d223c5417
additional lemmas for State_Monad, courtesy of Andreas Lochbihler
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
66271 
diff
changeset
 | 
76  | 
by simp  | 
| 
 
2c1d223c5417
additional lemmas for State_Monad, courtesy of Andreas Lochbihler
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
66271 
diff
changeset
 | 
77  | 
|
| 66271 | 78  | 
qualified definition ap :: "('s, 'a \<Rightarrow> 'b) state \<Rightarrow> ('s, 'a) state \<Rightarrow> ('s, 'b) state" where
 | 
79  | 
"ap f x = State (\<lambda>s. case run_state f s of (g, s') \<Rightarrow> case run_state x s' of (y, s'') \<Rightarrow> (g y, s''))"  | 
|
80  | 
||
| 
68756
 
7066e83dfe46
State_Monad: more simp lemmas
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
67399 
diff
changeset
 | 
81  | 
lemma run_state_ap[simp]:  | 
| 
 
7066e83dfe46
State_Monad: more simp lemmas
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
67399 
diff
changeset
 | 
82  | 
"run_state (ap f x) s = (case run_state f s of (g, s') \<Rightarrow> case run_state x s' of (y, s'') \<Rightarrow> (g y, s''))"  | 
| 
 
7066e83dfe46
State_Monad: more simp lemmas
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
67399 
diff
changeset
 | 
83  | 
unfolding ap_def by auto  | 
| 
 
7066e83dfe46
State_Monad: more simp lemmas
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
67399 
diff
changeset
 | 
84  | 
|
| 66271 | 85  | 
qualified definition bind :: "('s, 'a) state \<Rightarrow> ('a \<Rightarrow> ('s, 'b) state) \<Rightarrow> ('s, 'b) state" where
 | 
86  | 
"bind x f = State (\<lambda>s. case run_state x s of (a, s') \<Rightarrow> run_state (f a) s')"  | 
|
87  | 
||
| 
68756
 
7066e83dfe46
State_Monad: more simp lemmas
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
67399 
diff
changeset
 | 
88  | 
lemma run_state_bind[simp]:  | 
| 
 
7066e83dfe46
State_Monad: more simp lemmas
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
67399 
diff
changeset
 | 
89  | 
"run_state (bind x f) s = (case run_state x s of (a, s') \<Rightarrow> run_state (f a) s')"  | 
| 
 
7066e83dfe46
State_Monad: more simp lemmas
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
67399 
diff
changeset
 | 
90  | 
unfolding bind_def by auto  | 
| 
 
7066e83dfe46
State_Monad: more simp lemmas
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
67399 
diff
changeset
 | 
91  | 
|
| 66271 | 92  | 
adhoc_overloading Monad_Syntax.bind bind  | 
93  | 
||
94  | 
lemma bind_left_identity[simp]: "bind (return a) f = f a"  | 
|
95  | 
unfolding return_def bind_def by simp  | 
|
96  | 
||
97  | 
lemma bind_right_identity[simp]: "bind m return = m"  | 
|
98  | 
unfolding return_def bind_def by simp  | 
|
99  | 
||
100  | 
lemma bind_assoc[simp]: "bind (bind m f) g = bind m (\<lambda>x. bind (f x) g)"  | 
|
101  | 
unfolding bind_def by (auto split: prod.splits)  | 
|
102  | 
||
103  | 
lemma bind_predI[intro]:  | 
|
104  | 
assumes "pred_state (\<lambda>x. pred_state P (f x)) m"  | 
|
105  | 
shows "pred_state P (bind m f)"  | 
|
106  | 
apply (rule pred_stateI)  | 
|
107  | 
unfolding bind_def  | 
|
108  | 
using assms by (auto split: prod.splits)  | 
|
109  | 
||
110  | 
qualified definition get :: "('s, 's) state" where
 | 
|
111  | 
"get = State (\<lambda>s. (s, s))"  | 
|
112  | 
||
| 
68756
 
7066e83dfe46
State_Monad: more simp lemmas
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
67399 
diff
changeset
 | 
113  | 
lemma run_state_get[simp]: "run_state get s = (s, s)"  | 
| 
 
7066e83dfe46
State_Monad: more simp lemmas
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
67399 
diff
changeset
 | 
114  | 
unfolding get_def by simp  | 
| 
 
7066e83dfe46
State_Monad: more simp lemmas
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
67399 
diff
changeset
 | 
115  | 
|
| 66271 | 116  | 
qualified definition set :: "'s \<Rightarrow> ('s, unit) state" where
 | 
117  | 
"set s' = State (\<lambda>_. ((), s'))"  | 
|
118  | 
||
| 
68756
 
7066e83dfe46
State_Monad: more simp lemmas
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
67399 
diff
changeset
 | 
119  | 
lemma run_state_set[simp]: "run_state (set s') s = ((), s')"  | 
| 
 
7066e83dfe46
State_Monad: more simp lemmas
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
67399 
diff
changeset
 | 
120  | 
unfolding set_def by simp  | 
| 
 
7066e83dfe46
State_Monad: more simp lemmas
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
67399 
diff
changeset
 | 
121  | 
|
| 66271 | 122  | 
lemma get_set[simp]: "bind get set = return ()"  | 
123  | 
unfolding bind_def get_def set_def return_def  | 
|
124  | 
by simp  | 
|
125  | 
||
126  | 
lemma set_set[simp]: "bind (set s) (\<lambda>_. set s') = set s'"  | 
|
127  | 
unfolding bind_def set_def  | 
|
128  | 
by simp  | 
|
129  | 
||
| 
66275
 
2c1d223c5417
additional lemmas for State_Monad, courtesy of Andreas Lochbihler
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
66271 
diff
changeset
 | 
130  | 
lemma get_bind_set[simp]: "bind get (\<lambda>s. bind (set s) (f s)) = bind get (\<lambda>s. f s ())"  | 
| 
 
2c1d223c5417
additional lemmas for State_Monad, courtesy of Andreas Lochbihler
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
66271 
diff
changeset
 | 
131  | 
unfolding bind_def get_def set_def  | 
| 
 
2c1d223c5417
additional lemmas for State_Monad, courtesy of Andreas Lochbihler
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
66271 
diff
changeset
 | 
132  | 
by simp  | 
| 
 
2c1d223c5417
additional lemmas for State_Monad, courtesy of Andreas Lochbihler
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
66271 
diff
changeset
 | 
133  | 
|
| 
 
2c1d223c5417
additional lemmas for State_Monad, courtesy of Andreas Lochbihler
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
66271 
diff
changeset
 | 
134  | 
lemma get_const[simp]: "bind get (\<lambda>_. m) = m"  | 
| 
 
2c1d223c5417
additional lemmas for State_Monad, courtesy of Andreas Lochbihler
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
66271 
diff
changeset
 | 
135  | 
unfolding get_def bind_def  | 
| 
 
2c1d223c5417
additional lemmas for State_Monad, courtesy of Andreas Lochbihler
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
66271 
diff
changeset
 | 
136  | 
by simp  | 
| 
 
2c1d223c5417
additional lemmas for State_Monad, courtesy of Andreas Lochbihler
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
66271 
diff
changeset
 | 
137  | 
|
| 66271 | 138  | 
fun traverse_list :: "('a \<Rightarrow> ('b, 'c) state) \<Rightarrow> 'a list \<Rightarrow> ('b, 'c list) state" where
 | 
139  | 
"traverse_list _ [] = return []" |  | 
|
140  | 
"traverse_list f (x # xs) = do {
 | 
|
141  | 
x \<leftarrow> f x;  | 
|
142  | 
xs \<leftarrow> traverse_list f xs;  | 
|
143  | 
return (x # xs)  | 
|
144  | 
}"  | 
|
145  | 
||
146  | 
lemma traverse_list_app[simp]: "traverse_list f (xs @ ys) = do {
 | 
|
147  | 
xs \<leftarrow> traverse_list f xs;  | 
|
148  | 
ys \<leftarrow> traverse_list f ys;  | 
|
149  | 
return (xs @ ys)  | 
|
150  | 
}"  | 
|
151  | 
by (induction xs) auto  | 
|
152  | 
||
153  | 
lemma traverse_comp[simp]: "traverse_list (g \<circ> f) xs = traverse_list g (map f xs)"  | 
|
154  | 
by (induction xs) auto  | 
|
155  | 
||
156  | 
abbreviation mono_state :: "('s::preorder, 'a) state \<Rightarrow> bool" where
 | 
|
| 67399 | 157  | 
"mono_state \<equiv> state_io_rel (\<le>)"  | 
| 66271 | 158  | 
|
159  | 
abbreviation strict_mono_state :: "('s::preorder, 'a) state \<Rightarrow> bool" where
 | 
|
| 67399 | 160  | 
"strict_mono_state \<equiv> state_io_rel (<)"  | 
| 66271 | 161  | 
|
162  | 
corollary strict_mono_implies_mono: "strict_mono_state m \<Longrightarrow> mono_state m"  | 
|
163  | 
unfolding state_io_rel_def  | 
|
164  | 
by (simp add: less_imp_le)  | 
|
165  | 
||
166  | 
lemma return_mono[simp, intro]: "mono_state (return x)"  | 
|
167  | 
unfolding return_def by auto  | 
|
168  | 
||
169  | 
lemma get_mono[simp, intro]: "mono_state get"  | 
|
170  | 
unfolding get_def by auto  | 
|
171  | 
||
172  | 
lemma put_mono:  | 
|
173  | 
assumes "\<And>x. s' \<ge> x"  | 
|
174  | 
shows "mono_state (set s')"  | 
|
175  | 
using assms unfolding set_def  | 
|
176  | 
by auto  | 
|
177  | 
||
178  | 
lemma map_mono[intro]: "mono_state m \<Longrightarrow> mono_state (map_state f m)"  | 
|
179  | 
by (auto intro!: state_io_relI split: prod.splits simp: map_prod_def state.map_sel)  | 
|
180  | 
||
181  | 
lemma map_strict_mono[intro]: "strict_mono_state m \<Longrightarrow> strict_mono_state (map_state f m)"  | 
|
182  | 
by (auto intro!: state_io_relI split: prod.splits simp: map_prod_def state.map_sel)  | 
|
183  | 
||
184  | 
lemma bind_mono_strong:  | 
|
185  | 
assumes "mono_state m"  | 
|
186  | 
assumes "\<And>x s s'. run_state m s = (x, s') \<Longrightarrow> mono_state (f x)"  | 
|
187  | 
shows "mono_state (bind m f)"  | 
|
188  | 
unfolding bind_def  | 
|
189  | 
apply (rule state_io_relI)  | 
|
190  | 
using assms by (auto split: prod.splits dest!: state_io_relD intro: order_trans)  | 
|
191  | 
||
192  | 
lemma bind_strict_mono_strong1:  | 
|
193  | 
assumes "mono_state m"  | 
|
194  | 
assumes "\<And>x s s'. run_state m s = (x, s') \<Longrightarrow> strict_mono_state (f x)"  | 
|
195  | 
shows "strict_mono_state (bind m f)"  | 
|
196  | 
unfolding bind_def  | 
|
197  | 
apply (rule state_io_relI)  | 
|
198  | 
using assms by (auto split: prod.splits dest!: state_io_relD intro: le_less_trans)  | 
|
199  | 
||
200  | 
lemma bind_strict_mono_strong2:  | 
|
201  | 
assumes "strict_mono_state m"  | 
|
202  | 
assumes "\<And>x s s'. run_state m s = (x, s') \<Longrightarrow> mono_state (f x)"  | 
|
203  | 
shows "strict_mono_state (bind m f)"  | 
|
204  | 
unfolding bind_def  | 
|
205  | 
apply (rule state_io_relI)  | 
|
206  | 
using assms by (auto split: prod.splits dest!: state_io_relD intro: less_le_trans)  | 
|
207  | 
||
208  | 
corollary bind_strict_mono_strong:  | 
|
209  | 
assumes "strict_mono_state m"  | 
|
210  | 
assumes "\<And>x s s'. run_state m s = (x, s') \<Longrightarrow> strict_mono_state (f x)"  | 
|
211  | 
shows "strict_mono_state (bind m f)"  | 
|
212  | 
using assms by (auto intro: bind_strict_mono_strong1 strict_mono_implies_mono)  | 
|
213  | 
||
214  | 
qualified definition update :: "('s \<Rightarrow> 's) \<Rightarrow> ('s, unit) state" where
 | 
|
215  | 
"update f = bind get (set \<circ> f)"  | 
|
216  | 
||
217  | 
lemma update_id[simp]: "update (\<lambda>x. x) = return ()"  | 
|
218  | 
unfolding update_def return_def get_def set_def bind_def  | 
|
219  | 
by auto  | 
|
220  | 
||
221  | 
lemma update_comp[simp]: "bind (update f) (\<lambda>_. update g) = update (g \<circ> f)"  | 
|
222  | 
unfolding update_def return_def get_def set_def bind_def  | 
|
223  | 
by auto  | 
|
224  | 
||
| 
66275
 
2c1d223c5417
additional lemmas for State_Monad, courtesy of Andreas Lochbihler
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
66271 
diff
changeset
 | 
225  | 
lemma set_update[simp]: "bind (set s) (\<lambda>_. update f) = set (f s)"  | 
| 
 
2c1d223c5417
additional lemmas for State_Monad, courtesy of Andreas Lochbihler
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
66271 
diff
changeset
 | 
226  | 
unfolding set_def update_def bind_def get_def set_def  | 
| 
 
2c1d223c5417
additional lemmas for State_Monad, courtesy of Andreas Lochbihler
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
66271 
diff
changeset
 | 
227  | 
by simp  | 
| 
 
2c1d223c5417
additional lemmas for State_Monad, courtesy of Andreas Lochbihler
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
66271 
diff
changeset
 | 
228  | 
|
| 
 
2c1d223c5417
additional lemmas for State_Monad, courtesy of Andreas Lochbihler
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
66271 
diff
changeset
 | 
229  | 
lemma set_bind_update[simp]: "bind (set s) (\<lambda>_. bind (update f) g) = bind (set (f s)) g"  | 
| 
 
2c1d223c5417
additional lemmas for State_Monad, courtesy of Andreas Lochbihler
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
66271 
diff
changeset
 | 
230  | 
unfolding set_def update_def bind_def get_def set_def  | 
| 
 
2c1d223c5417
additional lemmas for State_Monad, courtesy of Andreas Lochbihler
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
66271 
diff
changeset
 | 
231  | 
by simp  | 
| 
 
2c1d223c5417
additional lemmas for State_Monad, courtesy of Andreas Lochbihler
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
66271 
diff
changeset
 | 
232  | 
|
| 66271 | 233  | 
lemma update_mono:  | 
234  | 
assumes "\<And>x. x \<le> f x"  | 
|
235  | 
shows "mono_state (update f)"  | 
|
236  | 
using assms unfolding update_def get_def set_def bind_def  | 
|
237  | 
by (auto intro!: state_io_relI)  | 
|
238  | 
||
239  | 
lemma update_strict_mono:  | 
|
240  | 
assumes "\<And>x. x < f x"  | 
|
241  | 
shows "strict_mono_state (update f)"  | 
|
242  | 
using assms unfolding update_def get_def set_def bind_def  | 
|
243  | 
by (auto intro!: state_io_relI)  | 
|
244  | 
||
245  | 
end  | 
|
246  | 
||
| 
68756
 
7066e83dfe46
State_Monad: more simp lemmas
 
Lars Hupel <lars.hupel@mytum.de> 
parents: 
67399 
diff
changeset
 | 
247  | 
end  |