author | bulwahn |
Mon, 18 Jul 2011 10:34:21 +0200 | |
changeset 43888 | ee4be704c2a4 |
parent 42795 | 66fcc9882784 |
child 45827 | 66c68453455c |
permissions | -rw-r--r-- |
13020 | 1 |
|
2 |
header {* \section{The Multi-Mutator Case} *} |
|
3 |
||
16417 | 4 |
theory Mul_Gar_Coll imports Graph OG_Syntax begin |
13020 | 5 |
|
6 |
text {* The full theory takes aprox. 18 minutes. *} |
|
7 |
||
8 |
record mut = |
|
9 |
Z :: bool |
|
10 |
R :: nat |
|
11 |
T :: nat |
|
12 |
||
13 |
text {* Declaration of variables: *} |
|
14 |
||
15 |
record mul_gar_coll_state = |
|
16 |
M :: nodes |
|
17 |
E :: edges |
|
18 |
bc :: "nat set" |
|
19 |
obc :: "nat set" |
|
20 |
Ma :: nodes |
|
21 |
ind :: nat |
|
22 |
k :: nat |
|
23 |
q :: nat |
|
24 |
l :: nat |
|
25 |
Muts :: "mut list" |
|
26 |
||
27 |
subsection {* The Mutators *} |
|
28 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
32960
diff
changeset
|
29 |
definition Mul_mut_init :: "mul_gar_coll_state \<Rightarrow> nat \<Rightarrow> bool" where |
13020 | 30 |
"Mul_mut_init \<equiv> \<guillemotleft> \<lambda>n. n=length \<acute>Muts \<and> (\<forall>i<n. R (\<acute>Muts!i)<length \<acute>E |
31 |
\<and> T (\<acute>Muts!i)<length \<acute>M) \<guillemotright>" |
|
32 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
32960
diff
changeset
|
33 |
definition Mul_Redirect_Edge :: "nat \<Rightarrow> nat \<Rightarrow> mul_gar_coll_state ann_com" where |
13020 | 34 |
"Mul_Redirect_Edge j n \<equiv> |
35 |
.{\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)}. |
|
36 |
\<langle>IF T(\<acute>Muts!j) \<in> Reach \<acute>E THEN |
|
37 |
\<acute>E:= \<acute>E[R (\<acute>Muts!j):= (fst (\<acute>E!R(\<acute>Muts!j)), T (\<acute>Muts!j))] FI,, |
|
38 |
\<acute>Muts:= \<acute>Muts[j:= (\<acute>Muts!j) \<lparr>Z:=False\<rparr>]\<rangle>" |
|
39 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
32960
diff
changeset
|
40 |
definition Mul_Color_Target :: "nat \<Rightarrow> nat \<Rightarrow> mul_gar_coll_state ann_com" where |
13020 | 41 |
"Mul_Color_Target j n \<equiv> |
42 |
.{\<acute>Mul_mut_init n \<and> \<not> Z (\<acute>Muts!j)}. |
|
43 |
\<langle>\<acute>M:=\<acute>M[T (\<acute>Muts!j):=Black],, \<acute>Muts:=\<acute>Muts[j:= (\<acute>Muts!j) \<lparr>Z:=True\<rparr>]\<rangle>" |
|
44 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
32960
diff
changeset
|
45 |
definition Mul_Mutator :: "nat \<Rightarrow> nat \<Rightarrow> mul_gar_coll_state ann_com" where |
13020 | 46 |
"Mul_Mutator j n \<equiv> |
47 |
.{\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)}. |
|
48 |
WHILE True |
|
49 |
INV .{\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)}. |
|
50 |
DO Mul_Redirect_Edge j n ;; |
|
51 |
Mul_Color_Target j n |
|
52 |
OD" |
|
53 |
||
54 |
lemmas mul_mutator_defs = Mul_mut_init_def Mul_Redirect_Edge_def Mul_Color_Target_def |
|
55 |
||
56 |
subsubsection {* Correctness of the proof outline of one mutator *} |
|
57 |
||
58 |
lemma Mul_Redirect_Edge: "0\<le>j \<and> j<n \<Longrightarrow> |
|
59 |
\<turnstile> Mul_Redirect_Edge j n |
|
60 |
pre(Mul_Color_Target j n)" |
|
61 |
apply (unfold mul_mutator_defs) |
|
62 |
apply annhoare |
|
63 |
apply(simp_all) |
|
64 |
apply clarify |
|
65 |
apply(simp add:nth_list_update) |
|
66 |
done |
|
67 |
||
68 |
lemma Mul_Color_Target: "0\<le>j \<and> j<n \<Longrightarrow> |
|
69 |
\<turnstile> Mul_Color_Target j n |
|
70 |
.{\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)}." |
|
71 |
apply (unfold mul_mutator_defs) |
|
72 |
apply annhoare |
|
73 |
apply(simp_all) |
|
74 |
apply clarify |
|
75 |
apply(simp add:nth_list_update) |
|
76 |
done |
|
77 |
||
78 |
lemma Mul_Mutator: "0\<le>j \<and> j<n \<Longrightarrow> |
|
79 |
\<turnstile> Mul_Mutator j n .{False}." |
|
80 |
apply(unfold Mul_Mutator_def) |
|
81 |
apply annhoare |
|
82 |
apply(simp_all add:Mul_Redirect_Edge Mul_Color_Target) |
|
83 |
apply(simp add:mul_mutator_defs Mul_Redirect_Edge_def) |
|
84 |
done |
|
85 |
||
86 |
subsubsection {* Interference freedom between mutators *} |
|
87 |
||
88 |
lemma Mul_interfree_Redirect_Edge_Redirect_Edge: |
|
89 |
"\<lbrakk>0\<le>i; i<n; 0\<le>j; j<n; i\<noteq>j\<rbrakk> \<Longrightarrow> |
|
90 |
interfree_aux (Some (Mul_Redirect_Edge i n),{}, Some(Mul_Redirect_Edge j n))" |
|
91 |
apply (unfold mul_mutator_defs) |
|
92 |
apply interfree_aux |
|
93 |
apply safe |
|
94 |
apply(simp_all add: nth_list_update) |
|
95 |
done |
|
96 |
||
97 |
lemma Mul_interfree_Redirect_Edge_Color_Target: |
|
98 |
"\<lbrakk>0\<le>i; i<n; 0\<le>j; j<n; i\<noteq>j\<rbrakk> \<Longrightarrow> |
|
99 |
interfree_aux (Some(Mul_Redirect_Edge i n),{},Some(Mul_Color_Target j n))" |
|
100 |
apply (unfold mul_mutator_defs) |
|
101 |
apply interfree_aux |
|
102 |
apply safe |
|
103 |
apply(simp_all add: nth_list_update) |
|
104 |
done |
|
105 |
||
106 |
lemma Mul_interfree_Color_Target_Redirect_Edge: |
|
107 |
"\<lbrakk>0\<le>i; i<n; 0\<le>j; j<n; i\<noteq>j\<rbrakk> \<Longrightarrow> |
|
108 |
interfree_aux (Some(Mul_Color_Target i n),{},Some(Mul_Redirect_Edge j n))" |
|
109 |
apply (unfold mul_mutator_defs) |
|
110 |
apply interfree_aux |
|
111 |
apply safe |
|
112 |
apply(simp_all add:nth_list_update) |
|
113 |
done |
|
114 |
||
115 |
lemma Mul_interfree_Color_Target_Color_Target: |
|
116 |
" \<lbrakk>0\<le>i; i<n; 0\<le>j; j<n; i\<noteq>j\<rbrakk> \<Longrightarrow> |
|
117 |
interfree_aux (Some(Mul_Color_Target i n),{},Some(Mul_Color_Target j n))" |
|
118 |
apply (unfold mul_mutator_defs) |
|
119 |
apply interfree_aux |
|
120 |
apply safe |
|
121 |
apply(simp_all add: nth_list_update) |
|
122 |
done |
|
123 |
||
124 |
lemmas mul_mutator_interfree = |
|
125 |
Mul_interfree_Redirect_Edge_Redirect_Edge Mul_interfree_Redirect_Edge_Color_Target |
|
126 |
Mul_interfree_Color_Target_Redirect_Edge Mul_interfree_Color_Target_Color_Target |
|
127 |
||
128 |
lemma Mul_interfree_Mutator_Mutator: "\<lbrakk>i < n; j < n; i \<noteq> j\<rbrakk> \<Longrightarrow> |
|
129 |
interfree_aux (Some (Mul_Mutator i n), {}, Some (Mul_Mutator j n))" |
|
130 |
apply(unfold Mul_Mutator_def) |
|
131 |
apply(interfree_aux) |
|
132 |
apply(simp_all add:mul_mutator_interfree) |
|
133 |
apply(simp_all add: mul_mutator_defs) |
|
134 |
apply(tactic {* TRYALL (interfree_aux_tac) *}) |
|
42793 | 135 |
apply(tactic {* ALLGOALS (clarify_tac @{context}) *}) |
13020 | 136 |
apply (simp_all add:nth_list_update) |
137 |
done |
|
138 |
||
139 |
subsubsection {* Modular Parameterized Mutators *} |
|
140 |
||
141 |
lemma Mul_Parameterized_Mutators: "0<n \<Longrightarrow> |
|
142 |
\<parallel>- .{\<acute>Mul_mut_init n \<and> (\<forall>i<n. Z (\<acute>Muts!i))}. |
|
143 |
COBEGIN |
|
144 |
SCHEME [0\<le> j< n] |
|
145 |
Mul_Mutator j n |
|
146 |
.{False}. |
|
147 |
COEND |
|
148 |
.{False}." |
|
149 |
apply oghoare |
|
150 |
apply(force simp add:Mul_Mutator_def mul_mutator_defs nth_list_update) |
|
151 |
apply(erule Mul_Mutator) |
|
13187 | 152 |
apply(simp add:Mul_interfree_Mutator_Mutator) |
13020 | 153 |
apply(force simp add:Mul_Mutator_def mul_mutator_defs nth_list_update) |
154 |
done |
|
155 |
||
156 |
subsection {* The Collector *} |
|
157 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
32960
diff
changeset
|
158 |
definition Queue :: "mul_gar_coll_state \<Rightarrow> nat" where |
13020 | 159 |
"Queue \<equiv> \<guillemotleft> length (filter (\<lambda>i. \<not> Z i \<and> \<acute>M!(T i) \<noteq> Black) \<acute>Muts) \<guillemotright>" |
160 |
||
161 |
consts M_init :: nodes |
|
162 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
32960
diff
changeset
|
163 |
definition Proper_M_init :: "mul_gar_coll_state \<Rightarrow> bool" where |
13020 | 164 |
"Proper_M_init \<equiv> \<guillemotleft> Blacks M_init=Roots \<and> length M_init=length \<acute>M \<guillemotright>" |
165 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
32960
diff
changeset
|
166 |
definition Mul_Proper :: "mul_gar_coll_state \<Rightarrow> nat \<Rightarrow> bool" where |
13020 | 167 |
"Mul_Proper \<equiv> \<guillemotleft> \<lambda>n. Proper_Roots \<acute>M \<and> Proper_Edges (\<acute>M, \<acute>E) \<and> \<acute>Proper_M_init \<and> n=length \<acute>Muts \<guillemotright>" |
168 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
32960
diff
changeset
|
169 |
definition Safe :: "mul_gar_coll_state \<Rightarrow> bool" where |
13020 | 170 |
"Safe \<equiv> \<guillemotleft> Reach \<acute>E \<subseteq> Blacks \<acute>M \<guillemotright>" |
171 |
||
172 |
lemmas mul_collector_defs = Proper_M_init_def Mul_Proper_def Safe_def |
|
173 |
||
174 |
subsubsection {* Blackening Roots *} |
|
175 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
32960
diff
changeset
|
176 |
definition Mul_Blacken_Roots :: "nat \<Rightarrow> mul_gar_coll_state ann_com" where |
13020 | 177 |
"Mul_Blacken_Roots n \<equiv> |
178 |
.{\<acute>Mul_Proper n}. |
|
179 |
\<acute>ind:=0;; |
|
180 |
.{\<acute>Mul_Proper n \<and> \<acute>ind=0}. |
|
181 |
WHILE \<acute>ind<length \<acute>M |
|
182 |
INV .{\<acute>Mul_Proper n \<and> (\<forall>i<\<acute>ind. i\<in>Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind\<le>length \<acute>M}. |
|
183 |
DO .{\<acute>Mul_Proper n \<and> (\<forall>i<\<acute>ind. i\<in>Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind<length \<acute>M}. |
|
184 |
IF \<acute>ind\<in>Roots THEN |
|
185 |
.{\<acute>Mul_Proper n \<and> (\<forall>i<\<acute>ind. i\<in>Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind<length \<acute>M \<and> \<acute>ind\<in>Roots}. |
|
186 |
\<acute>M:=\<acute>M[\<acute>ind:=Black] FI;; |
|
187 |
.{\<acute>Mul_Proper n \<and> (\<forall>i<\<acute>ind+1. i\<in>Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind<length \<acute>M}. |
|
188 |
\<acute>ind:=\<acute>ind+1 |
|
189 |
OD" |
|
190 |
||
191 |
lemma Mul_Blacken_Roots: |
|
192 |
"\<turnstile> Mul_Blacken_Roots n |
|
193 |
.{\<acute>Mul_Proper n \<and> Roots \<subseteq> Blacks \<acute>M}." |
|
194 |
apply (unfold Mul_Blacken_Roots_def) |
|
195 |
apply annhoare |
|
196 |
apply(simp_all add:mul_collector_defs Graph_defs) |
|
197 |
apply safe |
|
198 |
apply(simp_all add:nth_list_update) |
|
199 |
apply (erule less_SucE) |
|
200 |
apply simp+ |
|
201 |
apply force |
|
202 |
apply force |
|
203 |
done |
|
204 |
||
205 |
subsubsection {* Propagating Black *} |
|
206 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
32960
diff
changeset
|
207 |
definition Mul_PBInv :: "mul_gar_coll_state \<Rightarrow> bool" where |
13020 | 208 |
"Mul_PBInv \<equiv> \<guillemotleft>\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue |
209 |
\<or> (\<forall>i<\<acute>ind. \<not>BtoW(\<acute>E!i,\<acute>M)) \<and> \<acute>l\<le>\<acute>Queue\<guillemotright>" |
|
210 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
32960
diff
changeset
|
211 |
definition Mul_Auxk :: "mul_gar_coll_state \<Rightarrow> bool" where |
13020 | 212 |
"Mul_Auxk \<equiv> \<guillemotleft>\<acute>l<\<acute>Queue \<or> \<acute>M!\<acute>k\<noteq>Black \<or> \<not>BtoW(\<acute>E!\<acute>ind, \<acute>M) \<or> \<acute>obc\<subset>Blacks \<acute>M\<guillemotright>" |
213 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
32960
diff
changeset
|
214 |
definition Mul_Propagate_Black :: "nat \<Rightarrow> mul_gar_coll_state ann_com" where |
13020 | 215 |
"Mul_Propagate_Black n \<equiv> |
216 |
.{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M |
|
217 |
\<and> (\<acute>Safe \<or> \<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)}. |
|
218 |
\<acute>ind:=0;; |
|
219 |
.{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M |
|
220 |
\<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> Blacks \<acute>M\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M |
|
221 |
\<and> (\<acute>Safe \<or> \<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M) \<and> \<acute>ind=0}. |
|
222 |
WHILE \<acute>ind<length \<acute>E |
|
223 |
INV .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M |
|
224 |
\<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M |
|
225 |
\<and> \<acute>Mul_PBInv \<and> \<acute>ind\<le>length \<acute>E}. |
|
226 |
DO .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M |
|
227 |
\<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M |
|
228 |
\<and> \<acute>Mul_PBInv \<and> \<acute>ind<length \<acute>E}. |
|
229 |
IF \<acute>M!(fst (\<acute>E!\<acute>ind))=Black THEN |
|
230 |
.{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M |
|
231 |
\<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M |
|
232 |
\<and> \<acute>Mul_PBInv \<and> (\<acute>M!fst(\<acute>E!\<acute>ind))=Black \<and> \<acute>ind<length \<acute>E}. |
|
233 |
\<acute>k:=snd(\<acute>E!\<acute>ind);; |
|
234 |
.{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M |
|
235 |
\<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M |
|
236 |
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue \<or> (\<forall>i<\<acute>ind. \<not>BtoW(\<acute>E!i,\<acute>M)) |
|
237 |
\<and> \<acute>l\<le>\<acute>Queue \<and> \<acute>Mul_Auxk ) \<and> \<acute>k<length \<acute>M \<and> \<acute>M!fst(\<acute>E!\<acute>ind)=Black |
|
238 |
\<and> \<acute>ind<length \<acute>E}. |
|
239 |
\<langle>\<acute>M:=\<acute>M[\<acute>k:=Black],,\<acute>ind:=\<acute>ind+1\<rangle> |
|
240 |
ELSE .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M |
|
241 |
\<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M |
|
242 |
\<and> \<acute>Mul_PBInv \<and> \<acute>ind<length \<acute>E}. |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32687
diff
changeset
|
243 |
\<langle>IF \<acute>M!(fst (\<acute>E!\<acute>ind))\<noteq>Black THEN \<acute>ind:=\<acute>ind+1 FI\<rangle> FI |
13020 | 244 |
OD" |
245 |
||
246 |
lemma Mul_Propagate_Black: |
|
247 |
"\<turnstile> Mul_Propagate_Black n |
|
248 |
.{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M |
|
249 |
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue \<and> (\<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))}." |
|
250 |
apply(unfold Mul_Propagate_Black_def) |
|
251 |
apply annhoare |
|
252 |
apply(simp_all add:Mul_PBInv_def mul_collector_defs Mul_Auxk_def Graph6 Graph7 Graph8 Graph12 mul_collector_defs Queue_def) |
|
253 |
--{* 8 subgoals left *} |
|
254 |
apply force |
|
255 |
apply force |
|
256 |
apply force |
|
257 |
apply(force simp add:BtoW_def Graph_defs) |
|
258 |
--{* 4 subgoals left *} |
|
259 |
apply clarify |
|
260 |
apply(simp add: mul_collector_defs Graph12 Graph6 Graph7 Graph8) |
|
261 |
apply(disjE_tac) |
|
262 |
apply(simp_all add:Graph12 Graph13) |
|
263 |
apply(case_tac "M x! k x=Black") |
|
264 |
apply(simp add: Graph10) |
|
265 |
apply(rule disjI2, rule disjI1, erule subset_psubset_trans, erule Graph11, force) |
|
266 |
apply(case_tac "M x! k x=Black") |
|
267 |
apply(simp add: Graph10 BtoW_def) |
|
268 |
apply(rule disjI2, clarify, erule less_SucE, force) |
|
269 |
apply(case_tac "M x!snd(E x! ind x)=Black") |
|
270 |
apply(force) |
|
271 |
apply(force) |
|
272 |
apply(rule disjI2, rule disjI1, erule subset_psubset_trans, erule Graph11, force) |
|
273 |
--{* 2 subgoals left *} |
|
274 |
apply clarify |
|
275 |
apply(conjI_tac) |
|
276 |
apply(disjE_tac) |
|
277 |
apply (simp_all) |
|
278 |
apply clarify |
|
279 |
apply(erule less_SucE) |
|
280 |
apply force |
|
281 |
apply (simp add:BtoW_def) |
|
13022
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
prensani
parents:
13020
diff
changeset
|
282 |
--{* 1 subgoal left *} |
13020 | 283 |
apply clarify |
284 |
apply simp |
|
285 |
apply(disjE_tac) |
|
286 |
apply (simp_all) |
|
287 |
apply(rule disjI1 , rule Graph1) |
|
288 |
apply simp_all |
|
289 |
done |
|
290 |
||
291 |
subsubsection {* Counting Black Nodes *} |
|
292 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
32960
diff
changeset
|
293 |
definition Mul_CountInv :: "mul_gar_coll_state \<Rightarrow> nat \<Rightarrow> bool" where |
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
32960
diff
changeset
|
294 |
"Mul_CountInv \<equiv> \<guillemotleft> \<lambda>ind. {i. i<ind \<and> \<acute>Ma!i=Black}\<subseteq>\<acute>bc \<guillemotright>" |
13020 | 295 |
|
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
32960
diff
changeset
|
296 |
definition Mul_Count :: "nat \<Rightarrow> mul_gar_coll_state ann_com" where |
13020 | 297 |
"Mul_Count n \<equiv> |
298 |
.{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M |
|
299 |
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M |
|
300 |
\<and> length \<acute>Ma=length \<acute>M |
|
301 |
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M) ) |
|
302 |
\<and> \<acute>q<n+1 \<and> \<acute>bc={}}. |
|
303 |
\<acute>ind:=0;; |
|
304 |
.{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M |
|
305 |
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M |
|
306 |
\<and> length \<acute>Ma=length \<acute>M |
|
307 |
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M) ) |
|
308 |
\<and> \<acute>q<n+1 \<and> \<acute>bc={} \<and> \<acute>ind=0}. |
|
309 |
WHILE \<acute>ind<length \<acute>M |
|
310 |
INV .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M |
|
311 |
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M |
|
312 |
\<and> length \<acute>Ma=length \<acute>M \<and> \<acute>Mul_CountInv \<acute>ind |
|
313 |
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32687
diff
changeset
|
314 |
\<and> \<acute>q<n+1 \<and> \<acute>ind\<le>length \<acute>M}. |
13020 | 315 |
DO .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M |
316 |
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M |
|
317 |
\<and> length \<acute>Ma=length \<acute>M \<and> \<acute>Mul_CountInv \<acute>ind |
|
318 |
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) |
|
319 |
\<and> \<acute>q<n+1 \<and> \<acute>ind<length \<acute>M}. |
|
320 |
IF \<acute>M!\<acute>ind=Black |
|
321 |
THEN .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M |
|
322 |
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M |
|
323 |
\<and> length \<acute>Ma=length \<acute>M \<and> \<acute>Mul_CountInv \<acute>ind |
|
324 |
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) |
|
325 |
\<and> \<acute>q<n+1 \<and> \<acute>ind<length \<acute>M \<and> \<acute>M!\<acute>ind=Black}. |
|
326 |
\<acute>bc:=insert \<acute>ind \<acute>bc |
|
327 |
FI;; |
|
328 |
.{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M |
|
329 |
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M |
|
330 |
\<and> length \<acute>Ma=length \<acute>M \<and> \<acute>Mul_CountInv (\<acute>ind+1) |
|
331 |
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) |
|
332 |
\<and> \<acute>q<n+1 \<and> \<acute>ind<length \<acute>M}. |
|
333 |
\<acute>ind:=\<acute>ind+1 |
|
334 |
OD" |
|
335 |
||
336 |
lemma Mul_Count: |
|
337 |
"\<turnstile> Mul_Count n |
|
338 |
.{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M |
|
339 |
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M |
|
340 |
\<and> length \<acute>Ma=length \<acute>M \<and> Blacks \<acute>Ma\<subseteq>\<acute>bc |
|
341 |
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) |
|
342 |
\<and> \<acute>q<n+1}." |
|
343 |
apply (unfold Mul_Count_def) |
|
344 |
apply annhoare |
|
345 |
apply(simp_all add:Mul_CountInv_def mul_collector_defs Mul_Auxk_def Graph6 Graph7 Graph8 Graph12 mul_collector_defs Queue_def) |
|
346 |
--{* 7 subgoals left *} |
|
347 |
apply force |
|
348 |
apply force |
|
349 |
apply force |
|
350 |
--{* 4 subgoals left *} |
|
351 |
apply clarify |
|
352 |
apply(conjI_tac) |
|
353 |
apply(disjE_tac) |
|
354 |
apply simp_all |
|
355 |
apply(simp add:Blacks_def) |
|
356 |
apply clarify |
|
357 |
apply(erule less_SucE) |
|
358 |
back |
|
359 |
apply force |
|
360 |
apply force |
|
361 |
--{* 3 subgoals left *} |
|
362 |
apply clarify |
|
363 |
apply(conjI_tac) |
|
364 |
apply(disjE_tac) |
|
365 |
apply simp_all |
|
366 |
apply clarify |
|
367 |
apply(erule less_SucE) |
|
368 |
back |
|
369 |
apply force |
|
370 |
apply simp |
|
371 |
apply(rotate_tac -1) |
|
372 |
apply (force simp add:Blacks_def) |
|
373 |
--{* 2 subgoals left *} |
|
374 |
apply force |
|
13022
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
prensani
parents:
13020
diff
changeset
|
375 |
--{* 1 subgoal left *} |
13020 | 376 |
apply clarify |
26316
9e9e67e33557
removed redundant less_trans, less_linear, le_imp_less_or_eq, le_less_trans, less_le_trans (cf. Orderings.thy);
wenzelm
parents:
24742
diff
changeset
|
377 |
apply(drule_tac x = "ind x" in le_imp_less_or_eq) |
13020 | 378 |
apply (simp_all add:Blacks_def) |
379 |
done |
|
380 |
||
381 |
subsubsection {* Appending garbage nodes to the free list *} |
|
382 |
||
383 |
consts Append_to_free :: "nat \<times> edges \<Rightarrow> edges" |
|
384 |
||
385 |
axioms |
|
386 |
Append_to_free0: "length (Append_to_free (i, e)) = length e" |
|
387 |
Append_to_free1: "Proper_Edges (m, e) |
|
388 |
\<Longrightarrow> Proper_Edges (m, Append_to_free(i, e))" |
|
389 |
Append_to_free2: "i \<notin> Reach e |
|
390 |
\<Longrightarrow> n \<in> Reach (Append_to_free(i, e)) = ( n = i \<or> n \<in> Reach e)" |
|
391 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
32960
diff
changeset
|
392 |
definition Mul_AppendInv :: "mul_gar_coll_state \<Rightarrow> nat \<Rightarrow> bool" where |
13020 | 393 |
"Mul_AppendInv \<equiv> \<guillemotleft> \<lambda>ind. (\<forall>i. ind\<le>i \<longrightarrow> i<length \<acute>M \<longrightarrow> i\<in>Reach \<acute>E \<longrightarrow> \<acute>M!i=Black)\<guillemotright>" |
394 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
32960
diff
changeset
|
395 |
definition Mul_Append :: "nat \<Rightarrow> mul_gar_coll_state ann_com" where |
13020 | 396 |
"Mul_Append n \<equiv> |
397 |
.{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>Safe}. |
|
398 |
\<acute>ind:=0;; |
|
399 |
.{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>Safe \<and> \<acute>ind=0}. |
|
400 |
WHILE \<acute>ind<length \<acute>M |
|
401 |
INV .{\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv \<acute>ind \<and> \<acute>ind\<le>length \<acute>M}. |
|
402 |
DO .{\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv \<acute>ind \<and> \<acute>ind<length \<acute>M}. |
|
403 |
IF \<acute>M!\<acute>ind=Black THEN |
|
404 |
.{\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv \<acute>ind \<and> \<acute>ind<length \<acute>M \<and> \<acute>M!\<acute>ind=Black}. |
|
405 |
\<acute>M:=\<acute>M[\<acute>ind:=White] |
|
406 |
ELSE |
|
407 |
.{\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv \<acute>ind \<and> \<acute>ind<length \<acute>M \<and> \<acute>ind\<notin>Reach \<acute>E}. |
|
408 |
\<acute>E:=Append_to_free(\<acute>ind,\<acute>E) |
|
409 |
FI;; |
|
410 |
.{\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv (\<acute>ind+1) \<and> \<acute>ind<length \<acute>M}. |
|
411 |
\<acute>ind:=\<acute>ind+1 |
|
412 |
OD" |
|
413 |
||
414 |
lemma Mul_Append: |
|
415 |
"\<turnstile> Mul_Append n |
|
416 |
.{\<acute>Mul_Proper n}." |
|
417 |
apply(unfold Mul_Append_def) |
|
418 |
apply annhoare |
|
419 |
apply(simp_all add: mul_collector_defs Mul_AppendInv_def |
|
420 |
Graph6 Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12) |
|
421 |
apply(force simp add:Blacks_def) |
|
422 |
apply(force simp add:Blacks_def) |
|
423 |
apply(force simp add:Blacks_def) |
|
424 |
apply(force simp add:Graph_defs) |
|
425 |
apply force |
|
426 |
apply(force simp add:Append_to_free1 Append_to_free2) |
|
427 |
apply force |
|
428 |
apply force |
|
429 |
done |
|
430 |
||
431 |
subsubsection {* Collector *} |
|
432 |
||
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
32960
diff
changeset
|
433 |
definition Mul_Collector :: "nat \<Rightarrow> mul_gar_coll_state ann_com" where |
13020 | 434 |
"Mul_Collector n \<equiv> |
435 |
.{\<acute>Mul_Proper n}. |
|
436 |
WHILE True INV .{\<acute>Mul_Proper n}. |
|
437 |
DO |
|
438 |
Mul_Blacken_Roots n ;; |
|
439 |
.{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M}. |
|
440 |
\<acute>obc:={};; |
|
441 |
.{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc={}}. |
|
442 |
\<acute>bc:=Roots;; |
|
443 |
.{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc={} \<and> \<acute>bc=Roots}. |
|
444 |
\<acute>l:=0;; |
|
445 |
.{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc={} \<and> \<acute>bc=Roots \<and> \<acute>l=0}. |
|
446 |
WHILE \<acute>l<n+1 |
|
447 |
INV .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M \<and> |
|
448 |
(\<acute>Safe \<or> (\<acute>l\<le>\<acute>Queue \<or> \<acute>bc\<subset>Blacks \<acute>M) \<and> \<acute>l<n+1)}. |
|
449 |
DO .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M |
|
450 |
\<and> (\<acute>Safe \<or> \<acute>l\<le>\<acute>Queue \<or> \<acute>bc\<subset>Blacks \<acute>M)}. |
|
451 |
\<acute>obc:=\<acute>bc;; |
|
452 |
Mul_Propagate_Black n;; |
|
453 |
.{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M |
|
454 |
\<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M |
|
455 |
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue |
|
456 |
\<and> (\<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))}. |
|
457 |
\<acute>bc:={};; |
|
458 |
.{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M |
|
459 |
\<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M |
|
460 |
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue |
|
461 |
\<and> (\<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) \<and> \<acute>bc={}}. |
|
462 |
\<langle> \<acute>Ma:=\<acute>M,, \<acute>q:=\<acute>Queue \<rangle>;; |
|
463 |
Mul_Count n;; |
|
464 |
.{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M |
|
465 |
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M |
|
466 |
\<and> length \<acute>Ma=length \<acute>M \<and> Blacks \<acute>Ma\<subseteq>\<acute>bc |
|
467 |
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) |
|
468 |
\<and> \<acute>q<n+1}. |
|
469 |
IF \<acute>obc=\<acute>bc THEN |
|
470 |
.{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M |
|
471 |
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M |
|
472 |
\<and> length \<acute>Ma=length \<acute>M \<and> Blacks \<acute>Ma\<subseteq>\<acute>bc |
|
473 |
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) |
|
474 |
\<and> \<acute>q<n+1 \<and> \<acute>obc=\<acute>bc}. |
|
475 |
\<acute>l:=\<acute>l+1 |
|
476 |
ELSE .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M |
|
477 |
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M |
|
478 |
\<and> length \<acute>Ma=length \<acute>M \<and> Blacks \<acute>Ma\<subseteq>\<acute>bc |
|
479 |
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) |
|
480 |
\<and> \<acute>q<n+1 \<and> \<acute>obc\<noteq>\<acute>bc}. |
|
481 |
\<acute>l:=0 FI |
|
482 |
OD;; |
|
483 |
Mul_Append n |
|
484 |
OD" |
|
485 |
||
486 |
lemmas mul_modules = Mul_Redirect_Edge_def Mul_Color_Target_def |
|
487 |
Mul_Blacken_Roots_def Mul_Propagate_Black_def |
|
488 |
Mul_Count_def Mul_Append_def |
|
489 |
||
490 |
lemma Mul_Collector: |
|
491 |
"\<turnstile> Mul_Collector n |
|
492 |
.{False}." |
|
493 |
apply(unfold Mul_Collector_def) |
|
494 |
apply annhoare |
|
495 |
apply(simp_all only:pre.simps Mul_Blacken_Roots |
|
496 |
Mul_Propagate_Black Mul_Count Mul_Append) |
|
497 |
apply(simp_all add:mul_modules) |
|
498 |
apply(simp_all add:mul_collector_defs Queue_def) |
|
499 |
apply force |
|
500 |
apply force |
|
501 |
apply force |
|
15247 | 502 |
apply (force simp add: less_Suc_eq_le) |
13020 | 503 |
apply force |
504 |
apply (force dest:subset_antisym) |
|
505 |
apply force |
|
506 |
apply force |
|
507 |
apply force |
|
508 |
done |
|
509 |
||
510 |
subsection {* Interference Freedom *} |
|
511 |
||
512 |
lemma le_length_filter_update[rule_format]: |
|
513 |
"\<forall>i. (\<not>P (list!i) \<or> P j) \<and> i<length list |
|
514 |
\<longrightarrow> length(filter P list) \<le> length(filter P (list[i:=j]))" |
|
515 |
apply(induct_tac "list") |
|
516 |
apply(simp) |
|
517 |
apply(clarify) |
|
518 |
apply(case_tac i) |
|
519 |
apply(simp) |
|
520 |
apply(simp) |
|
521 |
done |
|
522 |
||
523 |
lemma less_length_filter_update [rule_format]: |
|
524 |
"\<forall>i. P j \<and> \<not>(P (list!i)) \<and> i<length list |
|
525 |
\<longrightarrow> length(filter P list) < length(filter P (list[i:=j]))" |
|
526 |
apply(induct_tac "list") |
|
527 |
apply(simp) |
|
528 |
apply(clarify) |
|
529 |
apply(case_tac i) |
|
530 |
apply(simp) |
|
531 |
apply(simp) |
|
532 |
done |
|
533 |
||
534 |
lemma Mul_interfree_Blacken_Roots_Redirect_Edge: "\<lbrakk>0\<le>j; j<n\<rbrakk> \<Longrightarrow> |
|
535 |
interfree_aux (Some(Mul_Blacken_Roots n),{},Some(Mul_Redirect_Edge j n))" |
|
536 |
apply (unfold mul_modules) |
|
537 |
apply interfree_aux |
|
538 |
apply safe |
|
539 |
apply(simp_all add:Graph6 Graph9 Graph12 nth_list_update mul_mutator_defs mul_collector_defs) |
|
540 |
done |
|
541 |
||
542 |
lemma Mul_interfree_Redirect_Edge_Blacken_Roots: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> |
|
543 |
interfree_aux (Some(Mul_Redirect_Edge j n ),{},Some (Mul_Blacken_Roots n))" |
|
544 |
apply (unfold mul_modules) |
|
545 |
apply interfree_aux |
|
546 |
apply safe |
|
547 |
apply(simp_all add:mul_mutator_defs nth_list_update) |
|
548 |
done |
|
549 |
||
550 |
lemma Mul_interfree_Blacken_Roots_Color_Target: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> |
|
551 |
interfree_aux (Some(Mul_Blacken_Roots n),{},Some (Mul_Color_Target j n ))" |
|
552 |
apply (unfold mul_modules) |
|
553 |
apply interfree_aux |
|
554 |
apply safe |
|
555 |
apply(simp_all add:mul_mutator_defs mul_collector_defs nth_list_update Graph7 Graph8 Graph9 Graph12) |
|
556 |
done |
|
557 |
||
558 |
lemma Mul_interfree_Color_Target_Blacken_Roots: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> |
|
559 |
interfree_aux (Some(Mul_Color_Target j n ),{},Some (Mul_Blacken_Roots n ))" |
|
560 |
apply (unfold mul_modules) |
|
561 |
apply interfree_aux |
|
562 |
apply safe |
|
563 |
apply(simp_all add:mul_mutator_defs nth_list_update) |
|
564 |
done |
|
565 |
||
566 |
lemma Mul_interfree_Propagate_Black_Redirect_Edge: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> |
|
567 |
interfree_aux (Some(Mul_Propagate_Black n),{},Some (Mul_Redirect_Edge j n ))" |
|
568 |
apply (unfold mul_modules) |
|
569 |
apply interfree_aux |
|
570 |
apply(simp_all add:mul_mutator_defs mul_collector_defs Mul_PBInv_def nth_list_update Graph6) |
|
571 |
--{* 7 subgoals left *} |
|
572 |
apply clarify |
|
573 |
apply(disjE_tac) |
|
574 |
apply(simp_all add:Graph6) |
|
575 |
apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) |
|
576 |
apply(rule conjI) |
|
577 |
apply(rule impI,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
578 |
apply(rule impI,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
579 |
--{* 6 subgoals left *} |
|
580 |
apply clarify |
|
581 |
apply(disjE_tac) |
|
582 |
apply(simp_all add:Graph6) |
|
583 |
apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) |
|
584 |
apply(rule conjI) |
|
585 |
apply(rule impI,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
586 |
apply(rule impI,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
587 |
--{* 5 subgoals left *} |
|
588 |
apply clarify |
|
589 |
apply(disjE_tac) |
|
590 |
apply(simp_all add:Graph6) |
|
591 |
apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) |
|
592 |
apply(rule conjI) |
|
593 |
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
594 |
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
595 |
apply(erule conjE) |
|
596 |
apply(case_tac "M x!(T (Muts x!j))=Black") |
|
597 |
apply(rule conjI) |
|
598 |
apply(rule impI,(rule disjI2)+,rule conjI) |
|
599 |
apply clarify |
|
600 |
apply(case_tac "R (Muts x! j)=i") |
|
601 |
apply (force simp add: nth_list_update BtoW_def) |
|
602 |
apply (force simp add: nth_list_update) |
|
603 |
apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
604 |
apply(rule impI,(rule disjI2)+, erule le_trans) |
|
605 |
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
606 |
apply(rule conjI) |
|
607 |
apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans) |
|
608 |
apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update) |
|
609 |
apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans) |
|
610 |
apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update) |
|
611 |
--{* 4 subgoals left *} |
|
612 |
apply clarify |
|
613 |
apply(disjE_tac) |
|
614 |
apply(simp_all add:Graph6) |
|
615 |
apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) |
|
616 |
apply(rule conjI) |
|
617 |
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
618 |
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
619 |
apply(erule conjE) |
|
620 |
apply(case_tac "M x!(T (Muts x!j))=Black") |
|
621 |
apply(rule conjI) |
|
622 |
apply(rule impI,(rule disjI2)+,rule conjI) |
|
623 |
apply clarify |
|
624 |
apply(case_tac "R (Muts x! j)=i") |
|
625 |
apply (force simp add: nth_list_update BtoW_def) |
|
626 |
apply (force simp add: nth_list_update) |
|
627 |
apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
628 |
apply(rule impI,(rule disjI2)+, erule le_trans) |
|
629 |
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
630 |
apply(rule conjI) |
|
631 |
apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans) |
|
632 |
apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update) |
|
633 |
apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans) |
|
634 |
apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update) |
|
635 |
--{* 3 subgoals left *} |
|
636 |
apply clarify |
|
637 |
apply(disjE_tac) |
|
638 |
apply(simp_all add:Graph6) |
|
639 |
apply (rule impI) |
|
640 |
apply(rule conjI) |
|
641 |
apply(rule disjI1,rule subset_trans,erule Graph3,simp,simp) |
|
642 |
apply(case_tac "R (Muts x ! j)= ind x") |
|
643 |
apply(simp add:nth_list_update) |
|
644 |
apply(simp add:nth_list_update) |
|
645 |
apply(case_tac "R (Muts x ! j)= ind x") |
|
646 |
apply(simp add:nth_list_update) |
|
647 |
apply(simp add:nth_list_update) |
|
648 |
apply(case_tac "M x!(T (Muts x!j))=Black") |
|
649 |
apply(rule conjI) |
|
650 |
apply(rule impI) |
|
651 |
apply(rule conjI) |
|
652 |
apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) |
|
653 |
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
654 |
apply(case_tac "R (Muts x ! j)= ind x") |
|
655 |
apply(simp add:nth_list_update) |
|
656 |
apply(simp add:nth_list_update) |
|
657 |
apply(rule impI) |
|
658 |
apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) |
|
659 |
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
660 |
apply(rule conjI) |
|
661 |
apply(rule impI) |
|
662 |
apply(rule conjI) |
|
663 |
apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) |
|
664 |
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
665 |
apply(case_tac "R (Muts x ! j)= ind x") |
|
666 |
apply(simp add:nth_list_update) |
|
667 |
apply(simp add:nth_list_update) |
|
668 |
apply(rule impI) |
|
669 |
apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) |
|
670 |
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
671 |
apply(erule conjE) |
|
672 |
apply(rule conjI) |
|
673 |
apply(case_tac "M x!(T (Muts x!j))=Black") |
|
674 |
apply(rule impI,rule conjI,(rule disjI2)+,rule conjI) |
|
675 |
apply clarify |
|
676 |
apply(case_tac "R (Muts x! j)=i") |
|
677 |
apply (force simp add: nth_list_update BtoW_def) |
|
678 |
apply (force simp add: nth_list_update) |
|
679 |
apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
680 |
apply(case_tac "R (Muts x ! j)= ind x") |
|
681 |
apply(simp add:nth_list_update) |
|
682 |
apply(simp add:nth_list_update) |
|
683 |
apply(rule impI,rule conjI) |
|
684 |
apply(rule disjI2,rule disjI2,rule disjI1, erule le_less_trans) |
|
685 |
apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update) |
|
686 |
apply(case_tac "R (Muts x! j)=ind x") |
|
687 |
apply (force simp add: nth_list_update) |
|
688 |
apply (force simp add: nth_list_update) |
|
689 |
apply(rule impI, (rule disjI2)+, erule le_trans) |
|
690 |
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
691 |
--{* 2 subgoals left *} |
|
692 |
apply clarify |
|
693 |
apply(rule conjI) |
|
694 |
apply(disjE_tac) |
|
695 |
apply(simp_all add:Mul_Auxk_def Graph6) |
|
696 |
apply (rule impI) |
|
697 |
apply(rule conjI) |
|
698 |
apply(rule disjI1,rule subset_trans,erule Graph3,simp,simp) |
|
699 |
apply(case_tac "R (Muts x ! j)= ind x") |
|
700 |
apply(simp add:nth_list_update) |
|
701 |
apply(simp add:nth_list_update) |
|
702 |
apply(case_tac "R (Muts x ! j)= ind x") |
|
703 |
apply(simp add:nth_list_update) |
|
704 |
apply(simp add:nth_list_update) |
|
705 |
apply(case_tac "M x!(T (Muts x!j))=Black") |
|
706 |
apply(rule impI) |
|
707 |
apply(rule conjI) |
|
708 |
apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) |
|
709 |
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
710 |
apply(case_tac "R (Muts x ! j)= ind x") |
|
711 |
apply(simp add:nth_list_update) |
|
712 |
apply(simp add:nth_list_update) |
|
713 |
apply(rule impI) |
|
714 |
apply(rule conjI) |
|
715 |
apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) |
|
716 |
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
717 |
apply(case_tac "R (Muts x ! j)= ind x") |
|
718 |
apply(simp add:nth_list_update) |
|
719 |
apply(simp add:nth_list_update) |
|
720 |
apply(rule impI) |
|
721 |
apply(rule conjI) |
|
722 |
apply(erule conjE)+ |
|
723 |
apply(case_tac "M x!(T (Muts x!j))=Black") |
|
724 |
apply((rule disjI2)+,rule conjI) |
|
725 |
apply clarify |
|
726 |
apply(case_tac "R (Muts x! j)=i") |
|
727 |
apply (force simp add: nth_list_update BtoW_def) |
|
728 |
apply (force simp add: nth_list_update) |
|
729 |
apply(rule conjI) |
|
730 |
apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
731 |
apply(rule impI) |
|
732 |
apply(case_tac "R (Muts x ! j)= ind x") |
|
733 |
apply(simp add:nth_list_update BtoW_def) |
|
734 |
apply (simp add:nth_list_update) |
|
735 |
apply(rule impI) |
|
736 |
apply simp |
|
737 |
apply(disjE_tac) |
|
738 |
apply(rule disjI1, erule less_le_trans) |
|
739 |
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
740 |
apply force |
|
741 |
apply(rule disjI2,rule disjI2,rule disjI1, erule le_less_trans) |
|
742 |
apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update) |
|
743 |
apply(case_tac "R (Muts x ! j)= ind x") |
|
744 |
apply(simp add:nth_list_update) |
|
745 |
apply(simp add:nth_list_update) |
|
746 |
apply(disjE_tac) |
|
747 |
apply simp_all |
|
748 |
apply(conjI_tac) |
|
749 |
apply(rule impI) |
|
750 |
apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) |
|
751 |
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
752 |
apply(erule conjE)+ |
|
753 |
apply(rule impI,(rule disjI2)+,rule conjI) |
|
754 |
apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
755 |
apply(rule impI)+ |
|
756 |
apply simp |
|
757 |
apply(disjE_tac) |
|
758 |
apply(rule disjI1, erule less_le_trans) |
|
759 |
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
760 |
apply force |
|
13022
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
prensani
parents:
13020
diff
changeset
|
761 |
--{* 1 subgoal left *} |
13020 | 762 |
apply clarify |
763 |
apply(disjE_tac) |
|
764 |
apply(simp_all add:Graph6) |
|
765 |
apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) |
|
766 |
apply(rule conjI) |
|
767 |
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
768 |
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
769 |
apply(erule conjE) |
|
770 |
apply(case_tac "M x!(T (Muts x!j))=Black") |
|
771 |
apply(rule conjI) |
|
772 |
apply(rule impI,(rule disjI2)+,rule conjI) |
|
773 |
apply clarify |
|
774 |
apply(case_tac "R (Muts x! j)=i") |
|
775 |
apply (force simp add: nth_list_update BtoW_def) |
|
776 |
apply (force simp add: nth_list_update) |
|
777 |
apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
778 |
apply(rule impI,(rule disjI2)+, erule le_trans) |
|
779 |
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
780 |
apply(rule conjI) |
|
781 |
apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans) |
|
782 |
apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update) |
|
783 |
apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans) |
|
784 |
apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update) |
|
785 |
done |
|
786 |
||
787 |
lemma Mul_interfree_Redirect_Edge_Propagate_Black: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> |
|
788 |
interfree_aux (Some(Mul_Redirect_Edge j n ),{},Some (Mul_Propagate_Black n))" |
|
789 |
apply (unfold mul_modules) |
|
790 |
apply interfree_aux |
|
791 |
apply safe |
|
792 |
apply(simp_all add:mul_mutator_defs nth_list_update) |
|
793 |
done |
|
794 |
||
795 |
lemma Mul_interfree_Propagate_Black_Color_Target: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> |
|
796 |
interfree_aux (Some(Mul_Propagate_Black n),{},Some (Mul_Color_Target j n ))" |
|
797 |
apply (unfold mul_modules) |
|
798 |
apply interfree_aux |
|
799 |
apply(simp_all add: mul_collector_defs mul_mutator_defs) |
|
800 |
--{* 7 subgoals left *} |
|
801 |
apply clarify |
|
802 |
apply (simp add:Graph7 Graph8 Graph12) |
|
803 |
apply(disjE_tac) |
|
804 |
apply(simp add:Graph7 Graph8 Graph12) |
|
805 |
apply(case_tac "M x!(T (Muts x!j))=Black") |
|
806 |
apply(rule disjI2,rule disjI1, erule le_trans) |
|
807 |
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) |
|
808 |
apply((rule disjI2)+,erule subset_psubset_trans, erule Graph11, simp) |
|
809 |
apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9) |
|
810 |
--{* 6 subgoals left *} |
|
811 |
apply clarify |
|
812 |
apply (simp add:Graph7 Graph8 Graph12) |
|
813 |
apply(disjE_tac) |
|
814 |
apply(simp add:Graph7 Graph8 Graph12) |
|
815 |
apply(case_tac "M x!(T (Muts x!j))=Black") |
|
816 |
apply(rule disjI2,rule disjI1, erule le_trans) |
|
817 |
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) |
|
818 |
apply((rule disjI2)+,erule subset_psubset_trans, erule Graph11, simp) |
|
819 |
apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9) |
|
820 |
--{* 5 subgoals left *} |
|
821 |
apply clarify |
|
822 |
apply (simp add:mul_collector_defs Mul_PBInv_def Graph7 Graph8 Graph12) |
|
823 |
apply(disjE_tac) |
|
824 |
apply(simp add:Graph7 Graph8 Graph12) |
|
825 |
apply(rule disjI2,rule disjI1, erule psubset_subset_trans,simp add:Graph9) |
|
826 |
apply(case_tac "M x!(T (Muts x!j))=Black") |
|
827 |
apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) |
|
828 |
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) |
|
829 |
apply(rule disjI2,rule disjI1,erule subset_psubset_trans, erule Graph11, simp) |
|
830 |
apply(erule conjE) |
|
831 |
apply(case_tac "M x!(T (Muts x!j))=Black") |
|
832 |
apply((rule disjI2)+) |
|
833 |
apply (rule conjI) |
|
834 |
apply(simp add:Graph10) |
|
835 |
apply(erule le_trans) |
|
836 |
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) |
|
837 |
apply(rule disjI2,rule disjI1,erule subset_psubset_trans, erule Graph11, simp) |
|
838 |
--{* 4 subgoals left *} |
|
839 |
apply clarify |
|
840 |
apply (simp add:mul_collector_defs Mul_PBInv_def Graph7 Graph8 Graph12) |
|
841 |
apply(disjE_tac) |
|
842 |
apply(simp add:Graph7 Graph8 Graph12) |
|
843 |
apply(rule disjI2,rule disjI1, erule psubset_subset_trans,simp add:Graph9) |
|
844 |
apply(case_tac "M x!(T (Muts x!j))=Black") |
|
845 |
apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) |
|
846 |
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) |
|
847 |
apply(rule disjI2,rule disjI1,erule subset_psubset_trans, erule Graph11, simp) |
|
848 |
apply(erule conjE) |
|
849 |
apply(case_tac "M x!(T (Muts x!j))=Black") |
|
850 |
apply((rule disjI2)+) |
|
851 |
apply (rule conjI) |
|
852 |
apply(simp add:Graph10) |
|
853 |
apply(erule le_trans) |
|
854 |
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) |
|
855 |
apply(rule disjI2,rule disjI1,erule subset_psubset_trans, erule Graph11, simp) |
|
856 |
--{* 3 subgoals left *} |
|
857 |
apply clarify |
|
858 |
apply (simp add:mul_collector_defs Mul_PBInv_def Graph7 Graph8 Graph12) |
|
859 |
apply(case_tac "M x!(T (Muts x!j))=Black") |
|
860 |
apply(simp add:Graph10) |
|
861 |
apply(disjE_tac) |
|
862 |
apply simp_all |
|
863 |
apply(rule disjI2, rule disjI2, rule disjI1,erule less_le_trans) |
|
864 |
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) |
|
865 |
apply(erule conjE) |
|
866 |
apply((rule disjI2)+,erule le_trans) |
|
867 |
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) |
|
868 |
apply(rule conjI) |
|
869 |
apply(rule disjI2,rule disjI1, erule subset_psubset_trans,simp add:Graph11) |
|
870 |
apply (force simp add:nth_list_update) |
|
871 |
--{* 2 subgoals left *} |
|
872 |
apply clarify |
|
873 |
apply(simp add:Mul_Auxk_def Graph7 Graph8 Graph12) |
|
874 |
apply(case_tac "M x!(T (Muts x!j))=Black") |
|
875 |
apply(simp add:Graph10) |
|
876 |
apply(disjE_tac) |
|
877 |
apply simp_all |
|
878 |
apply(rule disjI2, rule disjI2, rule disjI1,erule less_le_trans) |
|
879 |
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) |
|
880 |
apply(erule conjE)+ |
|
881 |
apply((rule disjI2)+,rule conjI, erule le_trans) |
|
882 |
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) |
|
883 |
apply((rule impI)+) |
|
884 |
apply simp |
|
885 |
apply(erule disjE) |
|
886 |
apply(rule disjI1, erule less_le_trans) |
|
887 |
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) |
|
888 |
apply force |
|
889 |
apply(rule conjI) |
|
890 |
apply(rule disjI2,rule disjI1, erule subset_psubset_trans,simp add:Graph11) |
|
891 |
apply (force simp add:nth_list_update) |
|
13022
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
prensani
parents:
13020
diff
changeset
|
892 |
--{* 1 subgoal left *} |
13020 | 893 |
apply clarify |
894 |
apply (simp add:mul_collector_defs Mul_PBInv_def Graph7 Graph8 Graph12) |
|
895 |
apply(case_tac "M x!(T (Muts x!j))=Black") |
|
896 |
apply(simp add:Graph10) |
|
897 |
apply(disjE_tac) |
|
898 |
apply simp_all |
|
899 |
apply(rule disjI2, rule disjI2, rule disjI1,erule less_le_trans) |
|
900 |
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) |
|
901 |
apply(erule conjE) |
|
902 |
apply((rule disjI2)+,erule le_trans) |
|
903 |
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) |
|
904 |
apply(rule disjI2,rule disjI1, erule subset_psubset_trans,simp add:Graph11) |
|
905 |
done |
|
906 |
||
907 |
lemma Mul_interfree_Color_Target_Propagate_Black: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> |
|
908 |
interfree_aux (Some(Mul_Color_Target j n),{},Some(Mul_Propagate_Black n ))" |
|
909 |
apply (unfold mul_modules) |
|
910 |
apply interfree_aux |
|
911 |
apply safe |
|
912 |
apply(simp_all add:mul_mutator_defs nth_list_update) |
|
913 |
done |
|
914 |
||
915 |
lemma Mul_interfree_Count_Redirect_Edge: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> |
|
916 |
interfree_aux (Some(Mul_Count n ),{},Some(Mul_Redirect_Edge j n))" |
|
917 |
apply (unfold mul_modules) |
|
918 |
apply interfree_aux |
|
919 |
--{* 9 subgoals left *} |
|
920 |
apply(simp add:mul_mutator_defs mul_collector_defs Mul_CountInv_def Graph6) |
|
921 |
apply clarify |
|
922 |
apply disjE_tac |
|
923 |
apply(simp add:Graph6) |
|
924 |
apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) |
|
925 |
apply(simp add:Graph6) |
|
926 |
apply clarify |
|
927 |
apply disjE_tac |
|
928 |
apply(simp add:Graph6) |
|
929 |
apply(rule conjI) |
|
930 |
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
931 |
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
932 |
apply(simp add:Graph6) |
|
933 |
--{* 8 subgoals left *} |
|
934 |
apply(simp add:mul_mutator_defs nth_list_update) |
|
935 |
--{* 7 subgoals left *} |
|
936 |
apply(simp add:mul_mutator_defs mul_collector_defs) |
|
937 |
apply clarify |
|
938 |
apply disjE_tac |
|
939 |
apply(simp add:Graph6) |
|
940 |
apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) |
|
941 |
apply(simp add:Graph6) |
|
942 |
apply clarify |
|
943 |
apply disjE_tac |
|
944 |
apply(simp add:Graph6) |
|
945 |
apply(rule conjI) |
|
946 |
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
947 |
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
948 |
apply(simp add:Graph6) |
|
949 |
--{* 6 subgoals left *} |
|
950 |
apply(simp add:mul_mutator_defs mul_collector_defs Mul_CountInv_def) |
|
951 |
apply clarify |
|
952 |
apply disjE_tac |
|
953 |
apply(simp add:Graph6 Queue_def) |
|
954 |
apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) |
|
955 |
apply(simp add:Graph6) |
|
956 |
apply clarify |
|
957 |
apply disjE_tac |
|
958 |
apply(simp add:Graph6) |
|
959 |
apply(rule conjI) |
|
960 |
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
961 |
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
962 |
apply(simp add:Graph6) |
|
963 |
--{* 5 subgoals left *} |
|
964 |
apply(simp add:mul_mutator_defs mul_collector_defs Mul_CountInv_def) |
|
965 |
apply clarify |
|
966 |
apply disjE_tac |
|
967 |
apply(simp add:Graph6) |
|
968 |
apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) |
|
969 |
apply(simp add:Graph6) |
|
970 |
apply clarify |
|
971 |
apply disjE_tac |
|
972 |
apply(simp add:Graph6) |
|
973 |
apply(rule conjI) |
|
974 |
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
975 |
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
976 |
apply(simp add:Graph6) |
|
977 |
--{* 4 subgoals left *} |
|
978 |
apply(simp add:mul_mutator_defs mul_collector_defs Mul_CountInv_def) |
|
979 |
apply clarify |
|
980 |
apply disjE_tac |
|
981 |
apply(simp add:Graph6) |
|
982 |
apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) |
|
983 |
apply(simp add:Graph6) |
|
984 |
apply clarify |
|
985 |
apply disjE_tac |
|
986 |
apply(simp add:Graph6) |
|
987 |
apply(rule conjI) |
|
988 |
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
989 |
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
990 |
apply(simp add:Graph6) |
|
991 |
--{* 3 subgoals left *} |
|
992 |
apply(simp add:mul_mutator_defs nth_list_update) |
|
993 |
--{* 2 subgoals left *} |
|
994 |
apply(simp add:mul_mutator_defs mul_collector_defs Mul_CountInv_def) |
|
995 |
apply clarify |
|
996 |
apply disjE_tac |
|
997 |
apply(simp add:Graph6) |
|
998 |
apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) |
|
999 |
apply(simp add:Graph6) |
|
1000 |
apply clarify |
|
1001 |
apply disjE_tac |
|
1002 |
apply(simp add:Graph6) |
|
1003 |
apply(rule conjI) |
|
1004 |
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
1005 |
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
1006 |
apply(simp add:Graph6) |
|
13022
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
prensani
parents:
13020
diff
changeset
|
1007 |
--{* 1 subgoal left *} |
13020 | 1008 |
apply(simp add:mul_mutator_defs nth_list_update) |
1009 |
done |
|
1010 |
||
1011 |
lemma Mul_interfree_Redirect_Edge_Count: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> |
|
1012 |
interfree_aux (Some(Mul_Redirect_Edge j n),{},Some(Mul_Count n ))" |
|
1013 |
apply (unfold mul_modules) |
|
1014 |
apply interfree_aux |
|
1015 |
apply safe |
|
1016 |
apply(simp_all add:mul_mutator_defs nth_list_update) |
|
1017 |
done |
|
1018 |
||
1019 |
lemma Mul_interfree_Count_Color_Target: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> |
|
1020 |
interfree_aux (Some(Mul_Count n ),{},Some(Mul_Color_Target j n))" |
|
1021 |
apply (unfold mul_modules) |
|
1022 |
apply interfree_aux |
|
1023 |
apply(simp_all add:mul_collector_defs mul_mutator_defs Mul_CountInv_def) |
|
1024 |
--{* 6 subgoals left *} |
|
1025 |
apply clarify |
|
1026 |
apply disjE_tac |
|
1027 |
apply (simp add: Graph7 Graph8 Graph12) |
|
1028 |
apply (simp add: Graph7 Graph8 Graph12) |
|
1029 |
apply clarify |
|
1030 |
apply disjE_tac |
|
1031 |
apply (simp add: Graph7 Graph8 Graph12) |
|
1032 |
apply(case_tac "M x!(T (Muts x!j))=Black") |
|
1033 |
apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans) |
|
1034 |
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) |
|
1035 |
apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11) |
|
1036 |
apply (simp add: Graph7 Graph8 Graph12) |
|
1037 |
apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9) |
|
1038 |
--{* 5 subgoals left *} |
|
1039 |
apply clarify |
|
1040 |
apply disjE_tac |
|
1041 |
apply (simp add: Graph7 Graph8 Graph12) |
|
1042 |
apply (simp add: Graph7 Graph8 Graph12) |
|
1043 |
apply clarify |
|
1044 |
apply disjE_tac |
|
1045 |
apply (simp add: Graph7 Graph8 Graph12) |
|
1046 |
apply(case_tac "M x!(T (Muts x!j))=Black") |
|
1047 |
apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans) |
|
1048 |
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) |
|
1049 |
apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11) |
|
1050 |
apply (simp add: Graph7 Graph8 Graph12) |
|
1051 |
apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9) |
|
1052 |
--{* 4 subgoals left *} |
|
1053 |
apply clarify |
|
1054 |
apply disjE_tac |
|
1055 |
apply (simp add: Graph7 Graph8 Graph12) |
|
1056 |
apply (simp add: Graph7 Graph8 Graph12) |
|
1057 |
apply clarify |
|
1058 |
apply disjE_tac |
|
1059 |
apply (simp add: Graph7 Graph8 Graph12) |
|
1060 |
apply(case_tac "M x!(T (Muts x!j))=Black") |
|
1061 |
apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans) |
|
1062 |
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) |
|
1063 |
apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11) |
|
1064 |
apply (simp add: Graph7 Graph8 Graph12) |
|
1065 |
apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9) |
|
1066 |
--{* 3 subgoals left *} |
|
1067 |
apply clarify |
|
1068 |
apply disjE_tac |
|
1069 |
apply (simp add: Graph7 Graph8 Graph12) |
|
1070 |
apply (simp add: Graph7 Graph8 Graph12) |
|
1071 |
apply clarify |
|
1072 |
apply disjE_tac |
|
1073 |
apply (simp add: Graph7 Graph8 Graph12) |
|
1074 |
apply(case_tac "M x!(T (Muts x!j))=Black") |
|
1075 |
apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans) |
|
1076 |
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) |
|
1077 |
apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11) |
|
1078 |
apply (simp add: Graph7 Graph8 Graph12) |
|
1079 |
apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9) |
|
1080 |
--{* 2 subgoals left *} |
|
1081 |
apply clarify |
|
1082 |
apply disjE_tac |
|
1083 |
apply (simp add: Graph7 Graph8 Graph12 nth_list_update) |
|
1084 |
apply (simp add: Graph7 Graph8 Graph12 nth_list_update) |
|
1085 |
apply clarify |
|
1086 |
apply disjE_tac |
|
1087 |
apply (simp add: Graph7 Graph8 Graph12) |
|
1088 |
apply(rule conjI) |
|
1089 |
apply(case_tac "M x!(T (Muts x!j))=Black") |
|
1090 |
apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans) |
|
1091 |
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) |
|
1092 |
apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11) |
|
1093 |
apply (simp add: nth_list_update) |
|
1094 |
apply (simp add: Graph7 Graph8 Graph12) |
|
1095 |
apply(rule conjI) |
|
1096 |
apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9) |
|
1097 |
apply (simp add: nth_list_update) |
|
13022
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
prensani
parents:
13020
diff
changeset
|
1098 |
--{* 1 subgoal left *} |
13020 | 1099 |
apply clarify |
1100 |
apply disjE_tac |
|
1101 |
apply (simp add: Graph7 Graph8 Graph12) |
|
1102 |
apply (simp add: Graph7 Graph8 Graph12) |
|
1103 |
apply clarify |
|
1104 |
apply disjE_tac |
|
1105 |
apply (simp add: Graph7 Graph8 Graph12) |
|
1106 |
apply(case_tac "M x!(T (Muts x!j))=Black") |
|
1107 |
apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans) |
|
1108 |
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) |
|
1109 |
apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11) |
|
1110 |
apply (simp add: Graph7 Graph8 Graph12) |
|
1111 |
apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9) |
|
1112 |
done |
|
1113 |
||
1114 |
lemma Mul_interfree_Color_Target_Count: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> |
|
1115 |
interfree_aux (Some(Mul_Color_Target j n),{}, Some(Mul_Count n ))" |
|
1116 |
apply (unfold mul_modules) |
|
1117 |
apply interfree_aux |
|
1118 |
apply safe |
|
1119 |
apply(simp_all add:mul_mutator_defs nth_list_update) |
|
1120 |
done |
|
1121 |
||
1122 |
lemma Mul_interfree_Append_Redirect_Edge: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> |
|
1123 |
interfree_aux (Some(Mul_Append n),{}, Some(Mul_Redirect_Edge j n))" |
|
1124 |
apply (unfold mul_modules) |
|
1125 |
apply interfree_aux |
|
42793 | 1126 |
apply(tactic {* ALLGOALS (clarify_tac @{context}) *}) |
13020 | 1127 |
apply(simp_all add:Graph6 Append_to_free0 Append_to_free1 mul_collector_defs mul_mutator_defs Mul_AppendInv_def) |
1128 |
apply(erule_tac x=j in allE, force dest:Graph3)+ |
|
1129 |
done |
|
1130 |
||
1131 |
lemma Mul_interfree_Redirect_Edge_Append: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> |
|
1132 |
interfree_aux (Some(Mul_Redirect_Edge j n),{},Some(Mul_Append n))" |
|
1133 |
apply (unfold mul_modules) |
|
1134 |
apply interfree_aux |
|
42793 | 1135 |
apply(tactic {* ALLGOALS (clarify_tac @{context}) *}) |
13020 | 1136 |
apply(simp_all add:mul_collector_defs Append_to_free0 Mul_AppendInv_def mul_mutator_defs nth_list_update) |
1137 |
done |
|
1138 |
||
1139 |
lemma Mul_interfree_Append_Color_Target: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> |
|
1140 |
interfree_aux (Some(Mul_Append n),{}, Some(Mul_Color_Target j n))" |
|
1141 |
apply (unfold mul_modules) |
|
1142 |
apply interfree_aux |
|
42793 | 1143 |
apply(tactic {* ALLGOALS (clarify_tac @{context}) *}) |
13020 | 1144 |
apply(simp_all add:mul_mutator_defs mul_collector_defs Mul_AppendInv_def Graph7 Graph8 Append_to_free0 Append_to_free1 |
1145 |
Graph12 nth_list_update) |
|
1146 |
done |
|
1147 |
||
1148 |
lemma Mul_interfree_Color_Target_Append: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> |
|
1149 |
interfree_aux (Some(Mul_Color_Target j n),{}, Some(Mul_Append n))" |
|
1150 |
apply (unfold mul_modules) |
|
1151 |
apply interfree_aux |
|
42793 | 1152 |
apply(tactic {* ALLGOALS (clarify_tac @{context}) *}) |
13020 | 1153 |
apply(simp_all add: mul_mutator_defs nth_list_update) |
1154 |
apply(simp add:Mul_AppendInv_def Append_to_free0) |
|
1155 |
done |
|
1156 |
||
1157 |
subsubsection {* Interference freedom Collector-Mutator *} |
|
1158 |
||
1159 |
lemmas mul_collector_mutator_interfree = |
|
1160 |
Mul_interfree_Blacken_Roots_Redirect_Edge Mul_interfree_Blacken_Roots_Color_Target |
|
1161 |
Mul_interfree_Propagate_Black_Redirect_Edge Mul_interfree_Propagate_Black_Color_Target |
|
1162 |
Mul_interfree_Count_Redirect_Edge Mul_interfree_Count_Color_Target |
|
1163 |
Mul_interfree_Append_Redirect_Edge Mul_interfree_Append_Color_Target |
|
1164 |
Mul_interfree_Redirect_Edge_Blacken_Roots Mul_interfree_Color_Target_Blacken_Roots |
|
1165 |
Mul_interfree_Redirect_Edge_Propagate_Black Mul_interfree_Color_Target_Propagate_Black |
|
1166 |
Mul_interfree_Redirect_Edge_Count Mul_interfree_Color_Target_Count |
|
1167 |
Mul_interfree_Redirect_Edge_Append Mul_interfree_Color_Target_Append |
|
1168 |
||
1169 |
lemma Mul_interfree_Collector_Mutator: "j<n \<Longrightarrow> |
|
1170 |
interfree_aux (Some (Mul_Collector n), {}, Some (Mul_Mutator j n))" |
|
1171 |
apply(unfold Mul_Collector_def Mul_Mutator_def) |
|
1172 |
apply interfree_aux |
|
1173 |
apply(simp_all add:mul_collector_mutator_interfree) |
|
1174 |
apply(unfold mul_modules mul_collector_defs mul_mutator_defs) |
|
1175 |
apply(tactic {* TRYALL (interfree_aux_tac) *}) |
|
1176 |
--{* 42 subgoals left *} |
|
1177 |
apply (clarify,simp add:Graph6 Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12)+ |
|
1178 |
--{* 24 subgoals left *} |
|
1179 |
apply(simp_all add:Graph6 Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12) |
|
1180 |
--{* 14 subgoals left *} |
|
42793 | 1181 |
apply(tactic {* TRYALL (clarify_tac @{context}) *}) |
13020 | 1182 |
apply(simp_all add:Graph6 Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12) |
1183 |
apply(tactic {* TRYALL (rtac conjI) *}) |
|
1184 |
apply(tactic {* TRYALL (rtac impI) *}) |
|
1185 |
apply(tactic {* TRYALL (etac disjE) *}) |
|
1186 |
apply(tactic {* TRYALL (etac conjE) *}) |
|
1187 |
apply(tactic {* TRYALL (etac disjE) *}) |
|
1188 |
apply(tactic {* TRYALL (etac disjE) *}) |
|
1189 |
--{* 72 subgoals left *} |
|
1190 |
apply(simp_all add:Graph6 Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12) |
|
1191 |
--{* 35 subgoals left *} |
|
42793 | 1192 |
apply(tactic {* TRYALL(EVERY'[rtac disjI1,rtac subset_trans,etac @{thm Graph3},force_tac @{context}, assume_tac]) *}) |
13020 | 1193 |
--{* 28 subgoals left *} |
1194 |
apply(tactic {* TRYALL (etac conjE) *}) |
|
1195 |
apply(tactic {* TRYALL (etac disjE) *}) |
|
1196 |
--{* 34 subgoals left *} |
|
1197 |
apply(rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
1198 |
apply(rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) |
|
27095 | 1199 |
apply(case_tac [!] "M x!(T (Muts x ! j))=Black") |
13020 | 1200 |
apply(simp_all add:Graph10) |
1201 |
--{* 47 subgoals left *} |
|
42793 | 1202 |
apply(tactic {* TRYALL(EVERY'[REPEAT o (rtac disjI2),etac @{thm subset_psubset_trans}, etac @{thm Graph11},force_tac @{context}]) *}) |
13020 | 1203 |
--{* 41 subgoals left *} |
42793 | 1204 |
apply(tactic {* TRYALL(EVERY'[rtac disjI2, rtac disjI1, etac @{thm le_trans}, |
42795
66fcc9882784
clarified map_simpset versus Simplifier.map_simpset_global;
wenzelm
parents:
42793
diff
changeset
|
1205 |
force_tac (map_simpset (fn ss => ss addsimps |
42793 | 1206 |
[@{thm Queue_def}, @{thm less_Suc_eq_le}, @{thm le_length_filter_update}]) @{context})]) *}) |
13020 | 1207 |
--{* 35 subgoals left *} |
42793 | 1208 |
apply(tactic {* TRYALL(EVERY'[rtac disjI2,rtac disjI1,etac @{thm psubset_subset_trans},rtac @{thm Graph9},force_tac @{context}]) *}) |
13020 | 1209 |
--{* 31 subgoals left *} |
42793 | 1210 |
apply(tactic {* TRYALL(EVERY'[rtac disjI2,rtac disjI1,etac @{thm subset_psubset_trans},etac @{thm Graph11},force_tac @{context}]) *}) |
13020 | 1211 |
--{* 29 subgoals left *} |
42793 | 1212 |
apply(tactic {* TRYALL(EVERY'[REPEAT o (rtac disjI2),etac @{thm subset_psubset_trans},etac @{thm subset_psubset_trans},etac @{thm Graph11},force_tac @{context}]) *}) |
13020 | 1213 |
--{* 25 subgoals left *} |
42793 | 1214 |
apply(tactic {* TRYALL(EVERY'[rtac disjI2, rtac disjI2, rtac disjI1, etac @{thm le_trans}, |
42795
66fcc9882784
clarified map_simpset versus Simplifier.map_simpset_global;
wenzelm
parents:
42793
diff
changeset
|
1215 |
force_tac (map_simpset (fn ss => ss addsimps |
42793 | 1216 |
[@{thm Queue_def}, @{thm less_Suc_eq_le}, @{thm le_length_filter_update}]) @{context})]) *}) |
13020 | 1217 |
--{* 10 subgoals left *} |
1218 |
apply(rule disjI2,rule disjI2,rule conjI,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update, rule disjI1, rule less_imp_le, erule less_le_trans, force simp add:Queue_def less_Suc_eq_le le_length_filter_update)+ |
|
1219 |
done |
|
1220 |
||
1221 |
subsubsection {* Interference freedom Mutator-Collector *} |
|
1222 |
||
1223 |
lemma Mul_interfree_Mutator_Collector: " j < n \<Longrightarrow> |
|
1224 |
interfree_aux (Some (Mul_Mutator j n), {}, Some (Mul_Collector n))" |
|
1225 |
apply(unfold Mul_Collector_def Mul_Mutator_def) |
|
1226 |
apply interfree_aux |
|
1227 |
apply(simp_all add:mul_collector_mutator_interfree) |
|
1228 |
apply(unfold mul_modules mul_collector_defs mul_mutator_defs) |
|
1229 |
apply(tactic {* TRYALL (interfree_aux_tac) *}) |
|
1230 |
--{* 76 subgoals left *} |
|
32687
27530efec97a
tuned proofs; be more cautios wrt. default simp rules
haftmann
parents:
32621
diff
changeset
|
1231 |
apply (clarsimp simp add: nth_list_update)+ |
13020 | 1232 |
--{* 56 subgoals left *} |
32687
27530efec97a
tuned proofs; be more cautios wrt. default simp rules
haftmann
parents:
32621
diff
changeset
|
1233 |
apply (clarsimp simp add: Mul_AppendInv_def Append_to_free0 nth_list_update)+ |
13020 | 1234 |
done |
1235 |
||
1236 |
subsubsection {* The Multi-Mutator Garbage Collection Algorithm *} |
|
1237 |
||
1238 |
text {* The total number of verification conditions is 328 *} |
|
1239 |
||
1240 |
lemma Mul_Gar_Coll: |
|
1241 |
"\<parallel>- .{\<acute>Mul_Proper n \<and> \<acute>Mul_mut_init n \<and> (\<forall>i<n. Z (\<acute>Muts!i))}. |
|
1242 |
COBEGIN |
|
1243 |
Mul_Collector n |
|
1244 |
.{False}. |
|
1245 |
\<parallel> |
|
1246 |
SCHEME [0\<le> j< n] |
|
1247 |
Mul_Mutator j n |
|
1248 |
.{False}. |
|
1249 |
COEND |
|
1250 |
.{False}." |
|
1251 |
apply oghoare |
|
1252 |
--{* Strengthening the precondition *} |
|
1253 |
apply(rule Int_greatest) |
|
1254 |
apply (case_tac n) |
|
1255 |
apply(force simp add: Mul_Collector_def mul_mutator_defs mul_collector_defs nth_append) |
|
1256 |
apply(simp add: Mul_Mutator_def mul_collector_defs mul_mutator_defs nth_append) |
|
1257 |
apply force |
|
1258 |
apply clarify |
|
32133 | 1259 |
apply(case_tac i) |
13020 | 1260 |
apply(simp add:Mul_Collector_def mul_mutator_defs mul_collector_defs nth_append) |
1261 |
apply(simp add: Mul_Mutator_def mul_mutator_defs mul_collector_defs nth_append nth_map_upt) |
|
1262 |
--{* Collector *} |
|
1263 |
apply(rule Mul_Collector) |
|
1264 |
--{* Mutator *} |
|
1265 |
apply(erule Mul_Mutator) |
|
1266 |
--{* Interference freedom *} |
|
1267 |
apply(simp add:Mul_interfree_Collector_Mutator) |
|
1268 |
apply(simp add:Mul_interfree_Mutator_Collector) |
|
1269 |
apply(simp add:Mul_interfree_Mutator_Mutator) |
|
1270 |
--{* Weakening of the postcondition *} |
|
1271 |
apply(case_tac n) |
|
1272 |
apply(simp add:Mul_Collector_def mul_mutator_defs mul_collector_defs nth_append) |
|
1273 |
apply(simp add:Mul_Mutator_def mul_mutator_defs mul_collector_defs nth_append) |
|
1274 |
done |
|
1275 |
||
13187 | 1276 |
end |