author | haftmann |
Thu, 06 Nov 2008 09:09:49 +0100 | |
changeset 28716 | ee6f9e50f9c8 |
parent 27487 | c8a6ce181805 |
child 28823 | dcbef866c9e2 |
permissions | -rw-r--r-- |
26169 | 1 |
(* Title: HOL/Library/Countable.thy |
2 |
ID: $Id$ |
|
26350 | 3 |
Author: Alexander Krauss, TU Muenchen |
26169 | 4 |
*) |
5 |
||
6 |
header {* Encoding (almost) everything into natural numbers *} |
|
7 |
||
8 |
theory Countable |
|
27487 | 9 |
imports Plain "~~/src/HOL/List" "~~/src/HOL/Hilbert_Choice" |
26169 | 10 |
begin |
11 |
||
12 |
subsection {* The class of countable types *} |
|
13 |
||
14 |
class countable = itself + |
|
15 |
assumes ex_inj: "\<exists>to_nat \<Colon> 'a \<Rightarrow> nat. inj to_nat" |
|
16 |
||
17 |
lemma countable_classI: |
|
18 |
fixes f :: "'a \<Rightarrow> nat" |
|
19 |
assumes "\<And>x y. f x = f y \<Longrightarrow> x = y" |
|
20 |
shows "OFCLASS('a, countable_class)" |
|
21 |
proof (intro_classes, rule exI) |
|
22 |
show "inj f" |
|
23 |
by (rule injI [OF assms]) assumption |
|
24 |
qed |
|
25 |
||
26 |
||
26585 | 27 |
subsection {* Conversion functions *} |
26169 | 28 |
|
29 |
definition to_nat :: "'a\<Colon>countable \<Rightarrow> nat" where |
|
30 |
"to_nat = (SOME f. inj f)" |
|
31 |
||
32 |
definition from_nat :: "nat \<Rightarrow> 'a\<Colon>countable" where |
|
33 |
"from_nat = inv (to_nat \<Colon> 'a \<Rightarrow> nat)" |
|
34 |
||
35 |
lemma inj_to_nat [simp]: "inj to_nat" |
|
36 |
by (rule exE_some [OF ex_inj]) (simp add: to_nat_def) |
|
37 |
||
38 |
lemma to_nat_split [simp]: "to_nat x = to_nat y \<longleftrightarrow> x = y" |
|
39 |
using injD [OF inj_to_nat] by auto |
|
40 |
||
41 |
lemma from_nat_to_nat [simp]: |
|
42 |
"from_nat (to_nat x) = x" |
|
43 |
by (simp add: from_nat_def) |
|
44 |
||
45 |
||
46 |
subsection {* Countable types *} |
|
47 |
||
48 |
instance nat :: countable |
|
49 |
by (rule countable_classI [of "id"]) simp |
|
50 |
||
51 |
subclass (in finite) countable |
|
52 |
proof unfold_locales |
|
53 |
have "finite (UNIV\<Colon>'a set)" by (rule finite_UNIV) |
|
54 |
with finite_conv_nat_seg_image [of UNIV] |
|
55 |
obtain n and f :: "nat \<Rightarrow> 'a" |
|
56 |
where "UNIV = f ` {i. i < n}" by auto |
|
57 |
then have "surj f" unfolding surj_def by auto |
|
58 |
then have "inj (inv f)" by (rule surj_imp_inj_inv) |
|
59 |
then show "\<exists>to_nat \<Colon> 'a \<Rightarrow> nat. inj to_nat" by (rule exI[of inj]) |
|
60 |
qed |
|
61 |
||
62 |
text {* Pairs *} |
|
63 |
||
64 |
primrec sum :: "nat \<Rightarrow> nat" |
|
65 |
where |
|
66 |
"sum 0 = 0" |
|
67 |
| "sum (Suc n) = Suc n + sum n" |
|
68 |
||
69 |
lemma sum_arith: "sum n = n * Suc n div 2" |
|
70 |
by (induct n) auto |
|
71 |
||
72 |
lemma sum_mono: "n \<ge> m \<Longrightarrow> sum n \<ge> sum m" |
|
73 |
by (induct n m rule: diff_induct) auto |
|
74 |
||
75 |
definition |
|
76 |
"pair_encode = (\<lambda>(m, n). sum (m + n) + m)" |
|
77 |
||
78 |
lemma inj_pair_cencode: "inj pair_encode" |
|
79 |
unfolding pair_encode_def |
|
80 |
proof (rule injI, simp only: split_paired_all split_conv) |
|
81 |
fix a b c d |
|
82 |
assume eq: "sum (a + b) + a = sum (c + d) + c" |
|
83 |
have "a + b = c + d \<or> a + b \<ge> Suc (c + d) \<or> c + d \<ge> Suc (a + b)" by arith |
|
84 |
then |
|
85 |
show "(a, b) = (c, d)" |
|
86 |
proof (elim disjE) |
|
87 |
assume sumeq: "a + b = c + d" |
|
88 |
then have "a = c" using eq by auto |
|
89 |
moreover from sumeq this have "b = d" by auto |
|
90 |
ultimately show ?thesis by simp |
|
91 |
next |
|
92 |
assume "a + b \<ge> Suc (c + d)" |
|
93 |
from sum_mono[OF this] eq |
|
94 |
show ?thesis by auto |
|
95 |
next |
|
96 |
assume "c + d \<ge> Suc (a + b)" |
|
97 |
from sum_mono[OF this] eq |
|
98 |
show ?thesis by auto |
|
99 |
qed |
|
100 |
qed |
|
101 |
||
102 |
instance "*" :: (countable, countable) countable |
|
103 |
by (rule countable_classI [of "\<lambda>(x, y). pair_encode (to_nat x, to_nat y)"]) |
|
104 |
(auto dest: injD [OF inj_pair_cencode] injD [OF inj_to_nat]) |
|
105 |
||
106 |
||
107 |
text {* Sums *} |
|
108 |
||
109 |
instance "+":: (countable, countable) countable |
|
110 |
by (rule countable_classI [of "(\<lambda>x. case x of Inl a \<Rightarrow> to_nat (False, to_nat a) |
|
111 |
| Inr b \<Rightarrow> to_nat (True, to_nat b))"]) |
|
112 |
(auto split:sum.splits) |
|
113 |
||
114 |
||
115 |
text {* Integers *} |
|
116 |
||
117 |
lemma int_cases: "(i::int) = 0 \<or> i < 0 \<or> i > 0" |
|
118 |
by presburger |
|
119 |
||
120 |
lemma int_pos_neg_zero: |
|
121 |
obtains (zero) "(z::int) = 0" "sgn z = 0" "abs z = 0" |
|
122 |
| (pos) n where "z = of_nat n" "sgn z = 1" "abs z = of_nat n" |
|
123 |
| (neg) n where "z = - (of_nat n)" "sgn z = -1" "abs z = of_nat n" |
|
26580
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26350
diff
changeset
|
124 |
apply atomize_elim |
26169 | 125 |
apply (insert int_cases[of z]) |
126 |
apply (auto simp:zsgn_def) |
|
127 |
apply (rule_tac x="nat (-z)" in exI, simp) |
|
128 |
apply (rule_tac x="nat z" in exI, simp) |
|
129 |
done |
|
130 |
||
131 |
instance int :: countable |
|
132 |
proof (rule countable_classI [of "(\<lambda>i. to_nat (nat (sgn i + 1), nat (abs i)))"], |
|
133 |
auto dest: injD [OF inj_to_nat]) |
|
134 |
fix x y |
|
135 |
assume a: "nat (sgn x + 1) = nat (sgn y + 1)" "nat (abs x) = nat (abs y)" |
|
136 |
show "x = y" |
|
137 |
proof (cases rule: int_pos_neg_zero[of x]) |
|
138 |
case zero |
|
139 |
with a show "x = y" by (cases rule: int_pos_neg_zero[of y]) auto |
|
140 |
next |
|
141 |
case (pos n) |
|
142 |
with a show "x = y" by (cases rule: int_pos_neg_zero[of y]) auto |
|
143 |
next |
|
144 |
case (neg n) |
|
145 |
with a show "x = y" by (cases rule: int_pos_neg_zero[of y]) auto |
|
146 |
qed |
|
147 |
qed |
|
148 |
||
149 |
||
150 |
text {* Options *} |
|
151 |
||
152 |
instance option :: (countable) countable |
|
153 |
by (rule countable_classI[of "\<lambda>x. case x of None \<Rightarrow> 0 |
|
154 |
| Some y \<Rightarrow> Suc (to_nat y)"]) |
|
155 |
(auto split:option.splits) |
|
156 |
||
157 |
||
158 |
text {* Lists *} |
|
159 |
||
160 |
lemma from_nat_to_nat_map [simp]: "map from_nat (map to_nat xs) = xs" |
|
161 |
by (simp add: comp_def map_compose [symmetric]) |
|
162 |
||
163 |
primrec |
|
164 |
list_encode :: "'a\<Colon>countable list \<Rightarrow> nat" |
|
165 |
where |
|
166 |
"list_encode [] = 0" |
|
167 |
| "list_encode (x#xs) = Suc (to_nat (x, list_encode xs))" |
|
168 |
||
169 |
instance list :: (countable) countable |
|
170 |
proof (rule countable_classI [of "list_encode"]) |
|
171 |
fix xs ys :: "'a list" |
|
172 |
assume cenc: "list_encode xs = list_encode ys" |
|
173 |
then show "xs = ys" |
|
174 |
proof (induct xs arbitrary: ys) |
|
175 |
case (Nil ys) |
|
176 |
with cenc show ?case by (cases ys, auto) |
|
177 |
next |
|
178 |
case (Cons x xs' ys) |
|
179 |
thus ?case by (cases ys) auto |
|
180 |
qed |
|
181 |
qed |
|
182 |
||
26243 | 183 |
|
184 |
text {* Functions *} |
|
185 |
||
186 |
instance "fun" :: (finite, countable) countable |
|
187 |
proof |
|
188 |
obtain xs :: "'a list" where xs: "set xs = UNIV" |
|
189 |
using finite_list [OF finite_UNIV] .. |
|
190 |
show "\<exists>to_nat::('a \<Rightarrow> 'b) \<Rightarrow> nat. inj to_nat" |
|
191 |
proof |
|
192 |
show "inj (\<lambda>f. to_nat (map f xs))" |
|
193 |
by (rule injI, simp add: xs expand_fun_eq) |
|
194 |
qed |
|
195 |
qed |
|
196 |
||
26169 | 197 |
end |