src/HOL/Analysis/Interval_Integral.thy
author paulson <lp15@cam.ac.uk>
Tue, 01 May 2018 23:25:00 +0100
changeset 68062 ee88c0fccbae
parent 68046 6aba668aea78
child 68095 4fa3e63ecc7e
permissions -rw-r--r--
simplified some messy proofs
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
63627
6ddb43c6b711 rename HOL-Multivariate_Analysis to HOL-Analysis.
hoelzl
parents: 63626
diff changeset
     1
(*  Title:      HOL/Analysis/Interval_Integral.thy
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
     2
    Author:     Jeremy Avigad (CMU), Johannes Hölzl (TUM), Luke Serafin (CMU)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
     3
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
     4
Lebesgue integral over an interval (with endpoints possibly +-\<infinity>)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
     5
*)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
     6
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
     7
theory Interval_Integral
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63886
diff changeset
     8
  imports Equivalence_Lebesgue_Henstock_Integration
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
     9
begin
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    10
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    11
lemma continuous_on_vector_derivative:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    12
  "(\<And>x. x \<in> S \<Longrightarrow> (f has_vector_derivative f' x) (at x within S)) \<Longrightarrow> continuous_on S f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    13
  by (auto simp: continuous_on_eq_continuous_within intro!: has_vector_derivative_continuous)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    14
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    15
lemma has_vector_derivative_weaken:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    16
  fixes x D and f g s t
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    17
  assumes f: "(f has_vector_derivative D) (at x within t)"
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
    18
    and "x \<in> s" "s \<subseteq> t"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    19
    and "\<And>x. x \<in> s \<Longrightarrow> f x = g x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    20
  shows "(g has_vector_derivative D) (at x within s)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    21
proof -
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    22
  have "(f has_vector_derivative D) (at x within s) \<longleftrightarrow> (g has_vector_derivative D) (at x within s)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    23
    unfolding has_vector_derivative_def has_derivative_iff_norm
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    24
    using assms by (intro conj_cong Lim_cong_within refl) auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    25
  then show ?thesis
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
    26
    using has_vector_derivative_within_subset[OF f \<open>s \<subseteq> t\<close>] by simp
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    27
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    28
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    29
definition "einterval a b = {x. a < ereal x \<and> ereal x < b}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    30
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    31
lemma einterval_eq[simp]:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    32
  shows einterval_eq_Icc: "einterval (ereal a) (ereal b) = {a <..< b}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    33
    and einterval_eq_Ici: "einterval (ereal a) \<infinity> = {a <..}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    34
    and einterval_eq_Iic: "einterval (- \<infinity>) (ereal b) = {..< b}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    35
    and einterval_eq_UNIV: "einterval (- \<infinity>) \<infinity> = UNIV"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    36
  by (auto simp: einterval_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    37
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    38
lemma einterval_same: "einterval a a = {}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    39
  by (auto simp add: einterval_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    40
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    41
lemma einterval_iff: "x \<in> einterval a b \<longleftrightarrow> a < ereal x \<and> ereal x < b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    42
  by (simp add: einterval_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    43
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    44
lemma einterval_nonempty: "a < b \<Longrightarrow> \<exists>c. c \<in> einterval a b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    45
  by (cases a b rule: ereal2_cases, auto simp: einterval_def intro!: dense gt_ex lt_ex)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    46
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    47
lemma open_einterval[simp]: "open (einterval a b)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    48
  by (cases a b rule: ereal2_cases)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    49
     (auto simp: einterval_def intro!: open_Collect_conj open_Collect_less continuous_intros)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    50
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    51
lemma borel_einterval[measurable]: "einterval a b \<in> sets borel"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    52
  unfolding einterval_def by measurable
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    53
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
    54
subsection\<open>Approximating a (possibly infinite) interval\<close>
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    55
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    56
lemma filterlim_sup1: "(LIM x F. f x :> G1) \<Longrightarrow> (LIM x F. f x :> (sup G1 G2))"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    57
 unfolding filterlim_def by (auto intro: le_supI1)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    58
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    59
lemma ereal_incseq_approx:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    60
  fixes a b :: ereal
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    61
  assumes "a < b"
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
    62
  obtains X :: "nat \<Rightarrow> real" where
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
    63
    "incseq X" "\<And>i. a < X i" "\<And>i. X i < b" "X \<longlonglongrightarrow> b"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    64
proof (cases b)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    65
  case PInf
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
    66
  with \<open>a < b\<close> have "a = -\<infinity> \<or> (\<exists>r. a = ereal r)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    67
    by (cases a) auto
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
    68
  moreover have "(\<lambda>x. ereal (real (Suc x))) \<longlonglongrightarrow> \<infinity>"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
    69
      apply (subst LIMSEQ_Suc_iff)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
    70
      apply (simp add: Lim_PInfty)
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
    71
      using nat_ceiling_le_eq by blast
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
    72
  moreover have "\<And>r. (\<lambda>x. ereal (r + real (Suc x))) \<longlonglongrightarrow> \<infinity>"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    73
    apply (subst LIMSEQ_Suc_iff)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    74
    apply (subst Lim_PInfty)
59587
8ea7b22525cb Removed the obsolete functions "natfloor" and "natceiling"
nipkow
parents: 59092
diff changeset
    75
    apply (metis add.commute diff_le_eq nat_ceiling_le_eq ereal_less_eq(3))
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    76
    done
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    77
  ultimately show thesis
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
    78
    by (intro that[of "\<lambda>i. real_of_ereal a + Suc i"])
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    79
       (auto simp: incseq_def PInf)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    80
next
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    81
  case (real b')
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62390
diff changeset
    82
  define d where "d = b' - (if a = -\<infinity> then b' - 1 else real_of_ereal a)"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
    83
  with \<open>a < b\<close> have a': "0 < d"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    84
    by (cases a) (auto simp: real)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    85
  moreover
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    86
  have "\<And>i r. r < b' \<Longrightarrow> (b' - r) * 1 < (b' - r) * real (Suc (Suc i))"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    87
    by (intro mult_strict_left_mono) auto
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
    88
  with \<open>a < b\<close> a' have "\<And>i. a < ereal (b' - d / real (Suc (Suc i)))"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    89
    by (cases a) (auto simp: real d_def field_simps)
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
    90
  moreover have "(\<lambda>i. b' - d / Suc (Suc i)) \<longlonglongrightarrow> b'"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    91
    apply (subst filterlim_sequentially_Suc)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    92
    apply (subst filterlim_sequentially_Suc)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    93
    apply (rule tendsto_eq_intros)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    94
    apply (auto intro!: tendsto_divide_0[OF tendsto_const] filterlim_sup1
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    95
                simp: at_infinity_eq_at_top_bot filterlim_real_sequentially)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    96
    done
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    97
  ultimately show thesis
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    98
    by (intro that[of "\<lambda>i. b' - d / Suc (Suc i)"])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
    99
       (auto simp add: real incseq_def intro!: divide_left_mono)
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   100
qed (insert \<open>a < b\<close>, auto)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   101
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   102
lemma ereal_decseq_approx:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   103
  fixes a b :: ereal
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   104
  assumes "a < b"
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   105
  obtains X :: "nat \<Rightarrow> real" where
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   106
    "decseq X" "\<And>i. a < X i" "\<And>i. X i < b" "X \<longlonglongrightarrow> a"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   107
proof -
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   108
  have "-b < -a" using \<open>a < b\<close> by simp
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   109
  from ereal_incseq_approx[OF this] guess X .
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   110
  then show thesis
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   111
    apply (intro that[of "\<lambda>i. - X i"])
68046
6aba668aea78 new simp modifier: reorient
nipkow
parents: 67974
diff changeset
   112
    apply (auto simp add: decseq_def incseq_def reorient: uminus_ereal.simps)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   113
    apply (metis ereal_minus_less_minus ereal_uminus_uminus ereal_Lim_uminus)+
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   114
    done
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   115
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   116
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   117
lemma einterval_Icc_approximation:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   118
  fixes a b :: ereal
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   119
  assumes "a < b"
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   120
  obtains u l :: "nat \<Rightarrow> real" where
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   121
    "einterval a b = (\<Union>i. {l i .. u i})"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   122
    "incseq u" "decseq l" "\<And>i. l i < u i" "\<And>i. a < l i" "\<And>i. u i < b"
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   123
    "l \<longlonglongrightarrow> a" "u \<longlonglongrightarrow> b"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   124
proof -
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   125
  from dense[OF \<open>a < b\<close>] obtain c where "a < c" "c < b" by safe
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   126
  from ereal_incseq_approx[OF \<open>c < b\<close>] guess u . note u = this
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   127
  from ereal_decseq_approx[OF \<open>a < c\<close>] guess l . note l = this
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   128
  { fix i from less_trans[OF \<open>l i < c\<close> \<open>c < u i\<close>] have "l i < u i" by simp }
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   129
  have "einterval a b = (\<Union>i. {l i .. u i})"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   130
  proof (auto simp: einterval_iff)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   131
    fix x assume "a < ereal x" "ereal x < b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   132
    have "eventually (\<lambda>i. ereal (l i) < ereal x) sequentially"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   133
      using l(4) \<open>a < ereal x\<close> by (rule order_tendstoD)
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   134
    moreover
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   135
    have "eventually (\<lambda>i. ereal x < ereal (u i)) sequentially"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   136
      using u(4) \<open>ereal x< b\<close> by (rule order_tendstoD)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   137
    ultimately have "eventually (\<lambda>i. l i < x \<and> x < u i) sequentially"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   138
      by eventually_elim auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   139
    then show "\<exists>i. l i \<le> x \<and> x \<le> u i"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   140
      by (auto intro: less_imp_le simp: eventually_sequentially)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   141
  next
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   142
    fix x i assume "l i \<le> x" "x \<le> u i"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   143
    with \<open>a < ereal (l i)\<close> \<open>ereal (u i) < b\<close>
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   144
    show "a < ereal x" "ereal x < b"
68046
6aba668aea78 new simp modifier: reorient
nipkow
parents: 67974
diff changeset
   145
      by (auto reorient: ereal_less_eq(3))
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   146
  qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   147
  show thesis
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   148
    by (intro that) fact+
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   149
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   150
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   151
(* TODO: in this definition, it would be more natural if einterval a b included a and b when
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   152
   they are real. *)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   153
definition interval_lebesgue_integral :: "real measure \<Rightarrow> ereal \<Rightarrow> ereal \<Rightarrow> (real \<Rightarrow> 'a) \<Rightarrow> 'a::{banach, second_countable_topology}" where
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   154
  "interval_lebesgue_integral M a b f =
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   155
    (if a \<le> b then (LINT x:einterval a b|M. f x) else - (LINT x:einterval b a|M. f x))"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   156
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   157
syntax
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   158
  "_ascii_interval_lebesgue_integral" :: "pttrn \<Rightarrow> real \<Rightarrow> real \<Rightarrow> real measure \<Rightarrow> real \<Rightarrow> real"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   159
  ("(5LINT _=_.._|_. _)" [0,60,60,61,100] 60)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   160
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   161
translations
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   162
  "LINT x=a..b|M. f" == "CONST interval_lebesgue_integral M a b (\<lambda>x. f)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   163
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   164
definition interval_lebesgue_integrable :: "real measure \<Rightarrow> ereal \<Rightarrow> ereal \<Rightarrow> (real \<Rightarrow> 'a::{banach, second_countable_topology}) \<Rightarrow> bool" where
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   165
  "interval_lebesgue_integrable M a b f =
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   166
    (if a \<le> b then set_integrable M (einterval a b) f else set_integrable M (einterval b a) f)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   167
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   168
syntax
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   169
  "_ascii_interval_lebesgue_borel_integral" :: "pttrn \<Rightarrow> real \<Rightarrow> real \<Rightarrow> real \<Rightarrow> real"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   170
  ("(4LBINT _=_.._. _)" [0,60,60,61] 60)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   171
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   172
translations
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   173
  "LBINT x=a..b. f" == "CONST interval_lebesgue_integral CONST lborel a b (\<lambda>x. f)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   174
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   175
subsection\<open>Basic properties of integration over an interval\<close>
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   176
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   177
lemma interval_lebesgue_integral_cong:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   178
  "a \<le> b \<Longrightarrow> (\<And>x. x \<in> einterval a b \<Longrightarrow> f x = g x) \<Longrightarrow> einterval a b \<in> sets M \<Longrightarrow>
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   179
    interval_lebesgue_integral M a b f = interval_lebesgue_integral M a b g"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   180
  by (auto intro: set_lebesgue_integral_cong simp: interval_lebesgue_integral_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   181
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   182
lemma interval_lebesgue_integral_cong_AE:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   183
  "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow>
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   184
    a \<le> b \<Longrightarrow> AE x \<in> einterval a b in M. f x = g x \<Longrightarrow> einterval a b \<in> sets M \<Longrightarrow>
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   185
    interval_lebesgue_integral M a b f = interval_lebesgue_integral M a b g"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   186
  by (auto intro: set_lebesgue_integral_cong_AE simp: interval_lebesgue_integral_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   187
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61973
diff changeset
   188
lemma interval_integrable_mirror:
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61973
diff changeset
   189
  shows "interval_lebesgue_integrable lborel a b (\<lambda>x. f (-x)) \<longleftrightarrow>
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61973
diff changeset
   190
    interval_lebesgue_integrable lborel (-b) (-a) f"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61973
diff changeset
   191
proof -
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61973
diff changeset
   192
  have *: "indicator (einterval a b) (- x) = (indicator (einterval (-b) (-a)) x :: real)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61973
diff changeset
   193
    for a b :: ereal and x :: real
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61973
diff changeset
   194
    by (cases a b rule: ereal2_cases) (auto simp: einterval_def split: split_indicator)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61973
diff changeset
   195
  show ?thesis
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61973
diff changeset
   196
    unfolding interval_lebesgue_integrable_def
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61973
diff changeset
   197
    using lborel_integrable_real_affine_iff[symmetric, of "-1" "\<lambda>x. indicator (einterval _ _) x *\<^sub>R f x" 0]
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   198
    by (simp add: * set_integrable_def)
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61973
diff changeset
   199
qed
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61973
diff changeset
   200
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   201
lemma interval_lebesgue_integral_add [intro, simp]:
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   202
  fixes M a b f
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   203
  assumes "interval_lebesgue_integrable M a b f" "interval_lebesgue_integrable M a b g"
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   204
  shows "interval_lebesgue_integrable M a b (\<lambda>x. f x + g x)" and
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   205
    "interval_lebesgue_integral M a b (\<lambda>x. f x + g x) =
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   206
   interval_lebesgue_integral M a b f + interval_lebesgue_integral M a b g"
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   207
using assms by (auto simp add: interval_lebesgue_integral_def interval_lebesgue_integrable_def
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   208
    field_simps)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   209
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   210
lemma interval_lebesgue_integral_diff [intro, simp]:
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   211
  fixes M a b f
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   212
  assumes "interval_lebesgue_integrable M a b f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   213
    "interval_lebesgue_integrable M a b g"
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   214
  shows "interval_lebesgue_integrable M a b (\<lambda>x. f x - g x)" and
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   215
    "interval_lebesgue_integral M a b (\<lambda>x. f x - g x) =
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   216
   interval_lebesgue_integral M a b f - interval_lebesgue_integral M a b g"
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   217
using assms by (auto simp add: interval_lebesgue_integral_def interval_lebesgue_integrable_def
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   218
    field_simps)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   219
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   220
lemma interval_lebesgue_integrable_mult_right [intro, simp]:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   221
  fixes M a b c and f :: "real \<Rightarrow> 'a::{banach, real_normed_field, second_countable_topology}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   222
  shows "(c \<noteq> 0 \<Longrightarrow> interval_lebesgue_integrable M a b f) \<Longrightarrow>
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   223
    interval_lebesgue_integrable M a b (\<lambda>x. c * f x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   224
  by (simp add: interval_lebesgue_integrable_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   225
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   226
lemma interval_lebesgue_integrable_mult_left [intro, simp]:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   227
  fixes M a b c and f :: "real \<Rightarrow> 'a::{banach, real_normed_field, second_countable_topology}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   228
  shows "(c \<noteq> 0 \<Longrightarrow> interval_lebesgue_integrable M a b f) \<Longrightarrow>
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   229
    interval_lebesgue_integrable M a b (\<lambda>x. f x * c)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   230
  by (simp add: interval_lebesgue_integrable_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   231
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   232
lemma interval_lebesgue_integrable_divide [intro, simp]:
59867
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59587
diff changeset
   233
  fixes M a b c and f :: "real \<Rightarrow> 'a::{banach, real_normed_field, field, second_countable_topology}"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   234
  shows "(c \<noteq> 0 \<Longrightarrow> interval_lebesgue_integrable M a b f) \<Longrightarrow>
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   235
    interval_lebesgue_integrable M a b (\<lambda>x. f x / c)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   236
  by (simp add: interval_lebesgue_integrable_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   237
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   238
lemma interval_lebesgue_integral_mult_right [simp]:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   239
  fixes M a b c and f :: "real \<Rightarrow> 'a::{banach, real_normed_field, second_countable_topology}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   240
  shows "interval_lebesgue_integral M a b (\<lambda>x. c * f x) =
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   241
    c * interval_lebesgue_integral M a b f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   242
  by (simp add: interval_lebesgue_integral_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   243
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   244
lemma interval_lebesgue_integral_mult_left [simp]:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   245
  fixes M a b c and f :: "real \<Rightarrow> 'a::{banach, real_normed_field, second_countable_topology}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   246
  shows "interval_lebesgue_integral M a b (\<lambda>x. f x * c) =
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   247
    interval_lebesgue_integral M a b f * c"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   248
  by (simp add: interval_lebesgue_integral_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   249
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   250
lemma interval_lebesgue_integral_divide [simp]:
59867
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59587
diff changeset
   251
  fixes M a b c and f :: "real \<Rightarrow> 'a::{banach, real_normed_field, field, second_countable_topology}"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   252
  shows "interval_lebesgue_integral M a b (\<lambda>x. f x / c) =
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   253
    interval_lebesgue_integral M a b f / c"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   254
  by (simp add: interval_lebesgue_integral_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   255
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   256
lemma interval_lebesgue_integral_uminus:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   257
  "interval_lebesgue_integral M a b (\<lambda>x. - f x) = - interval_lebesgue_integral M a b f"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   258
  by (auto simp add: interval_lebesgue_integral_def interval_lebesgue_integrable_def set_lebesgue_integral_def)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   259
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   260
lemma interval_lebesgue_integral_of_real:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   261
  "interval_lebesgue_integral M a b (\<lambda>x. complex_of_real (f x)) =
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   262
    of_real (interval_lebesgue_integral M a b f)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   263
  unfolding interval_lebesgue_integral_def
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   264
  by (auto simp add: interval_lebesgue_integral_def set_integral_complex_of_real)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   265
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   266
lemma interval_lebesgue_integral_le_eq:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   267
  fixes a b f
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   268
  assumes "a \<le> b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   269
  shows "interval_lebesgue_integral M a b f = (LINT x : einterval a b | M. f x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   270
using assms by (auto simp add: interval_lebesgue_integral_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   271
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   272
lemma interval_lebesgue_integral_gt_eq:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   273
  fixes a b f
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   274
  assumes "a > b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   275
  shows "interval_lebesgue_integral M a b f = -(LINT x : einterval b a | M. f x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   276
using assms by (auto simp add: interval_lebesgue_integral_def less_imp_le einterval_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   277
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   278
lemma interval_lebesgue_integral_gt_eq':
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   279
  fixes a b f
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   280
  assumes "a > b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   281
  shows "interval_lebesgue_integral M a b f = - interval_lebesgue_integral M b a f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   282
using assms by (auto simp add: interval_lebesgue_integral_def less_imp_le einterval_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   283
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   284
lemma interval_integral_endpoints_same [simp]: "(LBINT x=a..a. f x) = 0"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   285
  by (simp add: interval_lebesgue_integral_def set_lebesgue_integral_def einterval_same)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   286
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   287
lemma interval_integral_endpoints_reverse: "(LBINT x=a..b. f x) = -(LBINT x=b..a. f x)"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   288
  by (cases a b rule: linorder_cases) (auto simp: interval_lebesgue_integral_def set_lebesgue_integral_def einterval_same)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   289
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   290
lemma interval_integrable_endpoints_reverse:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   291
  "interval_lebesgue_integrable lborel a b f \<longleftrightarrow>
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   292
    interval_lebesgue_integrable lborel b a f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   293
  by (cases a b rule: linorder_cases) (auto simp: interval_lebesgue_integrable_def einterval_same)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   294
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   295
lemma interval_integral_reflect:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   296
  "(LBINT x=a..b. f x) = (LBINT x=-b..-a. f (-x))"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   297
proof (induct a b rule: linorder_wlog)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   298
  case (sym a b) then show ?case
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   299
    by (auto simp add: interval_lebesgue_integral_def interval_integrable_endpoints_reverse
62390
842917225d56 more canonical names
nipkow
parents: 62083
diff changeset
   300
             split: if_split_asm)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   301
next
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   302
  case (le a b) 
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   303
  have "LBINT x:{x. - x \<in> einterval a b}. f (- x) = LBINT x:einterval (- b) (- a). f (- x)"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   304
    unfolding interval_lebesgue_integrable_def set_lebesgue_integral_def
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   305
    apply (rule Bochner_Integration.integral_cong [OF refl])
68046
6aba668aea78 new simp modifier: reorient
nipkow
parents: 67974
diff changeset
   306
    by (auto simp: einterval_iff ereal_uminus_le_reorder ereal_uminus_less_reorder not_less
6aba668aea78 new simp modifier: reorient
nipkow
parents: 67974
diff changeset
   307
             reorient: uminus_ereal.simps
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   308
             split: split_indicator)
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   309
  then show ?case
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   310
    unfolding interval_lebesgue_integral_def 
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   311
    by (subst set_integral_reflect) (simp add: le)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   312
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   313
61897
bc0fc5499085 Bochner integral: prove dominated convergence at_top
hoelzl
parents: 61882
diff changeset
   314
lemma interval_lebesgue_integral_0_infty:
bc0fc5499085 Bochner integral: prove dominated convergence at_top
hoelzl
parents: 61882
diff changeset
   315
  "interval_lebesgue_integrable M 0 \<infinity> f \<longleftrightarrow> set_integrable M {0<..} f"
bc0fc5499085 Bochner integral: prove dominated convergence at_top
hoelzl
parents: 61882
diff changeset
   316
  "interval_lebesgue_integral M 0 \<infinity> f = (LINT x:{0<..}|M. f x)"
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   317
  unfolding zero_ereal_def
61897
bc0fc5499085 Bochner integral: prove dominated convergence at_top
hoelzl
parents: 61882
diff changeset
   318
  by (auto simp: interval_lebesgue_integral_le_eq interval_lebesgue_integrable_def)
bc0fc5499085 Bochner integral: prove dominated convergence at_top
hoelzl
parents: 61882
diff changeset
   319
bc0fc5499085 Bochner integral: prove dominated convergence at_top
hoelzl
parents: 61882
diff changeset
   320
lemma interval_integral_to_infinity_eq: "(LINT x=ereal a..\<infinity> | M. f x) = (LINT x : {a<..} | M. f x)"
bc0fc5499085 Bochner integral: prove dominated convergence at_top
hoelzl
parents: 61882
diff changeset
   321
  unfolding interval_lebesgue_integral_def by auto
bc0fc5499085 Bochner integral: prove dominated convergence at_top
hoelzl
parents: 61882
diff changeset
   322
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   323
lemma interval_integrable_to_infinity_eq: "(interval_lebesgue_integrable M a \<infinity> f) =
61897
bc0fc5499085 Bochner integral: prove dominated convergence at_top
hoelzl
parents: 61882
diff changeset
   324
  (set_integrable M {a<..} f)"
bc0fc5499085 Bochner integral: prove dominated convergence at_top
hoelzl
parents: 61882
diff changeset
   325
  unfolding interval_lebesgue_integrable_def by auto
bc0fc5499085 Bochner integral: prove dominated convergence at_top
hoelzl
parents: 61882
diff changeset
   326
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   327
subsection\<open>Basic properties of integration over an interval wrt lebesgue measure\<close>
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   328
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   329
lemma interval_integral_zero [simp]:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   330
  fixes a b :: ereal
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   331
  shows"LBINT x=a..b. 0 = 0"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   332
unfolding interval_lebesgue_integral_def set_lebesgue_integral_def einterval_eq
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   333
by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   334
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   335
lemma interval_integral_const [intro, simp]:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   336
  fixes a b c :: real
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   337
  shows "interval_lebesgue_integrable lborel a b (\<lambda>x. c)" and "LBINT x=a..b. c = c * (b - a)"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   338
  unfolding interval_lebesgue_integral_def interval_lebesgue_integrable_def einterval_eq
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   339
  by (auto simp add: less_imp_le field_simps measure_def set_integrable_def set_lebesgue_integral_def)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   340
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   341
lemma interval_integral_cong_AE:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   342
  assumes [measurable]: "f \<in> borel_measurable borel" "g \<in> borel_measurable borel"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   343
  assumes "AE x \<in> einterval (min a b) (max a b) in lborel. f x = g x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   344
  shows "interval_lebesgue_integral lborel a b f = interval_lebesgue_integral lborel a b g"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   345
  using assms
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   346
proof (induct a b rule: linorder_wlog)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   347
  case (sym a b) then show ?case
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   348
    by (simp add: min.commute max.commute interval_integral_endpoints_reverse[of a b])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   349
next
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   350
  case (le a b) then show ?case
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   351
    by (auto simp: interval_lebesgue_integral_def max_def min_def
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   352
             intro!: set_lebesgue_integral_cong_AE)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   353
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   354
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   355
lemma interval_integral_cong:
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   356
  assumes "\<And>x. x \<in> einterval (min a b) (max a b) \<Longrightarrow> f x = g x"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   357
  shows "interval_lebesgue_integral lborel a b f = interval_lebesgue_integral lborel a b g"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   358
  using assms
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   359
proof (induct a b rule: linorder_wlog)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   360
  case (sym a b) then show ?case
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   361
    by (simp add: min.commute max.commute interval_integral_endpoints_reverse[of a b])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   362
next
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   363
  case (le a b) then show ?case
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   364
    by (auto simp: interval_lebesgue_integral_def max_def min_def
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   365
             intro!: set_lebesgue_integral_cong)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   366
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   367
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   368
lemma interval_lebesgue_integrable_cong_AE:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   369
    "f \<in> borel_measurable lborel \<Longrightarrow> g \<in> borel_measurable lborel \<Longrightarrow>
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   370
    AE x \<in> einterval (min a b) (max a b) in lborel. f x = g x \<Longrightarrow>
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   371
    interval_lebesgue_integrable lborel a b f = interval_lebesgue_integrable lborel a b g"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   372
  apply (simp add: interval_lebesgue_integrable_def )
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   373
  apply (intro conjI impI set_integrable_cong_AE)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   374
  apply (auto simp: min_def max_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   375
  done
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   376
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   377
lemma interval_integrable_abs_iff:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   378
  fixes f :: "real \<Rightarrow> real"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   379
  shows  "f \<in> borel_measurable lborel \<Longrightarrow>
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   380
    interval_lebesgue_integrable lborel a b (\<lambda>x. \<bar>f x\<bar>) = interval_lebesgue_integrable lborel a b f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   381
  unfolding interval_lebesgue_integrable_def
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   382
  by (subst (1 2) set_integrable_abs_iff') simp_all
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   383
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   384
lemma interval_integral_Icc:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   385
  fixes a b :: real
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   386
  shows "a \<le> b \<Longrightarrow> (LBINT x=a..b. f x) = (LBINT x : {a..b}. f x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   387
  by (auto intro!: set_integral_discrete_difference[where X="{a, b}"]
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   388
           simp add: interval_lebesgue_integral_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   389
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   390
lemma interval_integral_Icc':
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   391
  "a \<le> b \<Longrightarrow> (LBINT x=a..b. f x) = (LBINT x : {x. a \<le> ereal x \<and> ereal x \<le> b}. f x)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
   392
  by (auto intro!: set_integral_discrete_difference[where X="{real_of_ereal a, real_of_ereal b}"]
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   393
           simp add: interval_lebesgue_integral_def einterval_iff)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   394
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   395
lemma interval_integral_Ioc:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   396
  "a \<le> b \<Longrightarrow> (LBINT x=a..b. f x) = (LBINT x : {a<..b}. f x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   397
  by (auto intro!: set_integral_discrete_difference[where X="{a, b}"]
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   398
           simp add: interval_lebesgue_integral_def einterval_iff)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   399
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   400
(* TODO: other versions as well? *) (* Yes: I need the Icc' version. *)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   401
lemma interval_integral_Ioc':
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   402
  "a \<le> b \<Longrightarrow> (LBINT x=a..b. f x) = (LBINT x : {x. a < ereal x \<and> ereal x \<le> b}. f x)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
   403
  by (auto intro!: set_integral_discrete_difference[where X="{real_of_ereal a, real_of_ereal b}"]
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   404
           simp add: interval_lebesgue_integral_def einterval_iff)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   405
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   406
lemma interval_integral_Ico:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   407
  "a \<le> b \<Longrightarrow> (LBINT x=a..b. f x) = (LBINT x : {a..<b}. f x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   408
  by (auto intro!: set_integral_discrete_difference[where X="{a, b}"]
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   409
           simp add: interval_lebesgue_integral_def einterval_iff)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   410
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   411
lemma interval_integral_Ioi:
61882
8b4b5d74c587 Probability: fix coercions (real ~> real_of_enat)
hoelzl
parents: 61808
diff changeset
   412
  "\<bar>a\<bar> < \<infinity> \<Longrightarrow> (LBINT x=a..\<infinity>. f x) = (LBINT x : {real_of_ereal a <..}. f x)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   413
  by (auto simp add: interval_lebesgue_integral_def einterval_iff)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   414
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   415
lemma interval_integral_Ioo:
61882
8b4b5d74c587 Probability: fix coercions (real ~> real_of_enat)
hoelzl
parents: 61808
diff changeset
   416
  "a \<le> b \<Longrightarrow> \<bar>a\<bar> < \<infinity> ==> \<bar>b\<bar> < \<infinity> \<Longrightarrow> (LBINT x=a..b. f x) = (LBINT x : {real_of_ereal a <..< real_of_ereal b}. f x)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   417
  by (auto simp add: interval_lebesgue_integral_def einterval_iff)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   418
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   419
lemma interval_integral_discrete_difference:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   420
  fixes f :: "real \<Rightarrow> 'b::{banach, second_countable_topology}" and a b :: ereal
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   421
  assumes "countable X"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   422
  and eq: "\<And>x. a \<le> b \<Longrightarrow> a < x \<Longrightarrow> x < b \<Longrightarrow> x \<notin> X \<Longrightarrow> f x = g x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   423
  and anti_eq: "\<And>x. b \<le> a \<Longrightarrow> b < x \<Longrightarrow> x < a \<Longrightarrow> x \<notin> X \<Longrightarrow> f x = g x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   424
  assumes "\<And>x. x \<in> X \<Longrightarrow> emeasure M {x} = 0" "\<And>x. x \<in> X \<Longrightarrow> {x} \<in> sets M"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   425
  shows "interval_lebesgue_integral M a b f = interval_lebesgue_integral M a b g"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   426
  unfolding interval_lebesgue_integral_def set_lebesgue_integral_def
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   427
  apply (intro if_cong refl arg_cong[where f="\<lambda>x. - x"] integral_discrete_difference[of X] assms)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   428
  apply (auto simp: eq anti_eq einterval_iff split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   429
  done
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   430
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   431
lemma interval_integral_sum:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   432
  fixes a b c :: ereal
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   433
  assumes integrable: "interval_lebesgue_integrable lborel (min a (min b c)) (max a (max b c)) f"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   434
  shows "(LBINT x=a..b. f x) + (LBINT x=b..c. f x) = (LBINT x=a..c. f x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   435
proof -
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   436
  let ?I = "\<lambda>a b. LBINT x=a..b. f x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   437
  { fix a b c :: ereal assume "interval_lebesgue_integrable lborel a c f" "a \<le> b" "b \<le> c"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   438
    then have ord: "a \<le> b" "b \<le> c" "a \<le> c" and f': "set_integrable lborel (einterval a c) f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   439
      by (auto simp: interval_lebesgue_integrable_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   440
    then have f: "set_borel_measurable borel (einterval a c) f"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   441
      unfolding set_integrable_def set_borel_measurable_def
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   442
      by (drule_tac borel_measurable_integrable) simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   443
    have "(LBINT x:einterval a c. f x) = (LBINT x:einterval a b \<union> einterval b c. f x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   444
    proof (rule set_integral_cong_set)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   445
      show "AE x in lborel. (x \<in> einterval a b \<union> einterval b c) = (x \<in> einterval a c)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
   446
        using AE_lborel_singleton[of "real_of_ereal b"] ord
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   447
        by (cases a b c rule: ereal3_cases) (auto simp: einterval_iff)
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   448
      show "set_borel_measurable lborel (einterval a c) f" "set_borel_measurable lborel (einterval a b \<union> einterval b c) f"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   449
        unfolding set_borel_measurable_def
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   450
        using ord by (auto simp: einterval_iff intro!: set_borel_measurable_subset[OF f, unfolded set_borel_measurable_def])
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   451
    qed
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   452
    also have "\<dots> = (LBINT x:einterval a b. f x) + (LBINT x:einterval b c. f x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   453
      using ord
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   454
      by (intro set_integral_Un_AE) (auto intro!: set_integrable_subset[OF f'] simp: einterval_iff not_less)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   455
    finally have "?I a b + ?I b c = ?I a c"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   456
      using ord by (simp add: interval_lebesgue_integral_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   457
  } note 1 = this
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   458
  { fix a b c :: ereal assume "interval_lebesgue_integrable lborel a c f" "a \<le> b" "b \<le> c"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   459
    from 1[OF this] have "?I b c + ?I a b = ?I a c"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   460
      by (metis add.commute)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   461
  } note 2 = this
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   462
  have 3: "\<And>a b. b \<le> a \<Longrightarrow> (LBINT x=a..b. f x) = - (LBINT x=b..a. f x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   463
    by (rule interval_integral_endpoints_reverse)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   464
  show ?thesis
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   465
    using integrable
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   466
    by (cases a b b c a c rule: linorder_le_cases[case_product linorder_le_cases linorder_cases])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   467
       (simp_all add: min_absorb1 min_absorb2 max_absorb1 max_absorb2 field_simps 1 2 3)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   468
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   469
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   470
lemma interval_integrable_isCont:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   471
  fixes a b and f :: "real \<Rightarrow> 'a::{banach, second_countable_topology}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   472
  shows "(\<And>x. min a b \<le> x \<Longrightarrow> x \<le> max a b \<Longrightarrow> isCont f x) \<Longrightarrow>
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   473
    interval_lebesgue_integrable lborel a b f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   474
proof (induct a b rule: linorder_wlog)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   475
  case (le a b) then show ?case
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   476
    unfolding interval_lebesgue_integrable_def set_integrable_def
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   477
    by (auto simp: interval_lebesgue_integrable_def
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   478
        intro!: set_integrable_subset[unfolded set_integrable_def, OF borel_integrable_compact[of "{a .. b}"]]
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   479
        continuous_at_imp_continuous_on)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   480
qed (auto intro: interval_integrable_endpoints_reverse[THEN iffD1])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   481
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   482
lemma interval_integrable_continuous_on:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   483
  fixes a b :: real and f
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   484
  assumes "a \<le> b" and "continuous_on {a..b} f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   485
  shows "interval_lebesgue_integrable lborel a b f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   486
using assms unfolding interval_lebesgue_integrable_def apply simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   487
  by (rule set_integrable_subset, rule borel_integrable_atLeastAtMost' [of a b], auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   488
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   489
lemma interval_integral_eq_integral:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   490
  fixes f :: "real \<Rightarrow> 'a::euclidean_space"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   491
  shows "a \<le> b \<Longrightarrow> set_integrable lborel {a..b} f \<Longrightarrow> LBINT x=a..b. f x = integral {a..b} f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   492
  by (subst interval_integral_Icc, simp) (rule set_borel_integral_eq_integral)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   493
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   494
lemma interval_integral_eq_integral':
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   495
  fixes f :: "real \<Rightarrow> 'a::euclidean_space"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   496
  shows "a \<le> b \<Longrightarrow> set_integrable lborel (einterval a b) f \<Longrightarrow> LBINT x=a..b. f x = integral (einterval a b) f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   497
  by (subst interval_lebesgue_integral_le_eq, simp) (rule set_borel_integral_eq_integral)
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   498
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   499
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   500
subsection\<open>General limit approximation arguments\<close>
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   501
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   502
lemma interval_integral_Icc_approx_nonneg:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   503
  fixes a b :: ereal
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   504
  assumes "a < b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   505
  fixes u l :: "nat \<Rightarrow> real"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   506
  assumes  approx: "einterval a b = (\<Union>i. {l i .. u i})"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   507
    "incseq u" "decseq l" "\<And>i. l i < u i" "\<And>i. a < l i" "\<And>i. u i < b"
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   508
    "l \<longlonglongrightarrow> a" "u \<longlonglongrightarrow> b"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   509
  fixes f :: "real \<Rightarrow> real"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   510
  assumes f_integrable: "\<And>i. set_integrable lborel {l i..u i} f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   511
  assumes f_nonneg: "AE x in lborel. a < ereal x \<longrightarrow> ereal x < b \<longrightarrow> 0 \<le> f x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   512
  assumes f_measurable: "set_borel_measurable lborel (einterval a b) f"
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   513
  assumes lbint_lim: "(\<lambda>i. LBINT x=l i.. u i. f x) \<longlonglongrightarrow> C"
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   514
  shows
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   515
    "set_integrable lborel (einterval a b) f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   516
    "(LBINT x=a..b. f x) = C"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   517
proof -
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   518
  have 1 [unfolded set_integrable_def]: "\<And>i. set_integrable lborel {l i..u i} f" by (rule f_integrable)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   519
  have 2: "AE x in lborel. mono (\<lambda>n. indicator {l n..u n} x *\<^sub>R f x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   520
  proof -
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   521
     from f_nonneg have "AE x in lborel. \<forall>i. l i \<le> x \<longrightarrow> x \<le> u i \<longrightarrow> 0 \<le> f x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   522
      by eventually_elim
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   523
         (metis approx(5) approx(6) dual_order.strict_trans1 ereal_less_eq(3) le_less_trans)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   524
    then show ?thesis
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   525
      apply eventually_elim
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   526
      apply (auto simp: mono_def split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   527
      apply (metis approx(3) decseqD order_trans)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   528
      apply (metis approx(2) incseqD order_trans)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   529
      done
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   530
  qed
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   531
  have 3: "AE x in lborel. (\<lambda>i. indicator {l i..u i} x *\<^sub>R f x) \<longlonglongrightarrow> indicator (einterval a b) x *\<^sub>R f x"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   532
  proof -
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   533
    { fix x i assume "l i \<le> x" "x \<le> u i"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   534
      then have "eventually (\<lambda>i. l i \<le> x \<and> x \<le> u i) sequentially"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   535
        apply (auto simp: eventually_sequentially intro!: exI[of _ i])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   536
        apply (metis approx(3) decseqD order_trans)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   537
        apply (metis approx(2) incseqD order_trans)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   538
        done
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   539
      then have "eventually (\<lambda>i. f x * indicator {l i..u i} x = f x) sequentially"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   540
        by eventually_elim auto }
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   541
    then show ?thesis
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   542
      unfolding approx(1) by (auto intro!: AE_I2 Lim_eventually split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   543
  qed
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   544
  have 4: "(\<lambda>i. \<integral> x. indicator {l i..u i} x *\<^sub>R f x \<partial>lborel) \<longlonglongrightarrow> C"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   545
    using lbint_lim by (simp add: interval_integral_Icc [unfolded set_lebesgue_integral_def] approx less_imp_le)
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   546
  have 5: "(\<lambda>x. indicat_real (einterval a b) x *\<^sub>R f x) \<in> borel_measurable lborel"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   547
    using f_measurable set_borel_measurable_def by blast
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   548
  have "(LBINT x=a..b. f x) = lebesgue_integral lborel (\<lambda>x. indicator (einterval a b) x *\<^sub>R f x)"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   549
    using assms by (simp add: interval_lebesgue_integral_def set_lebesgue_integral_def less_imp_le)
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   550
  also have "... = C"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   551
    by (rule integral_monotone_convergence [OF 1 2 3 4 5])
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   552
  finally show "(LBINT x=a..b. f x) = C" .
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   553
  show "set_integrable lborel (einterval a b) f"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   554
    unfolding set_integrable_def
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   555
    by (rule integrable_monotone_convergence[OF 1 2 3 4 5])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   556
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   557
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   558
lemma interval_integral_Icc_approx_integrable:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   559
  fixes u l :: "nat \<Rightarrow> real" and a b :: ereal
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   560
  fixes f :: "real \<Rightarrow> 'a::{banach, second_countable_topology}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   561
  assumes "a < b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   562
  assumes  approx: "einterval a b = (\<Union>i. {l i .. u i})"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   563
    "incseq u" "decseq l" "\<And>i. l i < u i" "\<And>i. a < l i" "\<And>i. u i < b"
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   564
    "l \<longlonglongrightarrow> a" "u \<longlonglongrightarrow> b"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   565
  assumes f_integrable: "set_integrable lborel (einterval a b) f"
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   566
  shows "(\<lambda>i. LBINT x=l i.. u i. f x) \<longlonglongrightarrow> (LBINT x=a..b. f x)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   567
proof -
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   568
  have "(\<lambda>i. LBINT x:{l i.. u i}. f x) \<longlonglongrightarrow> (LBINT x:einterval a b. f x)"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   569
    unfolding set_lebesgue_integral_def
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   570
  proof (rule integral_dominated_convergence)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   571
    show "integrable lborel (\<lambda>x. norm (indicator (einterval a b) x *\<^sub>R f x))"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   572
      using f_integrable integrable_norm set_integrable_def by blast
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   573
    show "(\<lambda>x. indicat_real (einterval a b) x *\<^sub>R f x) \<in> borel_measurable lborel"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   574
      using f_integrable by (simp add: set_integrable_def)
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   575
    then show "\<And>i. (\<lambda>x. indicat_real {l i..u i} x *\<^sub>R f x) \<in> borel_measurable lborel"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   576
      by (rule set_borel_measurable_subset [unfolded set_borel_measurable_def]) (auto simp: approx)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   577
    show "\<And>i. AE x in lborel. norm (indicator {l i..u i} x *\<^sub>R f x) \<le> norm (indicator (einterval a b) x *\<^sub>R f x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   578
      by (intro AE_I2) (auto simp: approx split: split_indicator)
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   579
    show "AE x in lborel. (\<lambda>i. indicator {l i..u i} x *\<^sub>R f x) \<longlonglongrightarrow> indicator (einterval a b) x *\<^sub>R f x"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   580
    proof (intro AE_I2 tendsto_intros Lim_eventually)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   581
      fix x
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   582
      { fix i assume "l i \<le> x" "x \<le> u i"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   583
        with \<open>incseq u\<close>[THEN incseqD, of i] \<open>decseq l\<close>[THEN decseqD, of i]
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   584
        have "eventually (\<lambda>i. l i \<le> x \<and> x \<le> u i) sequentially"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   585
          by (auto simp: eventually_sequentially decseq_def incseq_def intro: order_trans) }
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   586
      then show "eventually (\<lambda>xa. indicator {l xa..u xa} x = (indicator (einterval a b) x::real)) sequentially"
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   587
        using approx order_tendstoD(2)[OF \<open>l \<longlonglongrightarrow> a\<close>, of x] order_tendstoD(1)[OF \<open>u \<longlonglongrightarrow> b\<close>, of x]
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   588
        by (auto split: split_indicator)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   589
    qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   590
  qed
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   591
  with \<open>a < b\<close> \<open>\<And>i. l i < u i\<close> show ?thesis
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   592
    by (simp add: interval_lebesgue_integral_le_eq[symmetric] interval_integral_Icc less_imp_le)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   593
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   594
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   595
subsection\<open>A slightly stronger Fundamental Theorem of Calculus\<close>
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   596
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   597
text\<open>Three versions: first, for finite intervals, and then two versions for
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   598
    arbitrary intervals.\<close>
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   599
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   600
(*
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   601
  TODO: make the older versions corollaries of these (using continuous_at_imp_continuous_on, etc.)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   602
*)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   603
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   604
(*
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   605
TODO: many proofs below require inferences like
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   606
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   607
  a < ereal x \<Longrightarrow> x < y \<Longrightarrow> a < ereal y
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   608
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   609
where x and y are real. These should be better automated.
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   610
*)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   611
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   612
lemma interval_integral_FTC_finite:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   613
  fixes f F :: "real \<Rightarrow> 'a::euclidean_space" and a b :: real
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   614
  assumes f: "continuous_on {min a b..max a b} f"
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   615
  assumes F: "\<And>x. min a b \<le> x \<Longrightarrow> x \<le> max a b \<Longrightarrow> (F has_vector_derivative (f x)) (at x within
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   616
    {min a b..max a b})"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   617
  shows "(LBINT x=a..b. f x) = F b - F a"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   618
proof (cases "a \<le> b")
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   619
  case True
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   620
  have "(LBINT x=a..b. f x) = (LBINT x. indicat_real {a..b} x *\<^sub>R f x)"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   621
    by (simp add: True interval_integral_Icc set_lebesgue_integral_def)
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   622
  also have "... = F b - F a"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   623
  proof (rule integral_FTC_atLeastAtMost [OF True])
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   624
    show "continuous_on {a..b} f"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   625
      using True f by linarith
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   626
    show "\<And>x. \<lbrakk>a \<le> x; x \<le> b\<rbrakk> \<Longrightarrow> (F has_vector_derivative f x) (at x within {a..b})"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   627
      by (metis F True max.commute max_absorb1 min_def)
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   628
  qed
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   629
  finally show ?thesis .
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   630
next
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   631
  case False
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   632
  then have "b \<le> a"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   633
    by simp
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   634
  have "- interval_lebesgue_integral lborel (ereal b) (ereal a) f = - (LBINT x. indicat_real {b..a} x *\<^sub>R f x)"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   635
    by (simp add: \<open>b \<le> a\<close> interval_integral_Icc set_lebesgue_integral_def)
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   636
  also have "... = F b - F a"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   637
  proof (subst integral_FTC_atLeastAtMost [OF \<open>b \<le> a\<close>])
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   638
    show "continuous_on {b..a} f"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   639
      using False f by linarith
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   640
    show "\<And>x. \<lbrakk>b \<le> x; x \<le> a\<rbrakk>
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   641
         \<Longrightarrow> (F has_vector_derivative f x) (at x within {b..a})"
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   642
      by (metis F False max_def min_def)
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   643
  qed auto
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   644
  finally show ?thesis
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   645
    by (metis interval_integral_endpoints_reverse)
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   646
qed
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   647
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   648
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   649
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   650
lemma interval_integral_FTC_nonneg:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   651
  fixes f F :: "real \<Rightarrow> real" and a b :: ereal
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   652
  assumes "a < b"
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   653
  assumes F: "\<And>x. a < ereal x \<Longrightarrow> ereal x < b \<Longrightarrow> DERIV F x :> f x"
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   654
  assumes f: "\<And>x. a < ereal x \<Longrightarrow> ereal x < b \<Longrightarrow> isCont f x"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   655
  assumes f_nonneg: "AE x in lborel. a < ereal x \<longrightarrow> ereal x < b \<longrightarrow> 0 \<le> f x"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   656
  assumes A: "((F \<circ> real_of_ereal) \<longlongrightarrow> A) (at_right a)"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   657
  assumes B: "((F \<circ> real_of_ereal) \<longlongrightarrow> B) (at_left b)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   658
  shows
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   659
    "set_integrable lborel (einterval a b) f"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   660
    "(LBINT x=a..b. f x) = B - A"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   661
proof -
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   662
  from einterval_Icc_approximation[OF \<open>a < b\<close>] guess u l . note approx = this
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   663
  have [simp]: "\<And>x i. l i \<le> x \<Longrightarrow> a < ereal x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   664
    by (rule order_less_le_trans, rule approx, force)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   665
  have [simp]: "\<And>x i. x \<le> u i \<Longrightarrow> ereal x < b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   666
    by (rule order_le_less_trans, subst ereal_less_eq(3), assumption, rule approx)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   667
  have FTCi: "\<And>i. (LBINT x=l i..u i. f x) = F (u i) - F (l i)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   668
    using assms approx apply (intro interval_integral_FTC_finite)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   669
    apply (auto simp add: less_imp_le min_def max_def
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   670
      has_field_derivative_iff_has_vector_derivative[symmetric])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   671
    apply (rule continuous_at_imp_continuous_on, auto intro!: f)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   672
    by (rule DERIV_subset [OF F], auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   673
  have 1: "\<And>i. set_integrable lborel {l i..u i} f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   674
  proof -
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   675
    fix i show "set_integrable lborel {l i .. u i} f"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   676
      using \<open>a < l i\<close> \<open>u i < b\<close> unfolding set_integrable_def
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   677
      by (intro borel_integrable_compact f continuous_at_imp_continuous_on compact_Icc ballI)
68046
6aba668aea78 new simp modifier: reorient
nipkow
parents: 67974
diff changeset
   678
         (auto reorient: ereal_less_eq)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   679
  qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   680
  have 2: "set_borel_measurable lborel (einterval a b) f"
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   681
    unfolding set_borel_measurable_def
66164
2d79288b042c New theorems and much tidying up of the old ones
paulson <lp15@cam.ac.uk>
parents: 63941
diff changeset
   682
    by (auto simp del: real_scaleR_def intro!: borel_measurable_continuous_on_indicator
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   683
             simp: continuous_on_eq_continuous_at einterval_iff f)
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   684
  have 3: "(\<lambda>i. LBINT x=l i..u i. f x) \<longlonglongrightarrow> B - A"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   685
    apply (subst FTCi)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   686
    apply (intro tendsto_intros)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   687
    using B approx unfolding tendsto_at_iff_sequentially comp_def
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   688
    using tendsto_at_iff_sequentially[where 'a=real]
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   689
    apply (elim allE[of _ "\<lambda>i. ereal (u i)"], auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   690
    using A approx unfolding tendsto_at_iff_sequentially comp_def
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   691
    by (elim allE[of _ "\<lambda>i. ereal (l i)"], auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   692
  show "(LBINT x=a..b. f x) = B - A"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   693
    by (rule interval_integral_Icc_approx_nonneg [OF \<open>a < b\<close> approx 1 f_nonneg 2 3])
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   694
  show "set_integrable lborel (einterval a b) f"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   695
    by (rule interval_integral_Icc_approx_nonneg [OF \<open>a < b\<close> approx 1 f_nonneg 2 3])
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   696
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   697
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   698
lemma interval_integral_FTC_integrable:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   699
  fixes f F :: "real \<Rightarrow> 'a::euclidean_space" and a b :: ereal
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   700
  assumes "a < b"
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   701
  assumes F: "\<And>x. a < ereal x \<Longrightarrow> ereal x < b \<Longrightarrow> (F has_vector_derivative f x) (at x)"
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   702
  assumes f: "\<And>x. a < ereal x \<Longrightarrow> ereal x < b \<Longrightarrow> isCont f x"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   703
  assumes f_integrable: "set_integrable lborel (einterval a b) f"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   704
  assumes A: "((F \<circ> real_of_ereal) \<longlongrightarrow> A) (at_right a)"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   705
  assumes B: "((F \<circ> real_of_ereal) \<longlongrightarrow> B) (at_left b)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   706
  shows "(LBINT x=a..b. f x) = B - A"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   707
proof -
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   708
  from einterval_Icc_approximation[OF \<open>a < b\<close>] guess u l . note approx = this
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   709
  have [simp]: "\<And>x i. l i \<le> x \<Longrightarrow> a < ereal x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   710
    by (rule order_less_le_trans, rule approx, force)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   711
  have [simp]: "\<And>x i. x \<le> u i \<Longrightarrow> ereal x < b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   712
    by (rule order_le_less_trans, subst ereal_less_eq(3), assumption, rule approx)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   713
  have FTCi: "\<And>i. (LBINT x=l i..u i. f x) = F (u i) - F (l i)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   714
    using assms approx
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   715
    by (auto simp add: less_imp_le min_def max_def
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   716
             intro!: f continuous_at_imp_continuous_on interval_integral_FTC_finite
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   717
             intro: has_vector_derivative_at_within)
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   718
  have "(\<lambda>i. LBINT x=l i..u i. f x) \<longlonglongrightarrow> B - A"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   719
    apply (subst FTCi)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   720
    apply (intro tendsto_intros)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   721
    using B approx unfolding tendsto_at_iff_sequentially comp_def
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   722
    apply (elim allE[of _ "\<lambda>i. ereal (u i)"], auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   723
    using A approx unfolding tendsto_at_iff_sequentially comp_def
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   724
    by (elim allE[of _ "\<lambda>i. ereal (l i)"], auto)
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   725
  moreover have "(\<lambda>i. LBINT x=l i..u i. f x) \<longlonglongrightarrow> (LBINT x=a..b. f x)"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   726
    by (rule interval_integral_Icc_approx_integrable [OF \<open>a < b\<close> approx f_integrable])
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   727
  ultimately show ?thesis
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   728
    by (elim LIMSEQ_unique)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   729
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   730
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   731
(*
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   732
  The second Fundamental Theorem of Calculus and existence of antiderivatives on an
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   733
  einterval.
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   734
*)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   735
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   736
lemma interval_integral_FTC2:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   737
  fixes a b c :: real and f :: "real \<Rightarrow> 'a::euclidean_space"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   738
  assumes "a \<le> c" "c \<le> b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   739
  and contf: "continuous_on {a..b} f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   740
  fixes x :: real
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   741
  assumes "a \<le> x" and "x \<le> b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   742
  shows "((\<lambda>u. LBINT y=c..u. f y) has_vector_derivative (f x)) (at x within {a..b})"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   743
proof -
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   744
  let ?F = "(\<lambda>u. LBINT y=a..u. f y)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   745
  have intf: "set_integrable lborel {a..b} f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   746
    by (rule borel_integrable_atLeastAtMost', rule contf)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   747
  have "((\<lambda>u. integral {a..u} f) has_vector_derivative f x) (at x within {a..b})"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   748
    apply (intro integral_has_vector_derivative)
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   749
    using \<open>a \<le> x\<close> \<open>x \<le> b\<close> by (intro continuous_on_subset [OF contf], auto)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   750
  then have "((\<lambda>u. integral {a..u} f) has_vector_derivative (f x)) (at x within {a..b})"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   751
    by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   752
  then have "(?F has_vector_derivative (f x)) (at x within {a..b})"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   753
    by (rule has_vector_derivative_weaken)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   754
       (auto intro!: assms interval_integral_eq_integral[symmetric] set_integrable_subset [OF intf])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   755
  then have "((\<lambda>x. (LBINT y=c..a. f y) + ?F x) has_vector_derivative (f x)) (at x within {a..b})"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   756
    by (auto intro!: derivative_eq_intros)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   757
  then show ?thesis
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   758
  proof (rule has_vector_derivative_weaken)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   759
    fix u assume "u \<in> {a .. b}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   760
    then show "(LBINT y=c..a. f y) + (LBINT y=a..u. f y) = (LBINT y=c..u. f y)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   761
      using assms
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   762
      apply (intro interval_integral_sum)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   763
      apply (auto simp add: interval_lebesgue_integrable_def simp del: real_scaleR_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   764
      by (rule set_integrable_subset [OF intf], auto simp add: min_def max_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   765
  qed (insert assms, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   766
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   767
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   768
lemma einterval_antiderivative:
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   769
  fixes a b :: ereal and f :: "real \<Rightarrow> 'a::euclidean_space"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   770
  assumes "a < b" and contf: "\<And>x :: real. a < x \<Longrightarrow> x < b \<Longrightarrow> isCont f x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   771
  shows "\<exists>F. \<forall>x :: real. a < x \<longrightarrow> x < b \<longrightarrow> (F has_vector_derivative f x) (at x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   772
proof -
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   773
  from einterval_nonempty [OF \<open>a < b\<close>] obtain c :: real where [simp]: "a < c" "c < b"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   774
    by (auto simp add: einterval_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   775
  let ?F = "(\<lambda>u. LBINT y=c..u. f y)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   776
  show ?thesis
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   777
  proof (rule exI, clarsimp)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   778
    fix x :: real
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   779
    assume [simp]: "a < x" "x < b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   780
    have 1: "a < min c x" by simp
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   781
    from einterval_nonempty [OF 1] obtain d :: real where [simp]: "a < d" "d < c" "d < x"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   782
      by (auto simp add: einterval_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   783
    have 2: "max c x < b" by simp
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   784
    from einterval_nonempty [OF 2] obtain e :: real where [simp]: "c < e" "x < e" "e < b"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   785
      by (auto simp add: einterval_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   786
    show "(?F has_vector_derivative f x) (at x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   787
      (* TODO: factor out the next three lines to has_field_derivative_within_open *)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   788
      unfolding has_vector_derivative_def
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   789
      apply (subst has_derivative_within_open [of _ "{d<..<e}", symmetric], auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   790
      apply (subst has_vector_derivative_def [symmetric])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   791
      apply (rule has_vector_derivative_within_subset [of _ _ _ "{d..e}"])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   792
      apply (rule interval_integral_FTC2, auto simp add: less_imp_le)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   793
      apply (rule continuous_at_imp_continuous_on)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   794
      apply (auto intro!: contf)
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   795
      apply (rule order_less_le_trans, rule \<open>a < d\<close>, auto)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   796
      apply (rule order_le_less_trans) prefer 2
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   797
      by (rule \<open>e < b\<close>, auto)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   798
  qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   799
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   800
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   801
subsection\<open>The substitution theorem\<close>
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   802
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   803
text\<open>Once again, three versions: first, for finite intervals, and then two versions for
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   804
    arbitrary intervals.\<close>
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   805
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   806
lemma interval_integral_substitution_finite:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   807
  fixes a b :: real and f :: "real \<Rightarrow> 'a::euclidean_space"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   808
  assumes "a \<le> b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   809
  and derivg: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> (g has_real_derivative (g' x)) (at x within {a..b})"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   810
  and contf : "continuous_on (g ` {a..b}) f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   811
  and contg': "continuous_on {a..b} g'"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   812
  shows "LBINT x=a..b. g' x *\<^sub>R f (g x) = LBINT y=g a..g b. f y"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   813
proof-
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   814
  have v_derivg: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> (g has_vector_derivative (g' x)) (at x within {a..b})"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   815
    using derivg unfolding has_field_derivative_iff_has_vector_derivative .
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   816
  then have contg [simp]: "continuous_on {a..b} g"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   817
    by (rule continuous_on_vector_derivative) auto
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   818
  have 1: "\<And>u. min (g a) (g b) \<le> u \<Longrightarrow> u \<le> max (g a) (g b) \<Longrightarrow>
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   819
      \<exists>x\<in>{a..b}. u = g x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   820
    apply (case_tac "g a \<le> g b")
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   821
    apply (auto simp add: min_def max_def less_imp_le)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   822
    apply (frule (1) IVT' [of g], auto simp add: assms)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   823
    by (frule (1) IVT2' [of g], auto simp add: assms)
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   824
  from contg \<open>a \<le> b\<close> have "\<exists>c d. g ` {a..b} = {c..d} \<and> c \<le> d"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   825
    by (elim continuous_image_closed_interval)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   826
  then obtain c d where g_im: "g ` {a..b} = {c..d}" and "c \<le> d" by auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   827
  have "\<exists>F. \<forall>x\<in>{a..b}. (F has_vector_derivative (f (g x))) (at (g x) within (g ` {a..b}))"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   828
    apply (rule exI, auto, subst g_im)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   829
    apply (rule interval_integral_FTC2 [of c c d])
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   830
    using \<open>c \<le> d\<close> apply auto
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   831
    apply (rule continuous_on_subset [OF contf])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   832
    using g_im by auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   833
  then guess F ..
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   834
  then have derivF: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow>
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   835
    (F has_vector_derivative (f (g x))) (at (g x) within (g ` {a..b}))" by auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   836
  have contf2: "continuous_on {min (g a) (g b)..max (g a) (g b)} f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   837
    apply (rule continuous_on_subset [OF contf])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   838
    apply (auto simp add: image_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   839
    by (erule 1)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   840
  have contfg: "continuous_on {a..b} (\<lambda>x. f (g x))"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   841
    by (blast intro: continuous_on_compose2 contf contg)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   842
  have "LBINT x=a..b. g' x *\<^sub>R f (g x) = F (g b) - F (g a)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   843
    apply (subst interval_integral_Icc, simp add: assms)
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
   844
    unfolding set_lebesgue_integral_def
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   845
    apply (rule integral_FTC_atLeastAtMost[of a b "\<lambda>x. F (g x)", OF \<open>a \<le> b\<close>])
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   846
    apply (rule vector_diff_chain_within[OF v_derivg derivF, unfolded comp_def])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   847
    apply (auto intro!: continuous_on_scaleR contg' contfg)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   848
    done
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   849
  moreover have "LBINT y=(g a)..(g b). f y = F (g b) - F (g a)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   850
    apply (rule interval_integral_FTC_finite)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   851
    apply (rule contf2)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   852
    apply (frule (1) 1, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   853
    apply (rule has_vector_derivative_within_subset [OF derivF])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   854
    apply (auto simp add: image_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   855
    by (rule 1, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   856
  ultimately show ?thesis by simp
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   857
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   858
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   859
(* TODO: is it possible to lift the assumption here that g' is nonnegative? *)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   860
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   861
lemma interval_integral_substitution_integrable:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   862
  fixes f :: "real \<Rightarrow> 'a::euclidean_space" and a b u v :: ereal
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   863
  assumes "a < b"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   864
  and deriv_g: "\<And>x. a < ereal x \<Longrightarrow> ereal x < b \<Longrightarrow> DERIV g x :> g' x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   865
  and contf: "\<And>x. a < ereal x \<Longrightarrow> ereal x < b \<Longrightarrow> isCont f (g x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   866
  and contg': "\<And>x. a < ereal x \<Longrightarrow> ereal x < b \<Longrightarrow> isCont g' x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   867
  and g'_nonneg: "\<And>x. a \<le> ereal x \<Longrightarrow> ereal x \<le> b \<Longrightarrow> 0 \<le> g' x"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   868
  and A: "((ereal \<circ> g \<circ> real_of_ereal) \<longlongrightarrow> A) (at_right a)"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   869
  and B: "((ereal \<circ> g \<circ> real_of_ereal) \<longlongrightarrow> B) (at_left b)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   870
  and integrable: "set_integrable lborel (einterval a b) (\<lambda>x. g' x *\<^sub>R f (g x))"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   871
  and integrable2: "set_integrable lborel (einterval A B) (\<lambda>x. f x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   872
  shows "(LBINT x=A..B. f x) = (LBINT x=a..b. g' x *\<^sub>R f (g x))"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   873
proof -
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   874
  from einterval_Icc_approximation[OF \<open>a < b\<close>] guess u l . note approx [simp] = this
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   875
  note less_imp_le [simp]
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   876
  have [simp]: "\<And>x i. l i \<le> x \<Longrightarrow> a < ereal x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   877
    by (rule order_less_le_trans, rule approx, force)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   878
  have [simp]: "\<And>x i. x \<le> u i \<Longrightarrow> ereal x < b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   879
    by (rule order_le_less_trans, subst ereal_less_eq(3), assumption, rule approx)
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   880
  have [simp]: "\<And>i. l i < b"
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   881
    apply (rule order_less_trans) prefer 2
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   882
    by (rule approx, auto, rule approx)
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   883
  have [simp]: "\<And>i. a < u i"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   884
    by (rule order_less_trans, rule approx, auto, rule approx)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   885
  have [simp]: "\<And>i j. i \<le> j \<Longrightarrow> l j \<le> l i" by (rule decseqD, rule approx)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   886
  have [simp]: "\<And>i j. i \<le> j \<Longrightarrow> u i \<le> u j" by (rule incseqD, rule approx)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   887
  have g_nondec [simp]: "\<And>x y. a < x \<Longrightarrow> x \<le> y \<Longrightarrow> y < b \<Longrightarrow> g x \<le> g y"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   888
    apply (erule DERIV_nonneg_imp_nondecreasing, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   889
    apply (rule exI, rule conjI, rule deriv_g)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   890
    apply (erule order_less_le_trans, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   891
    apply (rule order_le_less_trans, subst ereal_less_eq(3), assumption, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   892
    apply (rule g'_nonneg)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   893
    apply (rule less_imp_le, erule order_less_le_trans, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   894
    by (rule less_imp_le, rule le_less_trans, subst ereal_less_eq(3), assumption, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   895
  have "A \<le> B" and un: "einterval A B = (\<Union>i. {g(l i)<..<g(u i)})"
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   896
  proof -
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   897
    have A2: "(\<lambda>i. g (l i)) \<longlonglongrightarrow> A"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   898
      using A apply (auto simp add: einterval_def tendsto_at_iff_sequentially comp_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   899
      by (drule_tac x = "\<lambda>i. ereal (l i)" in spec, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   900
    hence A3: "\<And>i. g (l i) \<ge> A"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   901
      by (intro decseq_le, auto simp add: decseq_def)
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   902
    have B2: "(\<lambda>i. g (u i)) \<longlonglongrightarrow> B"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   903
      using B apply (auto simp add: einterval_def tendsto_at_iff_sequentially comp_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   904
      by (drule_tac x = "\<lambda>i. ereal (u i)" in spec, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   905
    hence B3: "\<And>i. g (u i) \<le> B"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   906
      by (intro incseq_le, auto simp add: incseq_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   907
    show "A \<le> B"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   908
      apply (rule order_trans [OF A3 [of 0]])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   909
      apply (rule order_trans [OF _ B3 [of 0]])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   910
      by auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   911
    { fix x :: real
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   912
      assume "A < x" and "x < B"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   913
      then have "eventually (\<lambda>i. ereal (g (l i)) < x \<and> x < ereal (g (u i))) sequentially"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   914
        apply (intro eventually_conj order_tendstoD)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   915
        by (rule A2, assumption, rule B2, assumption)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   916
      hence "\<exists>i. g (l i) < x \<and> x < g (u i)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   917
        by (simp add: eventually_sequentially, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   918
    } note AB = this
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   919
    show "einterval A B = (\<Union>i. {g(l i)<..<g(u i)})"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   920
      apply (auto simp add: einterval_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   921
      apply (erule (1) AB)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   922
      apply (rule order_le_less_trans, rule A3, simp)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   923
      apply (rule order_less_le_trans) prefer 2
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   924
      by (rule B3, simp)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   925
  qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   926
  (* finally, the main argument *)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   927
  {
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   928
     fix i
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   929
     have "(LBINT x=l i.. u i. g' x *\<^sub>R f (g x)) = (LBINT y=g (l i)..g (u i). f y)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   930
        apply (rule interval_integral_substitution_finite, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   931
        apply (rule DERIV_subset)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   932
        unfolding has_field_derivative_iff_has_vector_derivative[symmetric]
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   933
        apply (rule deriv_g)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   934
        apply (auto intro!: continuous_at_imp_continuous_on contf contg')
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   935
        done
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   936
  } note eq1 = this
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   937
  have "(\<lambda>i. LBINT x=l i..u i. g' x *\<^sub>R f (g x)) \<longlonglongrightarrow> (LBINT x=a..b. g' x *\<^sub>R f (g x))"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   938
    apply (rule interval_integral_Icc_approx_integrable [OF \<open>a < b\<close> approx])
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   939
    by (rule assms)
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   940
  hence 2: "(\<lambda>i. (LBINT y=g (l i)..g (u i). f y)) \<longlonglongrightarrow> (LBINT x=a..b. g' x *\<^sub>R f (g x))"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   941
    by (simp add: eq1)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   942
  have incseq: "incseq (\<lambda>i. {g (l i)<..<g (u i)})"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   943
    apply (auto simp add: incseq_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   944
    apply (rule order_le_less_trans)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   945
    prefer 2 apply (assumption, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   946
    by (erule order_less_le_trans, rule g_nondec, auto)
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   947
  have "(\<lambda>i. (LBINT y=g (l i)..g (u i). f y)) \<longlonglongrightarrow> (LBINT x = A..B. f x)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   948
    apply (subst interval_lebesgue_integral_le_eq, auto simp del: real_scaleR_def)
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   949
    apply (subst interval_lebesgue_integral_le_eq, rule \<open>A \<le> B\<close>)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   950
    apply (subst un, rule set_integral_cont_up, auto simp del: real_scaleR_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   951
    apply (rule incseq)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   952
    apply (subst un [symmetric])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   953
    by (rule integrable2)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   954
  thus ?thesis by (intro LIMSEQ_unique [OF _ 2])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   955
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   956
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   957
(* TODO: the last two proofs are only slightly different. Factor out common part?
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   958
   An alternative: make the second one the main one, and then have another lemma
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   959
   that says that if f is nonnegative and all the other hypotheses hold, then it is integrable. *)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   960
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   961
lemma interval_integral_substitution_nonneg:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   962
  fixes f g g':: "real \<Rightarrow> real" and a b u v :: ereal
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   963
  assumes "a < b"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   964
  and deriv_g: "\<And>x. a < ereal x \<Longrightarrow> ereal x < b \<Longrightarrow> DERIV g x :> g' x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   965
  and contf: "\<And>x. a < ereal x \<Longrightarrow> ereal x < b \<Longrightarrow> isCont f (g x)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   966
  and contg': "\<And>x. a < ereal x \<Longrightarrow> ereal x < b \<Longrightarrow> isCont g' x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   967
  and f_nonneg: "\<And>x. a < ereal x \<Longrightarrow> ereal x < b \<Longrightarrow> 0 \<le> f (g x)" (* TODO: make this AE? *)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   968
  and g'_nonneg: "\<And>x. a \<le> ereal x \<Longrightarrow> ereal x \<le> b \<Longrightarrow> 0 \<le> g' x"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   969
  and A: "((ereal \<circ> g \<circ> real_of_ereal) \<longlongrightarrow> A) (at_right a)"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   970
  and B: "((ereal \<circ> g \<circ> real_of_ereal) \<longlongrightarrow> B) (at_left b)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   971
  and integrable_fg: "set_integrable lborel (einterval a b) (\<lambda>x. f (g x) * g' x)"
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   972
  shows
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   973
    "set_integrable lborel (einterval A B) f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   974
    "(LBINT x=A..B. f x) = (LBINT x=a..b. (f (g x) * g' x))"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   975
proof -
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   976
  from einterval_Icc_approximation[OF \<open>a < b\<close>] guess u l . note approx [simp] = this
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   977
  note less_imp_le [simp]
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   978
  have [simp]: "\<And>x i. l i \<le> x \<Longrightarrow> a < ereal x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   979
    by (rule order_less_le_trans, rule approx, force)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   980
  have [simp]: "\<And>x i. x \<le> u i \<Longrightarrow> ereal x < b"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   981
    by (rule order_le_less_trans, subst ereal_less_eq(3), assumption, rule approx)
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   982
  have [simp]: "\<And>i. l i < b"
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   983
    apply (rule order_less_trans) prefer 2
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   984
    by (rule approx, auto, rule approx)
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   985
  have [simp]: "\<And>i. a < u i"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   986
    by (rule order_less_trans, rule approx, auto, rule approx)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   987
  have [simp]: "\<And>i j. i \<le> j \<Longrightarrow> l j \<le> l i" by (rule decseqD, rule approx)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   988
  have [simp]: "\<And>i j. i \<le> j \<Longrightarrow> u i \<le> u j" by (rule incseqD, rule approx)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   989
  have g_nondec [simp]: "\<And>x y. a < x \<Longrightarrow> x \<le> y \<Longrightarrow> y < b \<Longrightarrow> g x \<le> g y"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   990
    apply (erule DERIV_nonneg_imp_nondecreasing, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   991
    apply (rule exI, rule conjI, rule deriv_g)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   992
    apply (erule order_less_le_trans, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   993
    apply (rule order_le_less_trans, subst ereal_less_eq(3), assumption, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   994
    apply (rule g'_nonneg)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   995
    apply (rule less_imp_le, erule order_less_le_trans, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   996
    by (rule less_imp_le, rule le_less_trans, subst ereal_less_eq(3), assumption, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
   997
  have "A \<le> B" and un: "einterval A B = (\<Union>i. {g(l i)<..<g(u i)})"
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
   998
  proof -
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
   999
    have A2: "(\<lambda>i. g (l i)) \<longlonglongrightarrow> A"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1000
      using A apply (auto simp add: einterval_def tendsto_at_iff_sequentially comp_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1001
      by (drule_tac x = "\<lambda>i. ereal (l i)" in spec, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1002
    hence A3: "\<And>i. g (l i) \<ge> A"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1003
      by (intro decseq_le, auto simp add: decseq_def)
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
  1004
    have B2: "(\<lambda>i. g (u i)) \<longlonglongrightarrow> B"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1005
      using B apply (auto simp add: einterval_def tendsto_at_iff_sequentially comp_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1006
      by (drule_tac x = "\<lambda>i. ereal (u i)" in spec, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1007
    hence B3: "\<And>i. g (u i) \<le> B"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1008
      by (intro incseq_le, auto simp add: incseq_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1009
    show "A \<le> B"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1010
      apply (rule order_trans [OF A3 [of 0]])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1011
      apply (rule order_trans [OF _ B3 [of 0]])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1012
      by auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1013
    { fix x :: real
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
  1014
      assume "A < x" and "x < B"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1015
      then have "eventually (\<lambda>i. ereal (g (l i)) < x \<and> x < ereal (g (u i))) sequentially"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1016
        apply (intro eventually_conj order_tendstoD)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1017
        by (rule A2, assumption, rule B2, assumption)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1018
      hence "\<exists>i. g (l i) < x \<and> x < g (u i)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1019
        by (simp add: eventually_sequentially, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1020
    } note AB = this
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1021
    show "einterval A B = (\<Union>i. {g(l i)<..<g(u i)})"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1022
      apply (auto simp add: einterval_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1023
      apply (erule (1) AB)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1024
      apply (rule order_le_less_trans, rule A3, simp)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1025
      apply (rule order_less_le_trans) prefer 2
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
  1026
      by (rule B3, simp)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1027
  qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1028
  (* finally, the main argument *)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1029
  {
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1030
     fix i
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1031
     have "(LBINT x=l i.. u i. g' x *\<^sub>R f (g x)) = (LBINT y=g (l i)..g (u i). f y)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1032
        apply (rule interval_integral_substitution_finite, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1033
        apply (rule DERIV_subset, rule deriv_g, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1034
        apply (rule continuous_at_imp_continuous_on, auto, rule contf, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1035
        by (rule continuous_at_imp_continuous_on, auto, rule contg', auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1036
     then have "(LBINT x=l i.. u i. (f (g x) * g' x)) = (LBINT y=g (l i)..g (u i). f y)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1037
       by (simp add: ac_simps)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1038
  } note eq1 = this
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1039
  have "(\<lambda>i. LBINT x=l i..u i. f (g x) * g' x)
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
  1040
      \<longlonglongrightarrow> (LBINT x=a..b. f (g x) * g' x)"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
  1041
    apply (rule interval_integral_Icc_approx_integrable [OF \<open>a < b\<close> approx])
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1042
    by (rule assms)
61969
e01015e49041 more symbols;
wenzelm
parents: 61945
diff changeset
  1043
  hence 2: "(\<lambda>i. (LBINT y=g (l i)..g (u i). f y)) \<longlonglongrightarrow> (LBINT x=a..b. f (g x) * g' x)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1044
    by (simp add: eq1)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1045
  have incseq: "incseq (\<lambda>i. {g (l i)<..<g (u i)})"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1046
    apply (auto simp add: incseq_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1047
    apply (rule order_le_less_trans)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1048
    prefer 2 apply assumption
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1049
    apply (rule g_nondec, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1050
    by (erule order_less_le_trans, rule g_nondec, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1051
  have img: "\<And>x i. g (l i) \<le> x \<Longrightarrow> x \<le> g (u i) \<Longrightarrow> \<exists>c \<ge> l i. c \<le> u i \<and> x = g c"
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
  1052
    apply (frule (1) IVT' [of g], auto)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1053
    apply (rule continuous_at_imp_continuous_on, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1054
    by (rule DERIV_isCont, rule deriv_g, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1055
  have nonneg_f2: "\<And>x i. g (l i) \<le> x \<Longrightarrow> x \<le> g (u i) \<Longrightarrow> 0 \<le> f x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1056
    by (frule (1) img, auto, rule f_nonneg, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1057
  have contf_2: "\<And>x i. g (l i) \<le> x \<Longrightarrow> x \<le> g (u i) \<Longrightarrow> isCont f x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1058
    by (frule (1) img, auto, rule contf, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1059
  have integrable: "set_integrable lborel (\<Union>i. {g (l i)<..<g (u i)}) f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1060
    apply (rule pos_integrable_to_top, auto simp del: real_scaleR_def)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1061
    apply (rule incseq)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1062
    apply (rule nonneg_f2, erule less_imp_le, erule less_imp_le)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1063
    apply (rule set_integrable_subset)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1064
    apply (rule borel_integrable_atLeastAtMost')
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1065
    apply (rule continuous_at_imp_continuous_on)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1066
    apply (clarsimp, erule (1) contf_2, auto)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1067
    apply (erule less_imp_le)+
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1068
    using 2 unfolding interval_lebesgue_integral_def
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1069
    by auto
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1070
  thus "set_integrable lborel (einterval A B) f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1071
    by (simp add: un)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1072
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1073
  have "(LBINT x=A..B. f x) = (LBINT x=a..b. g' x *\<^sub>R f (g x))"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1074
  proof (rule interval_integral_substitution_integrable)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1075
    show "set_integrable lborel (einterval a b) (\<lambda>x. g' x *\<^sub>R f (g x))"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1076
      using integrable_fg by (simp add: ac_simps)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1077
  qed fact+
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1078
  then show "(LBINT x=A..B. f x) = (LBINT x=a..b. (f (g x) * g' x))"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1079
    by (simp add: ac_simps)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1080
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1081
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1082
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63886
diff changeset
  1083
syntax "_complex_lebesgue_borel_integral" :: "pttrn \<Rightarrow> real \<Rightarrow> complex"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63886
diff changeset
  1084
  ("(2CLBINT _. _)" [0,60] 60)
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63886
diff changeset
  1085
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63886
diff changeset
  1086
translations "CLBINT x. f" == "CONST complex_lebesgue_integral CONST lborel (\<lambda>x. f)"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63886
diff changeset
  1087
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63886
diff changeset
  1088
syntax "_complex_set_lebesgue_borel_integral" :: "pttrn \<Rightarrow> real set \<Rightarrow> real \<Rightarrow> complex"
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63886
diff changeset
  1089
  ("(3CLBINT _:_. _)" [0,60,61] 60)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1090
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1091
translations
63941
f353674c2528 move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
hoelzl
parents: 63886
diff changeset
  1092
  "CLBINT x:A. f" == "CONST complex_set_lebesgue_integral CONST lborel A (\<lambda>x. f)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1093
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
  1094
abbreviation complex_interval_lebesgue_integral ::
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1095
    "real measure \<Rightarrow> ereal \<Rightarrow> ereal \<Rightarrow> (real \<Rightarrow> complex) \<Rightarrow> complex" where
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1096
  "complex_interval_lebesgue_integral M a b f \<equiv> interval_lebesgue_integral M a b f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1097
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
  1098
abbreviation complex_interval_lebesgue_integrable ::
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1099
  "real measure \<Rightarrow> ereal \<Rightarrow> ereal \<Rightarrow> (real \<Rightarrow> complex) \<Rightarrow> bool" where
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1100
  "complex_interval_lebesgue_integrable M a b f \<equiv> interval_lebesgue_integrable M a b f"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1101
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1102
syntax
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1103
  "_ascii_complex_interval_lebesgue_borel_integral" :: "pttrn \<Rightarrow> ereal \<Rightarrow> ereal \<Rightarrow> real \<Rightarrow> complex"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1104
  ("(4CLBINT _=_.._. _)" [0,60,60,61] 60)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1105
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1106
translations
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1107
  "CLBINT x=a..b. f" == "CONST complex_interval_lebesgue_integral CONST lborel a b (\<lambda>x. f)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1108
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1109
lemma interval_integral_norm:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1110
  fixes f :: "real \<Rightarrow> 'a :: {banach, second_countable_topology}"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1111
  shows "interval_lebesgue_integrable lborel a b f \<Longrightarrow> a \<le> b \<Longrightarrow>
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1112
    norm (LBINT t=a..b. f t) \<le> LBINT t=a..b. norm (f t)"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1113
  using integral_norm_bound[of lborel "\<lambda>x. indicator (einterval a b) x *\<^sub>R f x"]
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  1114
  by (auto simp add: interval_lebesgue_integral_def interval_lebesgue_integrable_def set_lebesgue_integral_def)
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1115
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1116
lemma interval_integral_norm2:
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
  1117
  "interval_lebesgue_integrable lborel a b f \<Longrightarrow>
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61897
diff changeset
  1118
    norm (LBINT t=a..b. f t) \<le> \<bar>LBINT t=a..b. norm (f t)\<bar>"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1119
proof (induct a b rule: linorder_wlog)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1120
  case (sym a b) then show ?case
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1121
    by (simp add: interval_integral_endpoints_reverse[of a b] interval_integrable_endpoints_reverse[of a b])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1122
next
63329
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
  1123
  case (le a b)
6b26c378ab35 Probability: tuned headers; cleanup Radon_Nikodym
hoelzl
parents: 63092
diff changeset
  1124
  then have "\<bar>LBINT t=a..b. norm (f t)\<bar> = LBINT t=a..b. norm (f t)"
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1125
    using integrable_norm[of lborel "\<lambda>x. indicator (einterval a b) x *\<^sub>R f x"]
67974
3f352a91b45a replacement of set integral abbreviations by actual definitions!
paulson <lp15@cam.ac.uk>
parents: 66164
diff changeset
  1126
    by (auto simp add: interval_lebesgue_integral_def interval_lebesgue_integrable_def set_lebesgue_integral_def
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1127
             intro!: integral_nonneg_AE abs_of_nonneg)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1128
  then show ?case
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1129
    using le by (simp add: interval_integral_norm)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1130
qed
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1131
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1132
(* TODO: should we have a library of facts like these? *)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1133
lemma integral_cos: "t \<noteq> 0 \<Longrightarrow> LBINT x=a..b. cos (t * x) = sin (t * b) / t - sin (t * a) / t"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1134
  apply (intro interval_integral_FTC_finite continuous_intros)
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1135
  by (auto intro!: derivative_eq_intros simp: has_field_derivative_iff_has_vector_derivative[symmetric])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1136
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1137
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents:
diff changeset
  1138
end