| author | wenzelm | 
| Wed, 22 Dec 1999 20:28:56 +0100 | |
| changeset 8076 | ef78716f39ef | 
| parent 7499 | 23e090051cb8 | 
| child 8935 | 548901d05a0e | 
| permissions | -rw-r--r-- | 
| 2640 | 1 | (* Title: HOLCF/Cont.ML | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 2 | ID: $Id$ | 
| 1461 | 3 | Author: Franz Regensburger | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 4 | Copyright 1993 Technische Universitaet Muenchen | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 5 | |
| 2640 | 6 | Lemmas for Cont.thy | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 7 | *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 8 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 9 | open Cont; | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 10 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 11 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 12 | (* access to definition *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 13 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 14 | |
| 2640 | 15 | qed_goalw "contlubI" thy [contlub] | 
| 4721 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 oheimb parents: 
4098diff
changeset | 16 | "! Y. chain(Y) --> f(lub(range(Y))) = lub(range(%i. f(Y(i))))==>\ | 
| 1461 | 17 | \ contlub(f)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 18 | (fn prems => | 
| 1461 | 19 | [ | 
| 20 | (cut_facts_tac prems 1), | |
| 21 | (atac 1) | |
| 22 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 23 | |
| 2640 | 24 | qed_goalw "contlubE" thy [contlub] | 
| 1461 | 25 | " contlub(f)==>\ | 
| 4721 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 oheimb parents: 
4098diff
changeset | 26 | \ ! Y. chain(Y) --> f(lub(range(Y))) = lub(range(%i. f(Y(i))))" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 27 | (fn prems => | 
| 1461 | 28 | [ | 
| 29 | (cut_facts_tac prems 1), | |
| 30 | (atac 1) | |
| 31 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 32 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 33 | |
| 2640 | 34 | qed_goalw "contI" thy [cont] | 
| 4721 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 oheimb parents: 
4098diff
changeset | 35 | "! Y. chain(Y) --> range(% i. f(Y(i))) <<| f(lub(range(Y))) ==> cont(f)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 36 | (fn prems => | 
| 1461 | 37 | [ | 
| 38 | (cut_facts_tac prems 1), | |
| 39 | (atac 1) | |
| 40 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 41 | |
| 2640 | 42 | qed_goalw "contE" thy [cont] | 
| 4721 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 oheimb parents: 
4098diff
changeset | 43 | "cont(f) ==> ! Y. chain(Y) --> range(% i. f(Y(i))) <<| f(lub(range(Y)))" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 44 | (fn prems => | 
| 1461 | 45 | [ | 
| 46 | (cut_facts_tac prems 1), | |
| 47 | (atac 1) | |
| 48 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 49 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 50 | |
| 2640 | 51 | qed_goalw "monofunI" thy [monofun] | 
| 1461 | 52 | "! x y. x << y --> f(x) << f(y) ==> monofun(f)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 53 | (fn prems => | 
| 1461 | 54 | [ | 
| 55 | (cut_facts_tac prems 1), | |
| 56 | (atac 1) | |
| 57 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 58 | |
| 2640 | 59 | qed_goalw "monofunE" thy [monofun] | 
| 1461 | 60 | "monofun(f) ==> ! x y. x << y --> f(x) << f(y)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 61 | (fn prems => | 
| 1461 | 62 | [ | 
| 63 | (cut_facts_tac prems 1), | |
| 64 | (atac 1) | |
| 65 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 66 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 67 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 68 | (* the main purpose of cont.thy is to show: *) | 
| 1168 
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
 regensbu parents: 
892diff
changeset | 69 | (* monofun(f) & contlub(f) <==> cont(f) *) | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 70 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 71 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 72 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 73 | (* monotone functions map chains to chains *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 74 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 75 | |
| 2640 | 76 | qed_goal "ch2ch_monofun" thy | 
| 4721 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 oheimb parents: 
4098diff
changeset | 77 | "[| monofun(f); chain(Y) |] ==> chain(%i. f(Y(i)))" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 78 | (fn prems => | 
| 1461 | 79 | [ | 
| 80 | (cut_facts_tac prems 1), | |
| 4721 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 oheimb parents: 
4098diff
changeset | 81 | (rtac chainI 1), | 
| 1461 | 82 | (rtac allI 1), | 
| 83 | (etac (monofunE RS spec RS spec RS mp) 1), | |
| 4721 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 oheimb parents: 
4098diff
changeset | 84 | (etac (chainE RS spec) 1) | 
| 1461 | 85 | ]); | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 86 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 87 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 88 | (* monotone functions map upper bound to upper bounds *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 89 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 90 | |
| 2640 | 91 | qed_goal "ub2ub_monofun" thy | 
| 3842 | 92 | "[| monofun(f); range(Y) <| u|] ==> range(%i. f(Y(i))) <| f(u)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 93 | (fn prems => | 
| 1461 | 94 | [ | 
| 95 | (cut_facts_tac prems 1), | |
| 96 | (rtac ub_rangeI 1), | |
| 97 | (rtac allI 1), | |
| 98 | (etac (monofunE RS spec RS spec RS mp) 1), | |
| 99 | (etac (ub_rangeE RS spec) 1) | |
| 100 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 101 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 102 | (* ------------------------------------------------------------------------ *) | 
| 1168 
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
 regensbu parents: 
892diff
changeset | 103 | (* left to right: monofun(f) & contlub(f) ==> cont(f) *) | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 104 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 105 | |
| 2640 | 106 | qed_goalw "monocontlub2cont" thy [cont] | 
| 1461 | 107 | "[|monofun(f);contlub(f)|] ==> cont(f)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 108 | (fn prems => | 
| 1461 | 109 | [ | 
| 110 | (cut_facts_tac prems 1), | |
| 111 | (strip_tac 1), | |
| 112 | (rtac thelubE 1), | |
| 113 | (etac ch2ch_monofun 1), | |
| 114 | (atac 1), | |
| 115 | (etac (contlubE RS spec RS mp RS sym) 1), | |
| 116 | (atac 1) | |
| 117 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 118 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 119 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 120 | (* first a lemma about binary chains *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 121 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 122 | |
| 2640 | 123 | qed_goal "binchain_cont" thy | 
| 1168 
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
 regensbu parents: 
892diff
changeset | 124 | "[| cont(f); x << y |] ==> range(%i. f(if i = 0 then x else y)) <<| f(y)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 125 | (fn prems => | 
| 1461 | 126 | [ | 
| 127 | (cut_facts_tac prems 1), | |
| 128 | (rtac subst 1), | |
| 129 | (etac (contE RS spec RS mp) 2), | |
| 130 | (etac bin_chain 2), | |
| 131 |         (res_inst_tac [("y","y")] arg_cong 1),
 | |
| 132 | (etac (lub_bin_chain RS thelubI) 1) | |
| 133 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 134 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 135 | (* ------------------------------------------------------------------------ *) | 
| 1168 
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
 regensbu parents: 
892diff
changeset | 136 | (* right to left: cont(f) ==> monofun(f) & contlub(f) *) | 
| 
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
 regensbu parents: 
892diff
changeset | 137 | (* part1: cont(f) ==> monofun(f *) | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 138 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 139 | |
| 2640 | 140 | qed_goalw "cont2mono" thy [monofun] | 
| 1461 | 141 | "cont(f) ==> monofun(f)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 142 | (fn prems => | 
| 1461 | 143 | [ | 
| 144 | (cut_facts_tac prems 1), | |
| 145 | (strip_tac 1), | |
| 146 |         (res_inst_tac [("s","if 0 = 0 then x else y")] subst 1),
 | |
| 147 | (rtac (binchain_cont RS is_ub_lub) 2), | |
| 148 | (atac 2), | |
| 149 | (atac 2), | |
| 150 | (Simp_tac 1) | |
| 151 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 152 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 153 | (* ------------------------------------------------------------------------ *) | 
| 1168 
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
 regensbu parents: 
892diff
changeset | 154 | (* right to left: cont(f) ==> monofun(f) & contlub(f) *) | 
| 
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
 regensbu parents: 
892diff
changeset | 155 | (* part2: cont(f) ==> contlub(f) *) | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 156 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 157 | |
| 2640 | 158 | qed_goalw "cont2contlub" thy [contlub] | 
| 1461 | 159 | "cont(f) ==> contlub(f)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 160 | (fn prems => | 
| 1461 | 161 | [ | 
| 162 | (cut_facts_tac prems 1), | |
| 163 | (strip_tac 1), | |
| 164 | (rtac (thelubI RS sym) 1), | |
| 165 | (etac (contE RS spec RS mp) 1), | |
| 166 | (atac 1) | |
| 167 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 168 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 169 | (* ------------------------------------------------------------------------ *) | 
| 2354 | 170 | (* monotone functions map finite chains to finite chains *) | 
| 171 | (* ------------------------------------------------------------------------ *) | |
| 172 | ||
| 2640 | 173 | qed_goalw "monofun_finch2finch" thy [finite_chain_def] | 
| 2354 | 174 | "[| monofun f; finite_chain Y |] ==> finite_chain (%n. f (Y n))" | 
| 175 | (fn prems => | |
| 176 | [ | |
| 177 | cut_facts_tac prems 1, | |
| 178 | safe_tac HOL_cs, | |
| 179 | fast_tac (HOL_cs addSEs [ch2ch_monofun]) 1, | |
| 180 | fast_tac (HOL_cs addss (HOL_ss addsimps [max_in_chain_def])) 1 | |
| 181 | ]); | |
| 182 | ||
| 183 | (* ------------------------------------------------------------------------ *) | |
| 184 | (* The same holds for continuous functions *) | |
| 185 | (* ------------------------------------------------------------------------ *) | |
| 186 | ||
| 187 | bind_thm ("cont_finch2finch", cont2mono RS monofun_finch2finch);
 | |
| 188 | (* [| cont ?f; finite_chain ?Y |] ==> finite_chain (%n. ?f (?Y n)) *) | |
| 189 | ||
| 190 | ||
| 191 | (* ------------------------------------------------------------------------ *) | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 192 | (* The following results are about a curried function that is monotone *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 193 | (* in both arguments *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 194 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 195 | |
| 2640 | 196 | qed_goal "ch2ch_MF2L" thy | 
| 4721 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 oheimb parents: 
4098diff
changeset | 197 | "[|monofun(MF2); chain(F)|] ==> chain(%i. MF2 (F i) x)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 198 | (fn prems => | 
| 1461 | 199 | [ | 
| 200 | (cut_facts_tac prems 1), | |
| 201 | (etac (ch2ch_monofun RS ch2ch_fun) 1), | |
| 202 | (atac 1) | |
| 203 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 204 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 205 | |
| 2640 | 206 | qed_goal "ch2ch_MF2R" thy | 
| 4721 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 oheimb parents: 
4098diff
changeset | 207 | "[|monofun(MF2(f)); chain(Y)|] ==> chain(%i. MF2 f (Y i))" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 208 | (fn prems => | 
| 1461 | 209 | [ | 
| 210 | (cut_facts_tac prems 1), | |
| 211 | (etac ch2ch_monofun 1), | |
| 212 | (atac 1) | |
| 213 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 214 | |
| 2640 | 215 | qed_goal "ch2ch_MF2LR" thy | 
| 4721 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 oheimb parents: 
4098diff
changeset | 216 | "[|monofun(MF2); !f. monofun(MF2(f)); chain(F); chain(Y)|] ==> \ | 
| 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 oheimb parents: 
4098diff
changeset | 217 | \ chain(%i. MF2(F(i))(Y(i)))" | 
| 752 
b89462f9d5f1
----------------------------------------------------------------------
 regensbu parents: 
625diff
changeset | 218 | (fn prems => | 
| 1461 | 219 | [ | 
| 220 | (cut_facts_tac prems 1), | |
| 4721 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 oheimb parents: 
4098diff
changeset | 221 | (rtac chainI 1), | 
| 1461 | 222 | (strip_tac 1 ), | 
| 223 | (rtac trans_less 1), | |
| 4721 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 oheimb parents: 
4098diff
changeset | 224 | (etac (ch2ch_MF2L RS chainE RS spec) 1), | 
| 1461 | 225 | (atac 1), | 
| 226 | ((rtac (monofunE RS spec RS spec RS mp) 1) THEN (etac spec 1)), | |
| 4721 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 oheimb parents: 
4098diff
changeset | 227 | (etac (chainE RS spec) 1) | 
| 1461 | 228 | ]); | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 229 | |
| 752 
b89462f9d5f1
----------------------------------------------------------------------
 regensbu parents: 
625diff
changeset | 230 | |
| 2640 | 231 | qed_goal "ch2ch_lubMF2R" thy | 
| 2838 
2e908f29bc3d
changed continuous functions from pcpo to cpo (including instances)
 slotosch parents: 
2640diff
changeset | 232 | "[|monofun(MF2::('a::po=>'b::po=>'c::cpo));\
 | 
| 3842 | 233 | \  !f. monofun(MF2(f)::('b::po=>'c::cpo));\
 | 
| 4721 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 oheimb parents: 
4098diff
changeset | 234 | \ chain(F);chain(Y)|] ==> \ | 
| 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 oheimb parents: 
4098diff
changeset | 235 | \ chain(%j. lub(range(%i. MF2 (F j) (Y i))))" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 236 | (fn prems => | 
| 1461 | 237 | [ | 
| 238 | (cut_facts_tac prems 1), | |
| 4721 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 oheimb parents: 
4098diff
changeset | 239 | (rtac (lub_mono RS allI RS chainI) 1), | 
| 1461 | 240 | ((rtac ch2ch_MF2R 1) THEN (etac spec 1)), | 
| 241 | (atac 1), | |
| 242 | ((rtac ch2ch_MF2R 1) THEN (etac spec 1)), | |
| 243 | (atac 1), | |
| 244 | (strip_tac 1), | |
| 4721 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 oheimb parents: 
4098diff
changeset | 245 | (rtac (chainE RS spec) 1), | 
| 1461 | 246 | (etac ch2ch_MF2L 1), | 
| 247 | (atac 1) | |
| 248 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 249 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 250 | |
| 2640 | 251 | qed_goal "ch2ch_lubMF2L" thy | 
| 2838 
2e908f29bc3d
changed continuous functions from pcpo to cpo (including instances)
 slotosch parents: 
2640diff
changeset | 252 | "[|monofun(MF2::('a::po=>'b::po=>'c::cpo));\
 | 
| 3842 | 253 | \  !f. monofun(MF2(f)::('b::po=>'c::cpo));\
 | 
| 4721 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 oheimb parents: 
4098diff
changeset | 254 | \ chain(F);chain(Y)|] ==> \ | 
| 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 oheimb parents: 
4098diff
changeset | 255 | \ chain(%i. lub(range(%j. MF2 (F j) (Y i))))" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 256 | (fn prems => | 
| 1461 | 257 | [ | 
| 258 | (cut_facts_tac prems 1), | |
| 4721 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 oheimb parents: 
4098diff
changeset | 259 | (rtac (lub_mono RS allI RS chainI) 1), | 
| 1461 | 260 | (etac ch2ch_MF2L 1), | 
| 261 | (atac 1), | |
| 262 | (etac ch2ch_MF2L 1), | |
| 263 | (atac 1), | |
| 264 | (strip_tac 1), | |
| 4721 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 oheimb parents: 
4098diff
changeset | 265 | (rtac (chainE RS spec) 1), | 
| 1461 | 266 | ((rtac ch2ch_MF2R 1) THEN (etac spec 1)), | 
| 267 | (atac 1) | |
| 268 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 269 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 270 | |
| 2640 | 271 | qed_goal "lub_MF2_mono" thy | 
| 2838 
2e908f29bc3d
changed continuous functions from pcpo to cpo (including instances)
 slotosch parents: 
2640diff
changeset | 272 | "[|monofun(MF2::('a::po=>'b::po=>'c::cpo));\
 | 
| 3842 | 273 | \  !f. monofun(MF2(f)::('b::po=>'c::cpo));\
 | 
| 4721 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 oheimb parents: 
4098diff
changeset | 274 | \ chain(F)|] ==> \ | 
| 3842 | 275 | \ monofun(% x. lub(range(% j. MF2 (F j) (x))))" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 276 | (fn prems => | 
| 1461 | 277 | [ | 
| 278 | (cut_facts_tac prems 1), | |
| 279 | (rtac monofunI 1), | |
| 280 | (strip_tac 1), | |
| 281 | (rtac lub_mono 1), | |
| 282 | (etac ch2ch_MF2L 1), | |
| 283 | (atac 1), | |
| 284 | (etac ch2ch_MF2L 1), | |
| 285 | (atac 1), | |
| 286 | (strip_tac 1), | |
| 287 | ((rtac (monofunE RS spec RS spec RS mp) 1) THEN (etac spec 1)), | |
| 288 | (atac 1) | |
| 289 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 290 | |
| 2640 | 291 | qed_goal "ex_lubMF2" thy | 
| 2838 
2e908f29bc3d
changed continuous functions from pcpo to cpo (including instances)
 slotosch parents: 
2640diff
changeset | 292 | "[|monofun(MF2::('a::po=>'b::po=>'c::cpo));\
 | 
| 3842 | 293 | \  !f. monofun(MF2(f)::('b::po=>'c::cpo));\
 | 
| 4721 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 oheimb parents: 
4098diff
changeset | 294 | \ chain(F); chain(Y)|] ==> \ | 
| 1461 | 295 | \ lub(range(%j. lub(range(%i. MF2(F j) (Y i))))) =\ | 
| 296 | \ lub(range(%i. lub(range(%j. MF2(F j) (Y i)))))" | |
| 752 
b89462f9d5f1
----------------------------------------------------------------------
 regensbu parents: 
625diff
changeset | 297 | (fn prems => | 
| 1461 | 298 | [ | 
| 299 | (cut_facts_tac prems 1), | |
| 300 | (rtac antisym_less 1), | |
| 301 | (rtac (ub_rangeI RSN (2,is_lub_thelub)) 1), | |
| 302 | (etac ch2ch_lubMF2R 1), | |
| 303 | (REPEAT (atac 1)), | |
| 304 | (strip_tac 1), | |
| 305 | (rtac lub_mono 1), | |
| 306 | ((rtac ch2ch_MF2R 1) THEN (etac spec 1)), | |
| 307 | (atac 1), | |
| 308 | (etac ch2ch_lubMF2L 1), | |
| 309 | (REPEAT (atac 1)), | |
| 310 | (strip_tac 1), | |
| 311 | (rtac is_ub_thelub 1), | |
| 312 | (etac ch2ch_MF2L 1), | |
| 313 | (atac 1), | |
| 314 | (rtac (ub_rangeI RSN (2,is_lub_thelub)) 1), | |
| 315 | (etac ch2ch_lubMF2L 1), | |
| 316 | (REPEAT (atac 1)), | |
| 317 | (strip_tac 1), | |
| 318 | (rtac lub_mono 1), | |
| 319 | (etac ch2ch_MF2L 1), | |
| 320 | (atac 1), | |
| 321 | (etac ch2ch_lubMF2R 1), | |
| 322 | (REPEAT (atac 1)), | |
| 323 | (strip_tac 1), | |
| 324 | (rtac is_ub_thelub 1), | |
| 325 | ((rtac ch2ch_MF2R 1) THEN (etac spec 1)), | |
| 326 | (atac 1) | |
| 327 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 328 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 329 | |
| 2640 | 330 | qed_goal "diag_lubMF2_1" thy | 
| 2838 
2e908f29bc3d
changed continuous functions from pcpo to cpo (including instances)
 slotosch parents: 
2640diff
changeset | 331 | "[|monofun(MF2::('a::po=>'b::po=>'c::cpo));\
 | 
| 3842 | 332 | \  !f. monofun(MF2(f)::('b::po=>'c::cpo));\
 | 
| 4721 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 oheimb parents: 
4098diff
changeset | 333 | \ chain(FY);chain(TY)|] ==>\ | 
| 752 
b89462f9d5f1
----------------------------------------------------------------------
 regensbu parents: 
625diff
changeset | 334 | \ lub(range(%i. lub(range(%j. MF2(FY(j))(TY(i)))))) =\ | 
| 
b89462f9d5f1
----------------------------------------------------------------------
 regensbu parents: 
625diff
changeset | 335 | \ lub(range(%i. MF2(FY(i))(TY(i))))" | 
| 625 | 336 | (fn prems => | 
| 1461 | 337 | [ | 
| 338 | (cut_facts_tac prems 1), | |
| 339 | (rtac antisym_less 1), | |
| 340 | (rtac (ub_rangeI RSN (2,is_lub_thelub)) 1), | |
| 341 | (etac ch2ch_lubMF2L 1), | |
| 342 | (REPEAT (atac 1)), | |
| 343 | (strip_tac 1 ), | |
| 344 | (rtac lub_mono3 1), | |
| 345 | (etac ch2ch_MF2L 1), | |
| 346 | (REPEAT (atac 1)), | |
| 347 | (etac ch2ch_MF2LR 1), | |
| 348 | (REPEAT (atac 1)), | |
| 349 | (rtac allI 1), | |
| 350 |         (res_inst_tac [("m","i"),("n","ia")] nat_less_cases 1),
 | |
| 351 |         (res_inst_tac [("x","ia")] exI 1),
 | |
| 352 | (rtac (chain_mono RS mp) 1), | |
| 353 | (etac allE 1), | |
| 354 | (etac ch2ch_MF2R 1), | |
| 355 | (REPEAT (atac 1)), | |
| 356 | (hyp_subst_tac 1), | |
| 357 |         (res_inst_tac [("x","ia")] exI 1),
 | |
| 358 | (rtac refl_less 1), | |
| 359 |         (res_inst_tac [("x","i")] exI 1),
 | |
| 360 | (rtac (chain_mono RS mp) 1), | |
| 361 | (etac ch2ch_MF2L 1), | |
| 362 | (REPEAT (atac 1)), | |
| 363 | (rtac lub_mono 1), | |
| 364 | (etac ch2ch_MF2LR 1), | |
| 365 | (REPEAT(atac 1)), | |
| 366 | (etac ch2ch_lubMF2L 1), | |
| 367 | (REPEAT (atac 1)), | |
| 368 | (strip_tac 1 ), | |
| 369 | (rtac is_ub_thelub 1), | |
| 370 | (etac ch2ch_MF2L 1), | |
| 371 | (atac 1) | |
| 372 | ]); | |
| 625 | 373 | |
| 2640 | 374 | qed_goal "diag_lubMF2_2" thy | 
| 2838 
2e908f29bc3d
changed continuous functions from pcpo to cpo (including instances)
 slotosch parents: 
2640diff
changeset | 375 | "[|monofun(MF2::('a::po=>'b::po=>'c::cpo));\
 | 
| 3842 | 376 | \  !f. monofun(MF2(f)::('b::po=>'c::cpo));\
 | 
| 4721 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 oheimb parents: 
4098diff
changeset | 377 | \ chain(FY);chain(TY)|] ==>\ | 
| 752 
b89462f9d5f1
----------------------------------------------------------------------
 regensbu parents: 
625diff
changeset | 378 | \ lub(range(%j. lub(range(%i. MF2(FY(j))(TY(i)))))) =\ | 
| 
b89462f9d5f1
----------------------------------------------------------------------
 regensbu parents: 
625diff
changeset | 379 | \ lub(range(%i. MF2(FY(i))(TY(i))))" | 
| 625 | 380 | (fn prems => | 
| 1461 | 381 | [ | 
| 382 | (cut_facts_tac prems 1), | |
| 383 | (rtac trans 1), | |
| 384 | (rtac ex_lubMF2 1), | |
| 385 | (REPEAT (atac 1)), | |
| 386 | (etac diag_lubMF2_1 1), | |
| 387 | (REPEAT (atac 1)) | |
| 388 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 389 | |
| 752 
b89462f9d5f1
----------------------------------------------------------------------
 regensbu parents: 
625diff
changeset | 390 | |
| 
b89462f9d5f1
----------------------------------------------------------------------
 regensbu parents: 
625diff
changeset | 391 | (* ------------------------------------------------------------------------ *) | 
| 
b89462f9d5f1
----------------------------------------------------------------------
 regensbu parents: 
625diff
changeset | 392 | (* The following results are about a curried function that is continuous *) | 
| 
b89462f9d5f1
----------------------------------------------------------------------
 regensbu parents: 
625diff
changeset | 393 | (* in both arguments *) | 
| 
b89462f9d5f1
----------------------------------------------------------------------
 regensbu parents: 
625diff
changeset | 394 | (* ------------------------------------------------------------------------ *) | 
| 
b89462f9d5f1
----------------------------------------------------------------------
 regensbu parents: 
625diff
changeset | 395 | |
| 2640 | 396 | qed_goal "contlub_CF2" thy | 
| 4721 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 oheimb parents: 
4098diff
changeset | 397 | "[|cont(CF2);!f. cont(CF2(f));chain(FY);chain(TY)|] ==>\ | 
| 3842 | 398 | \ CF2(lub(range(FY)))(lub(range(TY))) = lub(range(%i. CF2(FY(i))(TY(i))))" | 
| 625 | 399 | (fn prems => | 
| 1461 | 400 | [ | 
| 401 | (cut_facts_tac prems 1), | |
| 2033 | 402 | (stac ((hd prems) RS cont2contlub RS contlubE RS spec RS mp) 1), | 
| 1461 | 403 | (atac 1), | 
| 2033 | 404 | (stac thelub_fun 1), | 
| 1461 | 405 | (rtac ((hd prems) RS cont2mono RS ch2ch_monofun) 1), | 
| 406 | (atac 1), | |
| 407 | (rtac trans 1), | |
| 408 | (rtac (((hd (tl prems)) RS spec RS cont2contlub) RS contlubE RS spec RS mp RS ext RS arg_cong RS arg_cong) 1), | |
| 409 | (atac 1), | |
| 410 | (rtac diag_lubMF2_2 1), | |
| 411 | (etac cont2mono 1), | |
| 412 | (rtac allI 1), | |
| 413 | (etac allE 1), | |
| 414 | (etac cont2mono 1), | |
| 415 | (REPEAT (atac 1)) | |
| 416 | ]); | |
| 752 
b89462f9d5f1
----------------------------------------------------------------------
 regensbu parents: 
625diff
changeset | 417 | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 418 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 419 | (* The following results are about application for functions in 'a=>'b *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 420 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 421 | |
| 2640 | 422 | qed_goal "monofun_fun_fun" thy | 
| 1461 | 423 | "f1 << f2 ==> f1(x) << f2(x)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 424 | (fn prems => | 
| 1461 | 425 | [ | 
| 426 | (cut_facts_tac prems 1), | |
| 427 | (etac (less_fun RS iffD1 RS spec) 1) | |
| 428 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 429 | |
| 2640 | 430 | qed_goal "monofun_fun_arg" thy | 
| 1461 | 431 | "[|monofun(f); x1 << x2|] ==> f(x1) << f(x2)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 432 | (fn prems => | 
| 1461 | 433 | [ | 
| 434 | (cut_facts_tac prems 1), | |
| 435 | (etac (monofunE RS spec RS spec RS mp) 1), | |
| 436 | (atac 1) | |
| 437 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 438 | |
| 2640 | 439 | qed_goal "monofun_fun" thy | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 440 | "[|monofun(f1); monofun(f2); f1 << f2; x1 << x2|] ==> f1(x1) << f2(x2)" | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 441 | (fn prems => | 
| 1461 | 442 | [ | 
| 443 | (cut_facts_tac prems 1), | |
| 444 | (rtac trans_less 1), | |
| 445 | (etac monofun_fun_arg 1), | |
| 446 | (atac 1), | |
| 447 | (etac monofun_fun_fun 1) | |
| 448 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 449 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 450 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 451 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 452 | (* The following results are about the propagation of monotonicity and *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 453 | (* continuity *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 454 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 455 | |
| 2640 | 456 | qed_goal "mono2mono_MF1L" thy | 
| 1461 | 457 | "[|monofun(c1)|] ==> monofun(%x. c1 x y)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 458 | (fn prems => | 
| 1461 | 459 | [ | 
| 460 | (cut_facts_tac prems 1), | |
| 461 | (rtac monofunI 1), | |
| 462 | (strip_tac 1), | |
| 463 | (etac (monofun_fun_arg RS monofun_fun_fun) 1), | |
| 464 | (atac 1) | |
| 465 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 466 | |
| 2640 | 467 | qed_goal "cont2cont_CF1L" thy | 
| 1461 | 468 | "[|cont(c1)|] ==> cont(%x. c1 x y)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 469 | (fn prems => | 
| 1461 | 470 | [ | 
| 471 | (cut_facts_tac prems 1), | |
| 472 | (rtac monocontlub2cont 1), | |
| 473 | (etac (cont2mono RS mono2mono_MF1L) 1), | |
| 474 | (rtac contlubI 1), | |
| 475 | (strip_tac 1), | |
| 476 | (rtac ((hd prems) RS cont2contlub RS | |
| 477 | contlubE RS spec RS mp RS ssubst) 1), | |
| 478 | (atac 1), | |
| 2033 | 479 | (stac thelub_fun 1), | 
| 1461 | 480 | (rtac ch2ch_monofun 1), | 
| 481 | (etac cont2mono 1), | |
| 482 | (atac 1), | |
| 483 | (rtac refl 1) | |
| 484 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 485 | |
| 1168 
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
 regensbu parents: 
892diff
changeset | 486 | (********* Note "(%x.%y.c1 x y) = c1" ***********) | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 487 | |
| 2640 | 488 | qed_goal "mono2mono_MF1L_rev" thy | 
| 3842 | 489 | "!y. monofun(%x. c1 x y) ==> monofun(c1)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 490 | (fn prems => | 
| 1461 | 491 | [ | 
| 492 | (cut_facts_tac prems 1), | |
| 493 | (rtac monofunI 1), | |
| 494 | (strip_tac 1), | |
| 495 | (rtac (less_fun RS iffD2) 1), | |
| 496 | (strip_tac 1), | |
| 497 | (rtac ((hd prems) RS spec RS monofunE RS spec RS spec RS mp) 1), | |
| 498 | (atac 1) | |
| 499 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 500 | |
| 2640 | 501 | qed_goal "cont2cont_CF1L_rev" thy | 
| 3842 | 502 | "!y. cont(%x. c1 x y) ==> cont(c1)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 503 | (fn prems => | 
| 1461 | 504 | [ | 
| 505 | (cut_facts_tac prems 1), | |
| 506 | (rtac monocontlub2cont 1), | |
| 507 | (rtac (cont2mono RS allI RS mono2mono_MF1L_rev ) 1), | |
| 508 | (etac spec 1), | |
| 509 | (rtac contlubI 1), | |
| 510 | (strip_tac 1), | |
| 511 | (rtac ext 1), | |
| 2033 | 512 | (stac thelub_fun 1), | 
| 1461 | 513 | (rtac (cont2mono RS allI RS mono2mono_MF1L_rev RS ch2ch_monofun) 1), | 
| 514 | (etac spec 1), | |
| 515 | (atac 1), | |
| 516 | (rtac | |
| 517 | ((hd prems) RS spec RS cont2contlub RS contlubE RS spec RS mp) 1), | |
| 518 | (atac 1) | |
| 519 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 520 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 521 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 522 | (* What D.A.Schmidt calls continuity of abstraction *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 523 | (* never used here *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 524 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 525 | |
| 2640 | 526 | qed_goal "contlub_abstraction" thy | 
| 4721 
c8a8482a8124
renamed is_chain to chain, is_tord to tord, replaced chain_finite by chfin
 oheimb parents: 
4098diff
changeset | 527 | "[|chain(Y::nat=>'a);!y. cont(%x.(c::'a::cpo=>'b::cpo=>'c::cpo) x y)|] ==>\ | 
| 3842 | 528 | \ (%y. lub(range(%i. c (Y i) y))) = (lub(range(%i.%y. c (Y i) y)))" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 529 | (fn prems => | 
| 1461 | 530 | [ | 
| 531 | (cut_facts_tac prems 1), | |
| 532 | (rtac trans 1), | |
| 533 | (rtac (cont2contlub RS contlubE RS spec RS mp) 2), | |
| 534 | (atac 3), | |
| 535 | (etac cont2cont_CF1L_rev 2), | |
| 536 | (rtac ext 1), | |
| 537 | (rtac (cont2contlub RS contlubE RS spec RS mp RS sym) 1), | |
| 538 | (etac spec 1), | |
| 539 | (atac 1) | |
| 540 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 541 | |
| 2640 | 542 | qed_goal "mono2mono_app" thy | 
| 3842 | 543 | "[|monofun(ft);!x. monofun(ft(x));monofun(tt)|] ==>\ | 
| 1461 | 544 | \ monofun(%x.(ft(x))(tt(x)))" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 545 | (fn prems => | 
| 1461 | 546 | [ | 
| 547 | (cut_facts_tac prems 1), | |
| 548 | (rtac monofunI 1), | |
| 549 | (strip_tac 1), | |
| 550 |         (res_inst_tac [("f1.0","ft(x)"),("f2.0","ft(y)")] monofun_fun 1),
 | |
| 551 | (etac spec 1), | |
| 552 | (etac spec 1), | |
| 553 | (etac (monofunE RS spec RS spec RS mp) 1), | |
| 554 | (atac 1), | |
| 555 | (etac (monofunE RS spec RS spec RS mp) 1), | |
| 556 | (atac 1) | |
| 557 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 558 | |
| 625 | 559 | |
| 2640 | 560 | qed_goal "cont2contlub_app" thy | 
| 3842 | 561 | "[|cont(ft);!x. cont(ft(x));cont(tt)|] ==> contlub(%x.(ft(x))(tt(x)))" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 562 | (fn prems => | 
| 1461 | 563 | [ | 
| 564 | (cut_facts_tac prems 1), | |
| 565 | (rtac contlubI 1), | |
| 566 | (strip_tac 1), | |
| 567 |         (res_inst_tac [("f3","tt")] (contlubE RS spec RS mp RS ssubst) 1),
 | |
| 568 | (etac cont2contlub 1), | |
| 569 | (atac 1), | |
| 570 | (rtac contlub_CF2 1), | |
| 571 | (REPEAT (atac 1)), | |
| 572 | (etac (cont2mono RS ch2ch_monofun) 1), | |
| 573 | (atac 1) | |
| 574 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 575 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 576 | |
| 2640 | 577 | qed_goal "cont2cont_app" thy | 
| 3842 | 578 | "[|cont(ft);!x. cont(ft(x));cont(tt)|] ==>\ | 
| 1461 | 579 | \ cont(%x.(ft(x))(tt(x)))" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 580 | (fn prems => | 
| 1461 | 581 | [ | 
| 582 | (rtac monocontlub2cont 1), | |
| 583 | (rtac mono2mono_app 1), | |
| 584 | (rtac cont2mono 1), | |
| 585 | (resolve_tac prems 1), | |
| 586 | (strip_tac 1), | |
| 587 | (rtac cont2mono 1), | |
| 588 | (cut_facts_tac prems 1), | |
| 589 | (etac spec 1), | |
| 590 | (rtac cont2mono 1), | |
| 591 | (resolve_tac prems 1), | |
| 592 | (rtac cont2contlub_app 1), | |
| 593 | (resolve_tac prems 1), | |
| 594 | (resolve_tac prems 1), | |
| 595 | (resolve_tac prems 1) | |
| 596 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 597 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 598 | |
| 1779 | 599 | bind_thm ("cont2cont_app2", allI RSN (2,cont2cont_app));
 | 
| 1168 
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
 regensbu parents: 
892diff
changeset | 600 | (* [| cont ?ft; !!x. cont (?ft x); cont ?tt |] ==> *) | 
| 
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
 regensbu parents: 
892diff
changeset | 601 | (* cont (%x. ?ft x (?tt x)) *) | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 602 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 603 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 604 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 605 | (* The identity function is continuous *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 606 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 607 | |
| 3842 | 608 | qed_goal "cont_id" thy "cont(% x. x)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 609 | (fn prems => | 
| 1461 | 610 | [ | 
| 611 | (rtac contI 1), | |
| 612 | (strip_tac 1), | |
| 613 | (etac thelubE 1), | |
| 614 | (rtac refl 1) | |
| 615 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 616 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 617 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 618 | (* constant functions are continuous *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 619 | (* ------------------------------------------------------------------------ *) | 
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 620 | |
| 3842 | 621 | qed_goalw "cont_const" thy [cont] "cont(%x. c)" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 622 | (fn prems => | 
| 1461 | 623 | [ | 
| 624 | (strip_tac 1), | |
| 625 | (rtac is_lubI 1), | |
| 626 | (rtac conjI 1), | |
| 627 | (rtac ub_rangeI 1), | |
| 628 | (strip_tac 1), | |
| 629 | (rtac refl_less 1), | |
| 630 | (strip_tac 1), | |
| 631 | (dtac ub_rangeE 1), | |
| 632 | (etac spec 1) | |
| 633 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 634 | |
| 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 635 | |
| 2640 | 636 | qed_goal "cont2cont_app3" thy | 
| 1168 
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
 regensbu parents: 
892diff
changeset | 637 | "[|cont(f);cont(t) |] ==> cont(%x. f(t(x)))" | 
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 638 | (fn prems => | 
| 1461 | 639 | [ | 
| 640 | (cut_facts_tac prems 1), | |
| 641 | (rtac cont2cont_app2 1), | |
| 642 | (rtac cont_const 1), | |
| 643 | (atac 1), | |
| 644 | (atac 1) | |
| 645 | ]); | |
| 243 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 nipkow parents: diff
changeset | 646 | |
| 2640 | 647 | (* ------------------------------------------------------------------------ *) | 
| 648 | (* A non-emptyness result for Cfun *) | |
| 649 | (* ------------------------------------------------------------------------ *) | |
| 650 | ||
| 651 | qed_goal "CfunI" thy "?x:Collect cont" | |
| 652 | (fn prems => | |
| 653 | [ | |
| 654 | (rtac CollectI 1), | |
| 655 | (rtac cont_const 1) | |
| 656 | ]); | |
| 3326 | 657 | |
| 658 | (* ------------------------------------------------------------------------ *) | |
| 659 | (* some properties of flat *) | |
| 660 | (* ------------------------------------------------------------------------ *) | |
| 661 | ||
| 662 | qed_goalw "flatdom2monofun" thy [monofun] | |
| 663 | "f UU = UU ==> monofun (f::'a::flat=>'b::pcpo)" | |
| 664 | (fn prems => | |
| 665 | [ | |
| 666 | cut_facts_tac prems 1, | |
| 667 | strip_tac 1, | |
| 668 | dtac (ax_flat RS spec RS spec RS mp) 1, | |
| 4098 | 669 | fast_tac ((HOL_cs addss (simpset() addsimps [minimal]))) 1 | 
| 3326 | 670 | ]); | 
| 671 | ||
| 672 | ||
| 5297 | 673 | Goal "monofun f ==> cont(f::'a::chfin=>'b::pcpo)"; | 
| 7322 | 674 | by (rtac monocontlub2cont 1); | 
| 675 | by ( atac 1); | |
| 676 | by (rtac contlubI 1); | |
| 677 | by (strip_tac 1); | |
| 7499 | 678 | by (ftac chfin2finch 1); | 
| 7322 | 679 | by (rtac antisym_less 1); | 
| 680 | by ( force_tac (HOL_cs addIs [is_ub_thelub,ch2ch_monofun], | |
| 5297 | 681 | HOL_ss addsimps [finite_chain_def,maxinch_is_thelub]) 1); | 
| 7322 | 682 | by (dtac (monofun_finch2finch COMP swap_prems_rl) 1); | 
| 683 | by ( atac 1); | |
| 684 | by (asm_full_simp_tac (HOL_ss addsimps [finite_chain_def]) 1); | |
| 685 | by (etac conjE 1); | |
| 686 | by (etac exE 1); | |
| 687 | by (asm_full_simp_tac (HOL_ss addsimps [maxinch_is_thelub]) 1); | |
| 688 | by (etac (monofunE RS spec RS spec RS mp) 1); | |
| 689 | by (etac is_ub_thelub 1); | |
| 5297 | 690 | qed "chfindom_monofun2cont"; | 
| 3326 | 691 | |
| 692 | bind_thm ("flatdom_strict2cont",flatdom2monofun RS chfindom_monofun2cont);
 | |
| 693 | (* f UU = UU ==> cont (f::'a=>'b::pcpo)" *) |