| 
95
 | 
     1  | 
(*  Title: 	ZF/ex/counit.ML
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
 | 
     4  | 
    Copyright   1993  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
120
 | 
     6  | 
Trivial codatatype definitions, one of which goes wrong!
  | 
| 
95
 | 
     7  | 
  | 
| 
120
 | 
     8  | 
Need to find sufficient conditions for codatatypes to work correctly!
  | 
| 
95
 | 
     9  | 
*)
  | 
| 
 | 
    10  | 
  | 
| 
 | 
    11  | 
(*This degenerate definition does not work well because the one constructor's
  | 
| 
173
 | 
    12  | 
  definition is trivial!  The same thing occurs with Aczel's Special Final
  | 
| 
 | 
    13  | 
  Coalgebra Theorem
  | 
| 
95
 | 
    14  | 
*)
  | 
| 
120
 | 
    15  | 
structure CoUnit = CoDatatype_Fun
  | 
| 
95
 | 
    16  | 
 (val thy = QUniv.thy;
  | 
| 
 | 
    17  | 
  val rec_specs = 
  | 
| 
 | 
    18  | 
      [("counit", "quniv(0)",
 | 
| 
 | 
    19  | 
	  [(["Con"],	"i=>i")])];
  | 
| 
 | 
    20  | 
  val rec_styp = "i";
  | 
| 
 | 
    21  | 
  val ext = None
  | 
| 
 | 
    22  | 
  val sintrs = ["x: counit ==> Con(x) : counit"];
  | 
| 
 | 
    23  | 
  val monos = [];
  | 
| 
120
 | 
    24  | 
  val type_intrs = codatatype_intrs
  | 
| 
 | 
    25  | 
  val type_elims = codatatype_elims);
  | 
| 
95
 | 
    26  | 
  
  | 
| 
 | 
    27  | 
val [ConI] = CoUnit.intrs;
  | 
| 
 | 
    28  | 
  | 
| 
 | 
    29  | 
(*USELESS because folding on Con(?xa) == ?xa fails*)
  | 
| 
 | 
    30  | 
val ConE = CoUnit.mk_cases CoUnit.con_defs "Con(x) : counit";
  | 
| 
 | 
    31  | 
  | 
| 
 | 
    32  | 
(*Proving freeness results*)
  | 
| 
 | 
    33  | 
val Con_iff = CoUnit.mk_free "Con(x)=Con(y) <-> x=y";
  | 
| 
 | 
    34  | 
  | 
| 
 | 
    35  | 
(*Should be a singleton, not everything!*)
  | 
| 
 | 
    36  | 
goal CoUnit.thy "counit = quniv(0)";
  | 
| 
 | 
    37  | 
by (rtac (CoUnit.dom_subset RS equalityI) 1);
  | 
| 
 | 
    38  | 
by (rtac subsetI 1);
  | 
| 
120
 | 
    39  | 
by (etac CoUnit.coinduct 1);
  | 
| 
95
 | 
    40  | 
by (rtac subset_refl 1);
  | 
| 
 | 
    41  | 
by (rewrite_goals_tac CoUnit.con_defs);
  | 
| 
 | 
    42  | 
by (fast_tac ZF_cs 1);
  | 
| 
 | 
    43  | 
val counit_eq_univ = result();
  | 
| 
 | 
    44  | 
  | 
| 
 | 
    45  | 
  | 
| 
 | 
    46  | 
(*****************************************************************)
  | 
| 
 | 
    47  | 
  | 
| 
 | 
    48  | 
(*A similar example, but the constructor is non-degenerate and it works!
  | 
| 
 | 
    49  | 
  The resulting set is a singleton.
  | 
| 
 | 
    50  | 
*)
  | 
| 
 | 
    51  | 
  | 
| 
120
 | 
    52  | 
structure CoUnit2 = CoDatatype_Fun
  | 
| 
95
 | 
    53  | 
 (val thy = QUniv.thy;
  | 
| 
 | 
    54  | 
  val rec_specs = 
  | 
| 
 | 
    55  | 
      [("counit2", "quniv(0)",
 | 
| 
 | 
    56  | 
	  [(["Con2"],	"[i,i]=>i")])];
  | 
| 
 | 
    57  | 
  val rec_styp = "i";
  | 
| 
 | 
    58  | 
  val ext = None
  | 
| 
 | 
    59  | 
  val sintrs = ["[| x: counit2;  y: counit2 |] ==> Con2(x,y) : counit2"];
  | 
| 
 | 
    60  | 
  val monos = [];
  | 
| 
120
 | 
    61  | 
  val type_intrs = codatatype_intrs
  | 
| 
 | 
    62  | 
  val type_elims = codatatype_elims);
  | 
| 
95
 | 
    63  | 
  | 
| 
 | 
    64  | 
val [Con2I] = CoUnit2.intrs;
  | 
| 
 | 
    65  | 
  | 
| 
 | 
    66  | 
val Con2E = CoUnit2.mk_cases CoUnit2.con_defs "Con2(x,y) : counit2";
  | 
| 
 | 
    67  | 
  | 
| 
 | 
    68  | 
(*Proving freeness results*)
  | 
| 
 | 
    69  | 
val Con2_iff = CoUnit2.mk_free "Con2(x,y)=Con2(x',y') <-> x=x' & y=y'";
  | 
| 
 | 
    70  | 
  | 
| 
 | 
    71  | 
goalw CoUnit2.thy CoUnit2.con_defs "bnd_mono(univ(0), %x. Con2(x,x))";
  | 
| 
 | 
    72  | 
by (rtac bnd_monoI 1);
  | 
| 
 | 
    73  | 
by (REPEAT (ares_tac [subset_refl, QPair_subset_univ, QPair_mono] 1));
  | 
| 
 | 
    74  | 
val Con2_bnd_mono = result();
  | 
| 
 | 
    75  | 
  | 
| 
 | 
    76  | 
goal CoUnit2.thy "lfp(univ(0), %x. Con2(x,x)) : counit2";
  | 
| 
120
 | 
    77  | 
by (rtac (singletonI RS CoUnit2.coinduct) 1);
  | 
| 
95
 | 
    78  | 
by (rtac (qunivI RS singleton_subsetI) 1);
  | 
| 
 | 
    79  | 
by (rtac ([lfp_subset, empty_subsetI RS univ_mono] MRS subset_trans) 1);
  | 
| 
 | 
    80  | 
by (fast_tac (ZF_cs addSIs [Con2_bnd_mono RS lfp_Tarski]) 1);
  | 
| 
 | 
    81  | 
val lfp_Con2_in_counit2 = result();
  | 
| 
 | 
    82  | 
  | 
| 
173
 | 
    83  | 
(*Lemma for proving finality.  Borrowed from ex/llist_eq.ML!*)
  | 
| 
95
 | 
    84  | 
goal CoUnit2.thy
  | 
| 
 | 
    85  | 
    "!!i. Ord(i) ==> ALL x y. x: counit2 & y: counit2 --> x Int Vset(i) <= y";
  | 
| 
 | 
    86  | 
by (etac trans_induct 1);
  | 
| 
 | 
    87  | 
by (safe_tac subset_cs);
  | 
| 
 | 
    88  | 
by (etac CoUnit2.elim 1);
  | 
| 
 | 
    89  | 
by (etac CoUnit2.elim 1);
  | 
| 
 | 
    90  | 
by (rewrite_goals_tac CoUnit2.con_defs);
  | 
| 
 | 
    91  | 
by (fast_tac lleq_cs 1);
  | 
| 
 | 
    92  | 
val counit2_Int_Vset_subset_lemma = result();
  | 
| 
 | 
    93  | 
  | 
| 
 | 
    94  | 
val counit2_Int_Vset_subset = standard
  | 
| 
 | 
    95  | 
	(counit2_Int_Vset_subset_lemma RS spec RS spec RS mp);
  | 
| 
 | 
    96  | 
  | 
| 
 | 
    97  | 
goal CoUnit2.thy "!!x y. [| x: counit2;  y: counit2 |] ==> x=y";
  | 
| 
 | 
    98  | 
by (rtac equalityI 1);
  | 
| 
 | 
    99  | 
by (REPEAT (ares_tac [conjI, counit2_Int_Vset_subset RS Int_Vset_subset] 1));
  | 
| 
 | 
   100  | 
val counit2_implies_equal = result();
  | 
| 
 | 
   101  | 
  | 
| 
 | 
   102  | 
goal CoUnit2.thy "counit2 = {lfp(univ(0), %x. Con2(x,x))}";
 | 
| 
 | 
   103  | 
by (rtac equalityI 1);
  | 
| 
 | 
   104  | 
by (rtac (lfp_Con2_in_counit2 RS singleton_subsetI) 2);
  | 
| 
 | 
   105  | 
by (rtac subsetI 1);
  | 
| 
 | 
   106  | 
by (dtac (lfp_Con2_in_counit2 RS counit2_implies_equal) 1);
  | 
| 
 | 
   107  | 
by (etac subst 1);
  | 
| 
 | 
   108  | 
by (rtac singletonI 1);
  | 
| 
 | 
   109  | 
val counit2_eq_univ = result();
  |